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TIGHTNESS OF STATIONARY DISTRIBUTIONS OF A
FLEXIBLE-SERVER SYSTEM IN THE HALFIN-WHITT

ASYMPTOTIC REGIME
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A large-scale flexible service system with two large server pools
and two types of customers is considered. Servers in pool 1 can only
serve type 1 customers, while server in pool 2 are flexible – they
can serve both types 1 and 2. (This is a so-called “N-system.”) The
customer arrival processes are Poisson and customer service require-
ments are independent exponentially distributed. The service rate of
a customer depends both on its type and the pool where it is served.
A priority service discipline, where type 2 has priority in pool 2, and
type 1 prefers pool 1, is considered. We consider the Halfin-Whitt
asymptotic regime, where the arrival rate of customers and the num-
ber of servers in each pool increase to infinity in proportion to a
scaling parameter n, while the overall system capacity exceeds its
load by O(

√
n).

For this system we prove tightness of diffusion-scaled stationary
distributions. Our approach relies on a single common Lyapunov
function G(n)(x), depending on parameter n and defined on the entire
state space as a functional of the drift-based fluid limits (DFL). Specif-
ically, G(n)(x) =

∫ ∞
0

g(y(n)(t))dt, where y(n)(·) is the DFL starting
at x, and g(·) is a “distance” to the origin. (g(·) is same for all n).
The key part of the analysis is the study of the (first and second)
derivatives of the DFLs and function G(n)(x). The approach, as well
as many parts of the analysis, are quite generic and may be of inde-
pendent interest.

1. Introduction. In this paper we consider a large-scale service sys-
tem in the so-called Halfin-Whitt asymptotic regime. Such systems received
a lot of attention in the literature, especially in the past 10-15 year, because
they find a variety of applications, including, e.g., large customer contact
centers [1, 11] and large computer farms in network clouds. The Halfin-
Whitt regime, introduced originally in [14], is such that the system capacity
(roughly, number of servers) increases in proportion to a scaling parameter
n, and exceeds the system load by O(

√
n). It is attractive because it al-
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lows – in principle, under a good control algorithm – to achieve both good
performance (e.g. waiting times) and high resource utilization.

In the Halfin-Whitt regime, the stochastic process describing the system
behavior is usually studied under diffusion scaling, i.e. it is centered at the
system equilibrium point and scaled down by n−1/2. This name reflects the
fact that, in the limit on n → ∞, on any finite time interval, the sequence
of diffusion-scaled processes Y (n)(·) “typically” converges to a diffusion pro-
cess Y (·). Then, a fundamental question is whether or not the following limit
interchange property holds: the limit of stationary distributions of Y (n)(·)
is equal to the stationary distribution of Y (·). In turn, the key difficulty in
establishing the limit interchange property, is verifying the (stationary dis-
tribution) tightness property: the family of stationary distributions of Y (n)(·)
is tight.

The tightness property in the Halfin-Whitt regime is usually difficult to
verify even for systems with single pool of homogeneous servers, if there is
more than one type of arriving customers and/or the service time distri-
bution is non-exponential; see [3, 7–9] for the results in this direction. (We
note that the problems of verifying the tightness and limit interchange exists
not only in the Halfin-Whitt regime, but also in the so-called conventional
heavy traffic regime; see [2, 10, 12].) More general models, where there are
multiple flexible server pools with different capabilities (service rates) w.r.t.
different customer types, pose additional challenges. The key additional dif-
ficulty is that for such systems the state space is “fractured” into multiple
domains, where the process dynamics is very different. Papers [16–18] con-
tain tightness / limit interchange results for some flexible multi-pool models;
although, [16, 17] consider a strictly subcritical load regime (different from
Halfin-Whitt), in which the capacity exceeds the load by O(n).

One approach for verifying the stationary distribution tightness is to find
a single common Lyapunov function, for which an appropriate “negative
expected drift” condition can be established. This approach is used in [3, 8,
9, 18]. (Papers [7, 16, 17] use different approaches, not relying on a single
Lyapunov function.) Of course, finding/constructing a suitable Lyapunov
function is usually the key challenge. For example, paper [3], which proves
tightness for a single-pool model with first-come-first-serve discipline and
phase-type service time distribution, uses an elaborate common quadratic
Lyapunov function, of the type proposed in [4]; the tightness result in [3] also
requires that the customers waiting in the queue abandon at positive rate.
And again, finding single common Lyapunov function is further complicated
for flexible multi-pool systems.
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1.1. Paper contributions. We consider a flexible multi-pool system with
two customer types and two server pools (the so-called “N -system”), un-
der Markovian assumptions (the customer arrival processes are Poisson and
customer service requirements are independent exponentially distributed)
and under a priority discipline. The service rate of a customer depends both
on its type and the pool where it is served. We study the Halfin-Whitt
asymptotic regime, and prove the stationary distribution tightness result,
Theorem 2, which implies the limit-interchange, Corollary 4. (These results
extend to a more general class of Markovian systems under priority disci-
plines, as discussed in Section 6.)

The state space of the diffusion-scaled process for N -system has five do-
mains, where the process drift is given by different affine functions; the
domain boundaries depend on parameter n. Nevertheless, we construct a
single Lyapunov function G(n)(x) (depending on parameter n) on the entire
state space, as a functional of the drift-based fluid limits (DFL), which are
the deterministic trajectories defined by the drift of the process. Specifically,

(1) G(n)(x) =

∫ ∞

0
g(y(n)(t))dt,

where y(n)(·) is the DFL starting at x, and g(·) is a “distance” to the origin.
(Function g(·) does not depend on n.) For a Lyapunov function of this type,
in a setting more general than needed for the proof of Theorem 2, we give
sufficient conditions for the tightness in Theorem 5; the key condition is a
(uniform in n) bound on the Lyapunov function second derivatives. This
result may be of independent interest.

The proof of Theorem 2 verifies the conditions of Theorem 5 for the N -
system. This requires the analysis of the DFL structure, and of the (first and
second) derivatives of DFLs and corresponding functionals G(n)(x) on the
initial state x; it also requires an appropriate choice of the “distance” g(·).
Many parts of this analysis are quite generic and may also be of independent
interest.

As will be illustrated below in Section 2, for a deterministic dynamic
system, with trajectories y(n)(·) defined by a continuous derivative-field, the
function G(n)(x) given by (1) is a natural Lyapunov function, as long as it
is well defined (the integral in (1) is finite). In queueing networks literature,
this observation is used, for example, in [15, 19] to establish the existence of
a Lyapunov function for stable deterministic fluid models. This observation,
however, does not imply that G(n)(x) defined by (1) via DFLs y(n)(·) can
serve as a Lyapunov function for a (family of) random process(es). In this
paper we give sufficient conditions under which Lyapunov functions G(n)(x)
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can be used to establish tightness of stationary distributions, and then verify
these conditions for the N -system.

A Lyapunov function similar in spirit to (1) was used in [5] to establish
a sufficient condition for positive recurrence of a semimartingale reflecting
Brownian motion in the positive orthant. (In [5], the solutions to the Sko-
rohod problem, for the trajectories determined by the process drift alone,
are the DFLs in our terminology.) Obtaining the Lyapunov function second
derivative bounds is also a key part of the analysis in [5]. We note, however,
that our basic model, the problem, the structure of the (family of) pro-
cess(es) and corresponding DFLs, the form of function g(·), and the analysis
of the Lyapunov function derivatives are completely different.

1.2. Layout of the rest of the paper. In Section 2, we informally discuss
our general approach and the Lyapunov function construction. Section 3
formally defines the N -system, the Halfin-Whitt regime for it, and states
the tightness (Theorem 2) and the limit-interchange (Corollary 4) results.
In Section 4, in a setting more general than needed for the N -system, we
give a formal construction of the DFLs and the Lyapunov function, and
sufficient conditions for the tightness (Theorem 5). Section 5 contains the
proof of Theorem 2; here we choose a specific “distance” function g and
verify the conditions of Theorem 5 for the N -system. A generalization of
the N -system, for which our results still hold, is described in Section 6.
Finally, in Section 7, we discuss our approach and results.

1.3. Basic notation. Symbols R,R+,Z,Z+ denote the sets of real, real
non-negative, integer, and integer non-negative numbers, respectively. In the
Euclidean space R

I (of dimension I ≥ 1): |x| denotes standard Euclidean
norm of vector x = (x1, . . . , xI), while ‖x‖ =

∑
i |xi| denotes its L1-norm;

scalar product of two vectors is denoted x · y =
∑

i xiyi; diag(x) denotes
diagonal square matrix, with diagonal elements given by x; we write simply
0 for a zero matrix or vector; vectors are written as row-vectors, but in matrix
expressions they are viewed as column-vectors (without using a transposition
sign). For real numbers u and w: u ∨ w = max{u,w}, u ∧ w = min{u,w},
and 	u
 denotes the largest integer not greater than u.

For a vector-function y(·) = (y(t), t ≥ 0), we denote ‖y(·)‖ =
sup[0,∞) ‖y(t)‖. Abbreviation u.o.c. means uniform on compact sets con-
vergence. If X(t), t ≥ 0, is a Markov process, we write X(∞) for a random
element with the distribution equal to a stationary distribution of the pro-
cess. (In all cases considered in this paper, the stationary distribution will be
unique.) Symbol ⇒ denotes convergence in distribution of random elements;
random processes are random elements in the appropriate Skorohod space.
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For a condition/event H, the indicator function I{H} is equal to 1 when H
holds and 0 otherwise.

2. The intuition for the Lyapunov function construction. The
discussion in this entire section is informal. Consider a deterministic dynamic
system governed by ODE

(2) (d/dt)y = v(y),

where state y is a vector, and the vector-field v(·) is Lipschitz continuous.
Suppose the system has unique stable point 0. Let g(x) be a non-negative
continuous (and sufficiently smooth) function, which measures a “distance”
from 0. (In our results, we will use g(x) which is a smooth approximation
of L1-norm ‖x‖.) Suppose that for any initial state y(0) = x the trajectory
y(t), t ≥ 0 converges to 0 and, moreover,

(3) G(x) =

∫ ∞

0
g(y(t))dt < ∞.

Then G(·) is a Lyapunov function for this dynamic system, in the sense that

(d/dt)G(y(t)) = G′(y(t)) · v(y(t)) = −g(y(t)),

where G′ denotes the gradient of G. (The first equality is immediate from
(2), and (d/dt)G(y(t)) = −g(y(t)) is from G(y(t)) =

∫∞
t g(y(s))ds.)

Suppose now that instead of a deterministic system we have a Markov
process Y (·), for which vector-field v(·) gives the drift. Then we can define
deterministic trajectories y(·), and function G(·), the same way as above.
(The trajectories y(·) we call drift-based fluid limits (DFL).) Suppose further
that the process generator A is such that

(4) AG(y) = G′(y) · v(y) +H(y), |H(y)| ≤ C0‖G′′(y)‖,

where C0 is a constant and G′′ denotes the Hessian matrix of second deriva-
tives. (To interpret (4) one can think, for example, of a diffusion process with
bounded diffusion coefficients. In this paper we will work not with diffusion
processes, but rather with diffusion-scaled processes for our queueing sys-
tem – their behavior can be very different from that of diffusions, especially
when the system state is “far” from the equilibrium point. Nevertheless, the
process generator will have form (4).) Then, we have

AG(y) ≤ G′(y) · v(y) + C0‖G′′(y)‖ = −g(y) + C0‖G′′(y)‖.
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If we can show that

(5) ‖G′′(y)‖ ≤ C1g(y) + C2

with a sufficiently small C1, then for some ε > 0 and κ > 0,

(6) AG(y) ≤ −εg(y) + κ.

This is a Lyapunov-Foster type condition from which we can obtain the
steady-state bound Eg(Y (∞)) ≤ κ/ε, where Y (∞) is Y (t) when the process
is in stationary regime.

Finally, suppose we consider a family of processes Y (·) = Y (n)(·), with
the drift v(·) and generator A depending on n. If for some common function
g such that g(x) → ∞ as ‖x‖ → ∞, we can derive estimates (4)–(6) with
constants independent of n, then Eg(Y (n)(∞)) is bounded uniformly in n,
and therefore the family of stationary distributions of Y (n)(·) is tight.

This is the program that we implement in this paper, for the sequence of
diffusion-scaled processes for the N -system. The difficult part is obtaining
the second derivative bound (5). Since G is defined as a functional of the
DFLs y(·), this involves the analysis of the dependence of DFLs on the initial
state.

3. N-system with absolute priority. Consider a so-calledN -system,
with absolute priorities. (See Fig. 1.) There are two customer types, arriving
according to independent Poisson processes with rates Λ1 > 0 and Λ2 > 0,
respectively. There are two server pools, with B1 and B2 identical servers,
respectively. The total service requirement of any customer is an indepen-
dent, exponentially distributed random variable with mean 1. A customer
of type 2 can only be served by a server in pool 2, and if it does receive
service, it does so at rate μ22 > 0. A customers of type 1 can be served
by a server in either pool 1 or 2, with service rates being μ11 > 0 and
μ12 > 0, respectively. Type 2 customers have absolute (preemptive) priority
(in pool 2); namely, if there are X2 type 2 customers in the system, as many
of them as possible, X2 ∧ B2, receive service in pool 2, and the remaining
X2 − X2 ∧ B2 = (X2 − B2) ∨ 0 wait in the queue. (Here ∧ and ∨ denote
minimum and maximum, respectively.) Therefore, the total service rate of
all type 2 customers is

(7) μ22(X2 ∧B2).

The type 1 customers have absolute preference to be served in pool 1, and
have lower preempt-resume priority in pool 2. Namely, if there are X1 type 1
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Fig 1. N-system.

customers in the system, then X1 ∧B1 of them are served in pool 1, [(X1 −
B1) ∨ 0] ∧ [(B2 − X2) ∨ 0] are served in pool 2, and the remaining [X1 −
(B1 +B2) + (X2 ∧B2)] ∨ 0 wait in queue. The total service rate of all type
1 customers is

(8) μ11{X1 ∧B1}+ μ12{[(X1 −B1) ∨ 0] ∧ [(B2 −X2) ∨ 0]}.

We consider a sequence of such systems, indexed by a positive scaling pa-
rameter n, increasing to infinity. (See Fig. 2.) In a system with parameter n,

Λ1 = λ1n, Λ2 = λ2n,(9)

B1 = ψ11n, B2 = ψ12n+ ψ22n+ b
√
n,(10)

where the positive parameters b, λ1, λ2, ψ11, ψ12, ψ22 are such that

(11) λ2 = ψ22μ22, λ1 = ψ11μ11 + ψ12μ12.

Given this definition, and the priorities, the system “desired operating
point,” which we will refer to as equilibrium point, is such that X2 = ψ22n
and X1 = ψ11n + ψ12n, where type 1 customers occupy the entire pool 1
and ψ12n servers in pool 2; the equilibrium point is such that b

√
n servers

in pool 2 are idle – this is the “margin” by which system capacity exceeds
its load. (Again, see Fig. 2.)
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Fig 2. N-system in Halfin-Whitt asymptotic regime.

Remark 1. To be precise, in the definition of the sequence of systems,
we need to make sure that B1 and B2 are integer. Equations (10), as writ-
ten above, assume that B1 and B2 “happen to be” integer. We make this
assumption throughout the paper to simplify the exposition, while maintain-
ing rigor of the results and arguments. More specifically, we could replace
(10) with, for example,

(12) B1 = 	ψ11n
, B2 = 	ψ12n+ ψ22n+ b
√
n
.

If we do that, it is easy to check that for each n we can choose numbers

ψ
(n)
ij , (ij) = (11), (12), (22), and b(n), such that: |ψ(n)

ij − ψij | ≤ κ/n and

|b(n) − b| ≤ κ/
√
n for some constant κ > 0; (12) can be rewritten as

(13) B1 = ψ
(n)
11 n, B2 = ψ

(n)
12 n+ ψ

(n)
22 n+ b(n)

√
n;

and (11) can be rewritten as

(14) λ2 = ψ
(n)
22 μ22, λ1 = ψ

(n)
11 μ11 + ψ

(n)
12 μ12.

The sequence of systems will then be defined by (9), (13), (14). Then, the
entire analysis in this paper will hold as is, with ψij and b replaced every-

where with ψ
(n)
ij and b(n), respectively. (We note that the components of the

equilibrium point, namely X2 = ψ
(n)
22 n and X1 = ψ

(n)
11 n+ψ

(n)
12 n, need not be

integer.)
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It is easy to see that for each n the process X(n)(t) = (X
(n)
1 (t), X

(n)
2 (t)),

t ≥ 0, is continuous-time countable irreducible Markov chain, with the state
space being (for each n) Z2

+. Further, it is not difficult to check that, for each
sufficiently large n, this Markov process is positive recurrent, and therefore
has unique stationary distribution. Indeed, due to absolute priority, type 2

customers “do not see” type 1, and therefore X
(n)
2 (·) in itself is a positive

recurrent Markov chain, which in steady-state occupies on average ψ22n
servers in pool 2. This means that on average ψ12n+ b

√
n servers in pool 2

are available to serve type 1 customers; this is in addition to all ψ11n servers
in pool 1 which are available exclusively to type 1; therefore, the average
total service capacity available to type 1 is

ψ11nμ11 + (ψ12n+ b
√
n)μ12 = λ1n+ bμ12

√
n > λ1n.

More details of a positive recurrence proof are given in Appendix A.

The diffusion-scaled version X̂(n)(t) = (X̂
(n)
1 (t), X̂

(n)
2 (t)) of the process

X(n)(t) is defined by centering at the equilibrium point and rescaling by
1/
√
n:

(15) X̂
(n)
1 = (X

(n)
1 − ψ11n− ψ12n)/

√
n, X̂

(n)
2 = (X

(n)
2 − ψ22n)/

√
n.

Theorem 2. For some C > 0 and all sufficiently large n,

E‖X̂(n)(∞)‖ ≤ C.

The proof of Theorem 2 is given in the rest of this paper. It relies on a
Lyapunov function (depending on n), being a functional of a fluid trajectory,
determined by the process drift. Such fluid trajectories will be referred to
as drift-based fluid limits (DFL). In the rest of this section we define DFLs
for the N -system under consideration, and give motivation for the form of
Lyapunov function. Then, in Section 4, we give the Lyapunov function con-
struction and sufficient tightness conditions (Theorem 5) in a setting that
is more general than needed for the N -system. In the following sections we
verify the conditions of Theorem 5 for the N -system, thus proving Theo-
rem 2.

For each n, for the unscaled process X(n)(·), we define a drift function

(vector field) V (n) = (V
(n)
1 , V

(n)
2 ) for x = (x1, x2) ∈ R

2
+. (Note that it is

defined on R
2
+, and not just on the lattice Z

2
+.) It is defined in the natural

way, as the difference of arrival and service rates (see (7)–(8)):
(16)

V
(n)
1 = V

(n)
1 (x) = Λ1−μ11{x1 ∧B1}−μ12{[(x1−B1)∨ 0]∧ [(B2−x2)∨ 0]},
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(17) V
(n)
2 = V

(n)
2 (x) = Λ2 − μ22(x2 ∧B2),

where Λ1,Λ2, B1, B2 are the functions of n given in (9)–(11).
Let us denote by Ln the affine mapping X(n) → X̂(n), defined by (15).

Then, the state space of X̂(n) is S(n) ≡ LnZ
2
+ ⊂ X (n) ≡ LnR

2
+ ⊂ R

2.
Specifically, X (n) = {x | x1 ≥ −ψ11

√
n− ψ12

√
n, x2 ≥ −ψ22

√
n}. The drift

function for X̂(n) is defined accordingly:

v(n)(x) = (1/
√
n)V (n)(L−1

n x), x ∈ X (n).

We emphasize that v(n)(x) is defined on the continuous convex set X (n),
which contains the discrete state space S(n). It is important, however, that
at each point x ∈ S(n), v(n)(x) gives exactly the average drift of the process.
Namely,

(18) v(n)(x) =
∑
x′

(x′ − x)ν(n)(x, x′),

where ν(n)(x, x′) is the Markov process transition rate from state x to state
x′; note that there is only a finite number of “neighbor” states x′ for which
ν(n)(x, x′) > 0.

As n → ∞, set X (n) monotonically increases and converges to R
2.

It is easy to observe that v(n)(x) = 0 if and only if x = 0; also, uniformly
in n, v(n)(x) is Lipschitz continuous. Given Lipschitz continuity of v(n), for
any x ∈ X (n) there is a unique solution y(n)(t), t ≥ 0, to the ODE

(d/dt)y(n)(t) = v(n)(y(n)(t)), y(n)(0) = x.

The solution stays within X (n) for all t ≥ 0. (Indeed, for each i, v
(n)
i (x) =

λi
√
n when xi is at its lower bound – see the definition of X (n).) This trajec-

tory y(n)(t), t ≥ 0, will be called the drift-based fluid limit (DFL), starting
from x.

As we will show later in Section 5.1, each DFL is such that y(n)(t) → 0 as
t → ∞. Moreover, after a finite time this convergence is exponentially fast,
so that ∫ ∞

0
‖y(n)(t)‖dt < ∞.

The Lyapunov function we will use to prove Theorem 2 is

G(n)(x) =

∫ ∞

0
g(y(n)(t))dt < ∞,

where y(n)(·) is the DFL starting from x, and g(·) is a smooth non-negative
function (common for all n) approximating ‖ · ‖.
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Remark 3. In the literature on the steady-state tightness in the Halfin-
Whitt asymptotic regime, deterministic trajectories defined by the drift vec-
tor field, which we call DFLs, are considered in e.g. [3], where they are called
fluid models. However, the way we use DFLs in this paper – namely, to di-
rectly construct a Lyapunov function from them – is completely different
from their use in [3].

3.1. Limit interchange. We conclude this section by noting that the
tightness of stationary distributions of the processes X̂(n)(·), which follows
from Theorem 2, allows us to easily establish the limit interchange result,
given in Corollary 4 below.

Recall that for a given n, the drift function v(n)(·) is defined on the set
X (n) = {x | x1 ≥ −ψ11

√
n − ψ12

√
n, x2 ≥ −ψ22

√
n}, which monotonically

increases and converges to R
2. It is easy to observe that v(n)(x) → v(x)

uniformly on compact subsets of R2, where v2(x) = −μ22x2 and v1(x) =
−μ12[x1 ∧ (b − x2)]. In fact, even stronger property holds: on any compact
subset of R2, v(n)(x) = v(x) for all large n.

Corollary 4. The following convergence holds

(19) X̂(n)(∞) ⇒ X̂(∞),

where X̂(·) is a diffusion process which is a strong solution of SDE

(20) d(X̂) = v(X̂)dt+ (σ1dW1, σ2dW2),

where W1,W2 are independent standard Brownian motions and the diffusion
coefficients are σ1 = [λ1 + ψ11μ11 + ψ12μ12]

1/2, σ2 = [λ2 + ψ22μ22]
1/2.

The proof is fairly straightforward, we just give an outline. First, the fol-
lowing convergence on a finite interval holds (see e.g. [13]). Namely, consider
a sequence of processes X̂(n)(·) with fixed initial states X̂(n)(0) → x ∈ R

2.
Then, for any fixed T0 > 0

(21) (X̂(n)(t), t ∈ [0, T0]) ⇒ (X̂(t), t ∈ [0, T0]),

where X̂(·) is a strong solution of (20) with initial state X̂(0) = x. Then, (19)
can be established, together with the existence and uniqueness of a station-
ary distribution of X̂(·), as follows. We consider the sequence of stationary
versions of the processes X̂(n)(·) on a fixed finite time interval [0, T0], and let
n → ∞. Given tightness of stationary distributions of pre-limit processes,
we can choose a subsequence along which X̂(n)(0) ⇒ X̃(0) for some ran-
dom vector X̃(0); then we also have X̂(n)(T0) ⇒ X̃(0). We then use (21) to
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show that the distribution of X̃(0) must be a stationary distribution of X̂(·).
The uniqueness of the latter stationary distribution is easy to establish, for
example, using a coupling argument.

4. Lyapunov function construction and a tightness criterion.
The model in this section is quite general (including the N-system as a spe-
cial case). For this model we define DFLs, construct a functional of DFL,
and give sufficient conditions under which this functional can serve as a
Lyapunov function to prove tightness of stationary distributions. The sec-
tion is self-contained, because its main construction and result may be of
independent interest. However, it may help the reader to keep the N-system
described in Section 3 in mind as an example, to make the material more
concrete.

4.1. Setting and assumptions. Let I ≥ 1 be a fixed positive integer. For
each positive integer n ≥ n0 (where number n0 is fixed), we consider a
Markov chain X̂(n)(t), t ≥ 0, with a countable state space S(n) which has
the form

S(n) = {Lnx | x ∈ Z
I} ∩ X (n),

where X (n) is a convex closed subset of RI , containing 0, and Lnx = x/
√
n+

s(n) with some fixed s(n) ∈ R
I . Assume that for each n this Markov chain is

irreducible, positive recurrent, and is such that the total transition rate out
of any state is upper bounded by R1n and any single transition has the jump
size of at most R2/

√
n, where R1, R2 are positive constants independent of

n. Suppose that, defined on X (n) is a drift function (vector field) v(n)(x),
which is Lipschitz continuous uniformly in n. Assume that at each point
x ∈ S(n), v(n)(x) gives exactly the average drift of the process. Namely,

(22) v(n)(x) =
∑
x′

(x′ − x)ν(n)(x, x′),

where ν(n)(x, x′) is the Markov process transition rate from state x to state
x′; given the upper bound on a single jump size, note that there is only a
finite number of “neighbor” states x′ for which ν(n)(x, x′) > 0.

Assume that for any x ∈ X (n), there is a unique solution y(n)(t), t ≥ 0,
to the ODE

(d/dt)y(n)(t) = v(n)(y(n)(t)), y(n)(0) = x,

and the solution stays within X (n). This solution is called the drift-based
fluid limit (DFL), starting from x.
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Suppose a continuous non-negative function g(x), x ∈ R
I , is fixed. For

x ∈ X (n) define

(23) G(n)(x) =

∫ ∞

0
g(y(n)(t))dt, y(n)(0) = x,

where y(n)(·) is the DFL starting from x.

4.2. A tightness criterion. Denote by ∇zG
(n)(x) the directional deriva-

tive of G(n) at x ∈ X (n) in the direction of vector z ∈ R
I :

∇zG
(n)(x)

.
= lim

δ↓0

1

δ
[G(n)(x+ zδ)−G(n)(x)],

when the limit exists. (To be precise, if x in on the boundary of X (n), it is also
required that the direction z from x points into X (n).) Then, ∇z∗ [∇zG

(n)](x)
is the second derivative, first in the direction z and then z∗.

Theorem 5. Suppose that for any C1 > 0, there exists a function
g(x), x ∈ R

I , and a constant C2 > 0, such that the following conditions
(i) and (ii) hold.

(i) Function g(x) is Lipschitz continuous, non-negative and such that
g(x) → ∞ as x → ∞.

(ii) For any n, the function G(n)(x), x ∈ X (n), is finite for all x, and
it has continuous gradient ∇G(n)(x); for any n, any x and any fixed
unit-length vectors z, z∗ ∈ R

I ,

lim sup
δ↓0

1

δ

∣∣∣∇zG
(n)(x+ z∗δ)−∇zG

(n)(x)
∣∣∣ ≤ C1g(x) + C2;(24)

G(n)(x) → ∞, x → ∞, uniformly in n.(25)

Then,
sup
n

Eg(X̂(n)(∞)) < ∞.

The second derivative condition (24) is the key one. It implies that
|∇z∗ [∇zG

(n)](x)| ≤ C1g(x)+C2 if this second derivative exists. An equivalent
form of (24) is as follows: for any compact set D ⊆ X (n) and any unit-length
vector z ∈ R

I , the first derivative ∇zG
(n) within D is Lipschitz continuous

with constant
C1max

D
g(x) + C2.
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Proof of Theorem 5. Let us fix a constant C1 > 0, and then the cor-
responding function g and constant C2, so that (i) and (ii) hold. (We will
specify the choice of C1 below.)

By definition of G(n) and its assumed continuous differentiability,

(26) ∇G(n)(x) · v(n)(x) = ∇v(n)(x)G
(n)(x) = −g(x).

Let A(n) denote the (infinitesimal) generator of the Markov process X(n).
(See e.g. [6], Sections 4.1 and 1.1, for the definitions of the operator semi-
group and corresponding generator of a Markov process. In our case, the
semigroup is defined on the Banach space of bounded functions h(x), x ∈
S(n), with norm supx |h(x)|.) For any fixed k > 0, the function G(n),k .

=
G(n) ∧ k is such that it has constant value k for all states x ∈ S(n) except a
finite subset S(n),k (where the value is less than k). Therefore, there is only
a finite number of possible state transitions that may change the value of
G(n),k(X̂(n)(t)), namely the transitions to or from the states in S(n),k; the
rates of such transitions are obviously uniformly bounded. Using this prop-
erty, it is easy to verify directly that function G(n),k is within the domain of
A(n), that is

lim
t↓0

(1/t)Ex[G
(n),k(X̂(n)(t))−G(n),k(x)] = A(n)G(n),k(x)

=
∑
x′

[G(n),k(x′)−G(n),k(x)]ν(n)(x′ − x),

where Ex denotes the expectation conditioned on X̂(n)(0) = x, and the limit
is uniform in x. This in turn implies

(27) EA(n)G(n),k(X̂(n)(∞)) = 0.

(See also [9], page 31, for this property and argument in a very similar
setting.) For any x ∈ S(n),k we have

A(n)G(n),k(x) ≤ ∇G(n)(x) · v(n)(x) + r(n)(x)(1/2)h(n)(x)(R2/
√
n)2,

where R2/
√
n is the maximum possible size of one jump of the process,

r(n)(x) ≤ R1n is the total transition rate from state x, and the second-
term coefficient h(n)(x) is bounded as |h(n)(x)| ≤ C1[g(x) + κ1] + C2 =
C1g(x) + C1κ1 + C2 < ∞. (The constant κ1 appears here, because we need
an upper bound on the second derivative in the R2-neighborhood of point
x, and we use the fact that g(·) is Lipschitz.) Recalling also (26), we obtain

A(n)G(n),k(x) ≤ −g(x) + (1/2)R1R
2
2[C1g(x) + C1κ1 + C2].
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We now specify the choice of C1: it is sufficiently small so that (for any
x ∈ S(n),k)

A(n)G(n),k(x) ≤ −εg(x) + κ2, for some ε > 0, κ2 > 0.

(Function g(·) and constants κ1, C2 depend on C1; therefore, constant κ2
depends on the chosen C1.). Obviously, if x ∈ S(n)\S(n),k, which is equivalent
to G(n),k(x) = k and equivalent to G(n)(x) ≥ k, then

A(n)G(n),k(x) ≤ 0.

From these bounds and (27) we obtain

E[−εg(X̂(n)(∞)) + κ2]I{G(n)(X̂(n)(∞)) < k}
≥ EA(n)G(n),k(X̂(n)(∞))I{G(n)(X̂(n)(∞)) < k} ≥ 0,

or
Eg(X̂(n)(∞))I{G(n)(X̂(n)(∞)) < k} ≤ κ2/ε.

Letting k → ∞, by monotone convergence,

Eg(X̂(n)(∞)) ≤ κ2/ε,

where the constant in the RHS is independent of n.

5. Proof of Theorem 2. We will prove Theorem 2 by choosing spe-
cific function g(·) and then verifying (in Theorem 10) the assumptions of
Theorem 5 for N -system.

In this section, we study properties of DFL trajectories and their G(n)-
functionals, for a system with a fixed scaling parameter n. We will drop
upper index (n) from now on. So, for example, will write simply X and
y(t) instead of X (n) and y(n)(t), respectively. (However, the expressions may
contain n as a variable.) From this point on in the paper, we say that C is a
universal constant if C depends only on the system parameters λi, ψij , μij ,
b, but does not depend on scaling parameter n. (If the sequence of systems is
defined as in Remark 1, then a universal constant C depends on the system

parameters λi, ψij , μij , b, but not on n and not on the sequences ψ
(n)
ij and

b(n).)

5.1. Basic DFL properties. First derivatives of DFLs and the Lyapunov
function. In this subsection we first establish some basic properties of DFLs
and their directional (Gateaux) derivatives. Then we specify function g(·),
and obtain the expressions for the first derivatives of the corresponding
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functionG(·). (All results of this subsection hold for systems far more general
than N-system. In particular, they still hold for the systems under the Leaf
Activity Priority LAP discipline in [16, 17], in the Halfin-Whitt regime; our
priority discipline for the N -system is a special case of LAP.)

The DFL trajectories y(·) have the following structure. Recall that v(x)
is (uniformly in n) Lipschitz continuous on the entire X . There is a finite
number M (same for any n) of domains, indexed by m = 0, . . . ,M − 1;
within each of them v(x) is a given linear function. More precisely, the DFL
satisfies a linear ODE

(d/dt)y(t) = v(y(t)) = umy(t) + am,

where um is a constant I× I matrix (same for each n), and am is a constant
vector (depending on n). Informally speaking, a domain is determined by
which service pools a fully occupied and/or which queues are non-empty.

Formally, the domains are easier to define (and think of) in terms of
unscaled quantities X1 ≥ 0 and X2 ≥ 0, and unscaled pool sizes B1 = ψ11n
and B2 = ψ12n+ ψ22n+ b

√
n. Each domain is defined by a combination of

the directions of three strict inequalities:

X1 < B1 or X1 > B1,(28)

X2 < B2 or X2 > B2,(29)

X1 +X2 < B1 +B2 or X1 +X2 > B1 +B2.(30)

However, we exclude two combinations, or conditions, (X1 < B1, X2 <
B2, X1 +X2 > B1 + B2) and (X1 > B1, X2 > B2, X1 +X2 < B1 + B2),
because they produce the empty set; and we replace (“merge”) the conditions
(X1 < B1, X2 > B2, X1 +X2 > B1 + B2) and (X1 < B1, X2 > B2, X1 +
X2 < B1 + B2) into one condition (X1 < B1, X2 > B2) because this
condition alone determines the form of v(x). So, there are M = 5 domains
in total. The diffusion-scaling mapping Ln, defined by (15), transforms them
into 5 (diffusion-scale) domains, denoted X 0, . . . ,X 4. Note that the domains
are defined by strict inequalities, so they do not cover the entire space X .
The domain closures are X̄ 1, . . . , X̄ 5, these do cover the entire X . By these
definitions, if a point belongs to the intersection of the closures of more
than one domain, then necessarily at least one of the equalities (in terms of
unscaled quantities), X1 = B1, X2 = B2, X1 +X2 = B1 +B2, holds.

In particular, consider the unscaled domain (X1 > B1, X2 < B2, X1 +
X2 < B1 + B2) = (X1 > B1, X1 + X2 < B1 + B2); it is such that there
are no queues and pool 1 fully occupied. The corresponding diffusion-scaled
domain is X 0 = {x ∈ X | x1 > −ψ12

√
n, x1+x2 < b}. In this domain v(x) =
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(−μ12x1,−μ22x2), i.e. u
0 = diag(−μ12,−μ22) and a0 = 0, and therefore

the components y1 and y2 evolve independently. Moreover, there exists a
universal constant α > 0, such that if y(t) starts from a point y(0) ∈ X 0,α .

=
{‖x‖ ≤ α} ⊂ X 0, then y(t) never leaves domain X0, which in turn means
that the trajectory is simply

yi(t) = yi(0)e
−μi2t, i = 1, 2.

From now such constant α and the corresponding sub-domain X 0,α will be
fixed.

Consider one more unscaled domain (X1 > B1, X2 < B2, X1 + X2 >
B1+B2). Here, pool 1 is fully occupied by type 1, pool 2 is fully occupied by
X2 type 2 customers andB2−X2 type 1 customers, andX1−B1−(B2−X2) =
X1 + X2 − B1 − B2 > 0 type 1 customers waiting in the queue. On the
diffusion scale, the domain (let us label it m = 1) is: X 1 = {x ∈ X | x1 >
−ψ12

√
n, x2 < ψ12

√
n+ b, x1 + x2 > b}, and we have

v(x) = ( (−b+ x2)μ12, − μ22x2),

with the corresponding u1 and a1. For the remaining 3 domains the v(x) is
determined similarly.

The equations for a DFL y(·) can be summarized as follows. The trajec-
tory of y2 is not affected by y1 and satisfies ODE

(31) (d/dt)y2 = −μ22[y2 ∧ (ψ12

√
n+ b)].

If y1 ≤ −ψ12
√
n (which corresponds to unscaled condition X1 ≤ B1),

(32) (d/dt)y1 = −μ11(y1 + ψ12

√
n) + μ12ψ12

√
n ≥ μ12ψ12

√
n.

If y1 ≥ −ψ12
√
n ( X1 ≥ B1) and y2 ≥ ψ12

√
n+ b ( X2 ≥ B2),

(33) (d/dt)y1 = μ12ψ12

√
n.

If y1 ≥ −ψ12
√
n ( X1 ≥ B1), y2 ≤ ψ12

√
n + b ( X2 ≤ B2), and y1 + y2 ≤ b

(X1 +X2 ≤ B1 +B2), that is in domain X̄ 0,

(34) (d/dt)y1 = −y1μ12.

If y1 ≥ −ψ12
√
n ( X1 ≥ B1), y2 ≤ ψ12

√
n + b ( X2 ≤ B2), and y1 + y2 ≥ b

(X1 +X2 ≥ B1 +B2), that is in domain X̄ 1,

(35) (d/dt)y1 = (−b+ y2)μ12.

For a given fluid trajectory, let us call time point t ≥ 0 a switching point
if y(t) belongs to the intersection of two or more closed domains X̄m. (i.e.
it is on a boundary separating different domains).
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Lemma 6. For some universal constants T > 0, C ′ > 0 and (integer)
K ′ > 0, DFL trajectories y(·) satisfy the following conditions. [For a DFL
y(·), x = y(0) ∈ X denotes its initial state.]

(i) Let τ ≥ 0 be the first time a DFL reaches set X 0,α. Then, τ ≤ T‖x‖.
(This, in particular, means that y(t) → 0, t → ∞, and, moreover, the
convergence is exponentially fast.) In addition, ‖y(·)‖ ≤ C ′‖x‖.

(ii) DFL y(·) depends on its initial state x continuously, in the sense of
‖y(·)‖-norm.

(iii) DFL y(·) has at most K ′ switching points, t1 < t2 < . . . < tK ,
0 ≤ K ≤ K ′, and tK < ‖x‖T . Moreover, the set of switching points
is upper semicontinuous in x; namely, as x → x∗, the limiting points
of the set of switching points are within the set of switching points for
initial state x∗.

(iv) For any interval [C3, C4], not containing 0, there exists a constant
T3 > 0 (independent of n), such that the total time the condition yi(t) ∈
[C3, C4] holds for at least one i, is upper bounded by T3.

Proof of Lemma 6. Given equation (31), condition y2(t) = ψ12
√
n+ b

( X2 = B2) can hold at most at one point t2 ≥ 0, which will be a switching
point. Similarly, by (32), there is at most one point t1 ≥ 0, at which condition
y1(t) = −ψ12

√
n (corresponding to X1 = B1) can hold, and if so, it will be

a switching point.
Denote t′ = t1∨t2. It is easy to see that for some universal constant κ > 0,

(36) t′ ≤ κ‖x‖, ‖y(t′)‖ ≤ κ‖x‖.

Indeed, |y2(t)| is non-increasing in [0,∞), and t2 ≤ |x2|/[(ψ12
√
n+ b)μ22] ≤

|x2|/[ψ12μ22
√
n]. In the interval [0, t1], y1(t) is negative non-decreasing, and

then |y1(t)| is non-increasing; and t1 ≤ |x1|/[ψ12μ12
√
n]. If t2 > t1, then

in the interval [t1, t2], (d/dt)y1(t) = ψ12μ12
√
n, and therefore |y1(t2) −

y1(t1)| ≤ ψ12μ12
√
nt2; given the bound on t2, we see that |y1(t2) − y1(t1)|

is upper bounded by |x2| times a universal constant. These observations
imply (36).

For all t > t′, conditions y2(t) < ψ12
√
n + b ( X2 < B2) and y1(t) >

−ψ12
√
n ( X1 > B1) hold. Therefore, y(t) can be only in one of the two

domains X̄ 0 or X̄ 1, depending on whether y1 + y2 ≤ b (no queues) or y1 +
y2 ≥ b (queue size y1 + y2 − b of type 1). It is easy to see from equations
(d/dt)y2 = −μ22y2, (34), (35), that if y(t) is in X̄ 1, then the trajectory
eventually leaves X̄ 1 and can never return. This implies that at most two
transitions between X 0 and X 1 can occur after t′. Specifically, either the
trajectory stays in X 0, or it is in X 1 and then X 0, or it is in X 0 then X 1



TIGHTNESS OF STATIONARY DISTRIBUTIONS 257

then X 0. The boundary cases are also possible; for example, the trajectory
may stay in the open domain X 0 at all times, except at exactly one point
t ≥ t′ it “touches” the boundary, i.e. y1 + y2 = b. To summarize, after t′

there are at most two switching points.
Denote by t′′ the first time t ≥ t′ when ‖y2(t)‖ ≤ α/4. We have t′′ − t′ =

0∨(1/μ22) log[‖y2(t′)‖/(α/4)] ≤ κ1‖x‖+κ2, for some universal κ1 and κ2. (κ2
depends on α, which in turn is universal.) In the interval [t′, t′′] the value of
|y1| cannot increase by more than κ3|y2(t′)| ≤ κ4‖x‖, for universal κ3, κ4 > 0.
(If y1 ≤ 0, then (d/dt)y1 ≥ 0. If y1 ≤ 0, then (d/dt)y1 ≤ μ12|y2|, and recall
that (d/dt)y2 = −μ22y2.) Therefore, |y1(t′′)| ≤ κ5‖x‖, for universal κ5 > 0.
Starting t′′, if type 1 has non-zero queue, (d/dt)|y1| = (d/dt)y1 ≤ −κ6 < 0,
for universal κ6 > 0; and if type 1 does not have queue, then (d/dt)|y1| =
−μ12|y1|. Consider the first time t′′′ ≥ t′′ when |y1| ≤ α/4. We conclude that
t′′′ ≤ T‖x‖ + κ7 and sup[0,t′′′] ‖y(t)‖ ≤ C ′‖x‖ for some universal positive
constants T,C ′, κ7. Obviously, t′′′ ≥ τ , so that τ ≤ T‖x‖ + κ7. However, if
‖x‖ ≤ α, i.e. y(0) = x is already in X 0,α, then obviously τ = 0. Therefore,
in the bound τ ≤ T‖x‖+ κ7, we can drop κ7 by rechoosing T , if necessary.

For future reference, we also make the following observation. Suppose,
μ12 = μ22. Then, there can be at most one switching point after time t′, let
us call it t3 ≥ t′, and it is such that y(t) ∈ X 0 for all t > t3. Indeed, in this
case, in the domain X̄ 0, we have simply (d/dt)[y1 + y2] = −μ22[y1 + y2].

Let us prove properties (i)–(iv). In fact, (i) has been proved already. For
a given x, let us choose τ ′ such that τ < τ ′ for all initial states sufficiently
close to x. (On a finite interval [0, τ ′], y(·) depends on the initial state con-
tinuously, because it is a solution to an ODE with Lipschitz continuous
RHS.) But, for t ≥ τ ′, the DFL with any initial state close to x is such that
y(t) ∈ X 0,α; this implies uniform convergence across all t ≥ 0, which proves
(ii). The part of property (iii), stating that there is at most K ′ switching
points, all of which are smaller than τ ≤ T‖x‖, has already been proved, in
fact we specified that K ′ ≤ 4. Then, the upper semicontinuity of the set of
switching points follows from continuity of trajectories w.r.t. initial state;
this proves (iii). Consider a fixed interval [C3, C4], not containing 0. It is
clear from (31) that y2(t) can spend only a finite time within [C3, C4]. Now,
y1(t) can be in [C3, C4] only after time t1, and then in every domain the
trajectory visits y1(t) satisfies one of the equations (33)–(35). If we examine
each of these equations (and recall that (35) holds within domain X̄ 1, where
(d/dt)y2 = −μ22y2), we see that even if the equation were to hold up to infi-
nite time, y1(t) can spend only a finite time within [C3, C4]. And there is only
a finite, uniformly bounded number of domains that a trajectory can visit.
This proves (iv).
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Next, let us consider the first-order dependence of DFL on the initial
state. Let y(t;x) denote y(t) with initial state y(0) = x ∈ X . For any x ∈ X
and any direction z ∈ R

I (which does not point outside X ), we use the
following notation for the directional (Gateaux) derivative of y(t;x) at x in
the direction z:

∇zy(·;x) .
= lim

δ↓0

1

δ
[y(·;x+ zδ)− y(·;x)].

Theorem 7.

(i) For any fixed x ∈ X and a fixed vector z, the directional derivative

ξ(·) = ξ(·;x, z) = ∇zy(·;x)

exists. It has the following structure. Let 0 < t1 < t2 < . . . < tK be
the switching points of y(·;x). Then, ξ(0) = z, and in each interval
[0, t1], [t1, t2], . . . , [tK ,∞), ξ satisfies linear homogeneous ODE

(d/dt)ξ = umξ,

where matrix um is the matrix u for the domain X̄m containing y(t;x).
Solutions q(t), t ≥ 0, to the equation (d/dt)q = umq, for any m, are
such that

(37) ‖q(·)‖ ≤ C5‖q(0)‖

for a universal constant C5 > 0.
(ii) The derivative ξ(·;x, z) depends on (x, z) continuously.
(iii) There exists a universal constant C6 > 0, such that

‖ξ(·;x, z)‖ ≤ C6‖ξ(0;x, z)‖ = C6‖z‖.

Proof. The proof of (i) relies on the following observations.

(a) In any time interval, where both y(t;x+zδ) and y(t;x) are within same
domain X̄m, they are governed by the same ODE (d/dt)y = vm(y),
and therefore their difference Δy(t) = y(t;x+zδ)−y(t;x), is governed
by the linear homogeneous ODE (d/dt)Δy = umΔy. Moreover, it is
easy to check that within any domain X̄m the corresponding matrix
um is such that ‖Δy(t)‖ can increase at most by some universal factor
C8. Indeed, consider Δy2 first, and then Δy1. The equation for Δy2 is
either

(38) (d/dt)Δy2 = −μ22Δy2
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or

(39) (d/dt)Δy2 = 0;

in either case |Δy2| cannot increase. The equation for Δy1 is

(d/dt)Δy1 = um11Δy1 + um12Δy2,

where um11 = 0 or um11 = −μ11 or um11 = −μ12; we also note that if Δy2
satisfies (39) then necessarily um12 = 0. We see that in any case, in any
time interval, |Δy2(t)| is upper bounded by the initial ‖Δy2‖ times a
universal constant. This observation, in particular, proves (37).

(b) The total length of “switching intervals”, where y(t;x+zδ) and y(t;x)
belong to different domains vanishes as δ → 0 (by upper semicontinuity
of the set of switching points), and therefore the total change of Δy(t)
within those intervals is “small”. More precisely, let t be fixed and
[θ1, θ2] be a switching interval such that θ1, θ2 → t. Then, ‖Δy(θ2) −
Δy(θ1)‖/‖Δy(θ1)‖ → 0, because v(x) is Lipschitz.

Combining observations (a) and (b), and further observing that the number
of intervals where both y(t;x+ zδ) and y(t;x) are within same domain X̄m

(i.e. outside the switching intervals) is upper bounded, we take the δ ↓ 0
limit to obtain (i).

(ii) This follows from the upper semicontinuity of the set of switching
points on x.

(iii) By (37), in any domain ‖ξ(t)‖ can increase at most by some factor
C5. There is only a finite number of domains that y(t) visits. This proves
(iii).

We now introduce a specific function g, which we will use in the definition
(23) of the Lyapunov function.

Definition 8. Let parameter C > 0 be fixed. Let a function f(η) of
real η be fixed, which satisfies the following conditions. It is a non-negative,
even, convex, twice continuously differentiable, f(η) = 0 for η ∈ [−C,C],
f ′(η) = −1 for η ≤ −C − 1, f ′(η) = 1 for η ≥ C + 1. (Such a function can
be defined explicitly. Since C is a parameter, essentially, we fix the shape of
function f(C + ζ), ζ ≥ 0.) Note that both f ′ and f ′′ are uniformly bounded,
and f ′′ = 0 outside of the intervals [−C − 1,−C] and [C,C + 1]. Then, let

g(x) =
∑
i

f(xi).

Obviously, |f(η)− |η| | is uniformly bounded by a constant, and then so is
|g(x)− ‖x‖ |.
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Then, by (23) we have G(x) =
∑

iGi(x), where

(40) Gi(x) =

∫ ∞

0
f(yi(t))dt, y(0) = x.

Clearly, G(x) is finite for any x, because (by Lemma 6(i)) y(t) → 0 and
therefore (by definition of f(·)) f(yi(t)) = 0 for all large t.

Theorem 9. For each i the following holds. For any x ∈ X and any
direction vector z,

(41) ∇zGi(x) =

∫ ∞

0
f ′(yi(t;x))ξi(t;x, z)dt.

Function ∇zGi(x) is continuous in (x, z).

Proof. Expression (41) follows from Theorem 7(i) and the fact that f ′

is continuous bounded. The continuity of ∇zGi(x) is obtained using Theo-
rem 7(ii) and Lemma 6(i,ii).

5.2. Second derivative bounds for the Lyapunov function.

Theorem 10. The assumptions of Theorem 5 hold. Specifically, for any
C1 > 0, there exist constants C > 0 and C2 > 0 such that conditions (i) and
(ii) in Theorem 5 hold for the function g in Definition 8 with parameter C.

Note that for a function g satisfying Definition 8, condition (i) of Theo-
rem 5 holds automatically. Condition (25) is also automatic given the defi-
nition of G and basic properties of DFL, namely the fact that the time for a
DFL to reach a given compact set increases to infinity as x → ∞. Therefore,
to prove Theorem 10, it remains to prove condition (24), and it suffices to
prove it separately for Gi, i = 1, 2 (see (40)). We will do this first for the
case μ22 �= μ12, and then for μ22 = μ12. (The proof of condition (24) in this
section applies to the N-system, as well as its generalization described in
Section 6. It does not apply for LAP discipline.)

For a given x and a time τ∗ > 0, denote by S(τ∗;x) the set of time points,
consisting of τ∗ and all switching points 0 ≤ t < τ∗ of the DFL y(·;x).

Lemma 11. Suppose μ22 �= μ12. For any ε > 0 there exists a sufficiently
large C7 > 0, such that, for all sufficiently large n, the following holds for
any fixed x and any unit-length vector z. Let τ7 be the first time the DFL
y(·;x) hits set {‖y‖ ≤ C7}. Then for all sufficiently small δ > 0, any point
in S(τ7;x+ zδ) is within distance at most εδ from a point in S(τ7;x).
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Proof. Consider a switching point t ∈ S(τ7;x) of DFL y(·) = y(·;x).
By definition of τ7, it is such that ‖y(t)‖ ≥ C7. The switching point is
on the boundary of multiple domain closures, and therefore one or more
equalities

(42) y1(t) = −ψ12

√
n, y2(t) = ψ12

√
n+ b, y1(t) + y2(t) = b,

defining the domain boundaries, hold. If the first or second equality holds,
then |y′i(t)| is large for large n. If y1(t) + y2(t) = b, then for t to be
a switching point, it is necessary that y(t) ∈ X̄ 0; then y′1(t) + y′2(t) =
−μ12y1(t)−μ22y2(t) = −(μ12−μ22)y1(t)−μ22b; conditions y1(t)+y2(t) = b
and ‖y(t)‖ = |y1(t)|+ |y2(t)| ≥ C7 imply that if C7 is large then so is |y1(t)|,
and then |y′1(t)+ y′2(t)| is large as well. We conclude that if any of the three
equalities (42) holds, then for all n ≥ n′ we have |y′1(t)| ≥ κ1 or |y′2(t)| ≥ κ1
or |y′1(t) + y′2(t)| ≥ κ1, respectively, where the constant κ1 > 0 can be made
arbitrarily large by choosing large enough n′ and C7. This means that, first,
the domains in which the trajectory y(·;x) is in before and after the switching
point t are uniquely defined. Second, since the distance between y(·;x+ zδ)
and y(·;x) does not exceed κ2δ at all times, where κ2 > 0 is a universal
constant (this follows from Theorem 7), and v(·) is Lipschitz, any point in
S(τ7;x+ zδ) must be within 2κ2δ/κ1 of a point in S(τ7;x). Since κ2 is uni-
versal and κ1 can be made arbitrarily large (by choosing C7 large), the result
follows.

Recall that to prove Theorem 10, it remains to prove the second derivative
condition (24). The proper second derivative may not exist, hence we must
“settle” for the estimate (24). But, to illustrate the proof that follows, let
us write down the expression for the second derivative, by formally applying
∇z∗ differentiation to (41) (this expression is not used in the proof):

∇z∗∇zGi(x)

=

∫ ∞

0
f ′′(yi(t;x))ξi(t;x, z∗)ξi(t;x, z)dt(43)

+

∫ ∞

0
f ′(yi(t;x))∇z∗ξi(t;x, z)dt.(44)

Proof of Theorem 10, case μ22 �= μ12. We choose small ε > 0 and
then C7 > 0 as in Lemma 11. Then choose parameter C > 0 of function g
large enough so that any DFL starting from the set {‖y‖ ≤ 2C7} never hits
set {‖y‖ ≥ C}. (We can do this by Lemma 6(i).)
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For i = 1, 2 consider

1

δ
[f ′(yi(t;x+ z∗δ))ξi(t;x+ z∗δ, z)− f ′(yi(t;x))ξi(t;x, z)]

=
1

δ
[f ′(yi(t;x+ z∗δ))− f ′(yi(t;x))]ξi(t;x, z)(45)

+
1

δ
f ′(yi(t;x+ z∗δ))[ξi(t;x+ z∗δ, z)− ξi(t;x, z)].(46)

(The integrals of the terms (45) and (46), correspond to the integrals (43)
and (44), respectively, in the formal second derivative expression.)

Since f(·) has bounded second derivative, the term (45) converges (uni-
formly in t) to

f ′′(yi(t;x))ξi(t;x, z∗)ξi(t;x, z).

The integral of this over t ∈ [0,∞) is bounded because the total time any
trajectory spends in the set {C ≤ ‖yi‖ ≤ C + 1} is uniformly bounded (by
Lemma 6(iv).)

In the term (46), f ′(yi(t;x + z∗δ)) is uniformly bounded. Let τ7 be the
first time y(t;x) hits set {‖y‖ ≤ C7}. We claim that, uniformly in t ∈ [0, τ9],

(47) lim sup
δ↓0

1

δ
[ξi(t;x+ z∗δ, z)− ξi(t;x, z)] ≤ εκ,

where κ > 0 is a universal constant. Indeed, let t1 ∈ S(τ7;x) be the first
(smallest) switching point of trajectory y(·;x). To be concrete, let us assume
t1 > 0. (The case t1 = 0 is treated analogously.) For a given δ, we define a
switching interval [θ∗1, θ

∗∗
1 ] associated with t1 as follows: θ∗1 is the minimum

of t1 and those switching points of y(·;x + zδ) that are within distance εδ
from t1; similarly, θ∗∗1 is the maximum of t1 and those switching points of
y(·;x+ zδ) that are within distance εδ from t1. Obviously, θ∗∗1 − θ∗1 ≤ 2εδ. In
the interval [0, θ∗1], ξ(t;x+ z∗δ, z) = ξ(t;x, z), because they are governed by
the ODE with same matrix um. Within the switching interval, the ODEs for
ξ(t;x+z∗δ, z) and ξ(t;x, z) may have a different matrix um, but there is only
a finite number of those matrices; therefore, in [θ∗1, θ

∗∗
1 ], ‖ξ(t;x + z∗δ, z) −

ξ(t;x, z)‖ can increase at most by κ1‖ξ(θ∗1;x, z)‖εδ, where κ1 is a universal
constant. We then consider the second switching point t2 and the associated
switching interval [θ∗2, θ

∗∗
2 ]. Note that between the first and second switching

intervals, both ξ(t;x+ z∗δ, z) and ξ(t;x, z) are again governed by the ODE
with same matrix um; therefore the difference ξ(t;x + z∗δ, z) − ξ(t;x, z) is
governed by the same ODE, and therefore in the interval [θ∗∗1 , θ∗2] the value
of ‖ξ(t;x + z∗δ, z) − ξ(t;x, z)‖ can increase at most by a factor given by a
universal constant κ2 > 0 (by (37)). At the end of the switching interval
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[θ∗2, θ
∗∗
2 ], the first-order component of ‖ξ(t;x + z∗δ, z) − ξ(t;x, z)‖ is upper

bounded by
κ2κ1‖ξ(θ∗1;x, z)‖εδ + κ1‖ξ(θ∗2;x, z)‖εδ.

We consider the third switching point, and so on. We see that the first-order
component of ‖ξ(t;x + z∗δ, z) − ξ(t;x, z)‖ will be upper bounded by κεδ,
for a sufficiently large universal κ. (There will be also higher order terms
δ�, � ≥ 2, with uniformly bounded coefficients.) This proves claim (47).

By Lemma 6(i), τ7 ≤ κ3‖x‖, for a universal constant κ3 > 0. (We can
always choose C7 ≥ α, and then κ3 = T .) Then, τ7 ≤ κ3(g(x) + κ4), where
κ4 may depend on the parameter C > 0 of function g.

Now, for all sufficiently small δ, the integral of the term (46),

∫ ∞

0

1

δ
f ′(yi(t;x+ z∗δ))[ξi(t;x+ z∗δ, z)− ξi(t;x, z)]dt

=

∫ τ9

0

1

δ
f ′(yi(t;x+ z∗δ))[ξi(t;x+ z∗δ, z)− ξi(t;x, z)]dt,

because f ′(yi(t;x + z∗δ)) = 0 for t ≥ T . The absolute value of the latter
integral is upper bounded by

κ3(g(x) + κ4)κε = κκεg(x) + κ3κ4κε.

The constants κ3 and κ are universal, while κ4 depends on C, which depends
on C7, which depends on ε. It remains to choose ε small enough so that
κ3κε < C1. Then the value of κ3κ4κε, plus the corresponding upper bound
on the integral of (45), gives constant C2.

Proof of Theorem 10, case μ22 = μ12. This case is treated the same
way as μ12 �= μ22, with the following modifications. If there is no switching
point t ∈ S(τ7;x), associated with equality y1(t)+y2(t) = b, then the proof is
unchanged. Suppose there is a switching point t ∈ S(τ7;x), associated with
equality y1(t) + y2(t) = b. Then, in the notation of the proof of Lemma 6,
we must have t ≥ t′, and by the observation we made in that proof, t is the
last switching point, and therefore it is the only switching point associated
with equality y1(t) + y2(t) = b. Moreover, all the properties we established
in the μ22 �= μ12 case proof, still apply to all switching points before t. After
time t, the process stays within the domain X0, and therefore (d/dt)[y1(t)+
y2(t)] = −μ22[y1(t)+y2(t)]. In particular, in a small neighborhood of time t,
(d/dt)[y1(t) + y2(t)] ≤ −(b/2)μ22 < 0. These facts imply that the switching
interval, corresponding to switching time t, is such that its end points are
within κ5δ from t, for some universal constant κ5 > 0. This means that the
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Fig 3. A more general system.

contribution of this last switching interval, as well as of the remaining time
interval up to the time τ7, into the integral of (46), is upper bounded by a
universal constant κ6 > 0.

6. Generalization of the N-system. Theorem 2, along with its proof,
easily extend to the generalization of N -system, shown in Figure 3, in the
Halfin-Whitt regime. The system has two customer types and arbitrary num-
ber of server pools. There is exactly one server pool that is flexible, i.e. can
serve both types. (On Figure 3, it is the pool in the middle.) Each of the
remaining pools is dedicated to service of either type 1 or 2. (The two pools
on the left in the figure are dedicated to type 1, while the two pools on
the right – to type 2.) Each customer type has absolute preference for its
dedicated server pools, in some fixed priority order, over the flexible pool.
In the flexible pool, the absolute preemptive priority is given to one of the
types.

The key features that the generalized system shares with the N -system
are that there are two customer types and only one flexible server pool,
which can be shared by the customers of different types. These features
are exploited in Section 5.2, where we estimated second derivatives of the
Lyapunov function. (We note again that all results in Section 5.1, which
concern with first derivatives, hold for far more general systems, e.g. those
under LAP discipline [16, 17].) The behavior of the DFLs for the generalized
system is more complicated, simply because the number of state space do-
mains can be very large. However, as in the N -system, after a finite time all
dedicated server pools stay fully occupied, which means that the DFL dy-
namics depends only on “what happens” in the flexible pool. Consequently,
our analysis goes through with very minor adjustments.
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7. Discussion. In this paper we address the problem of tightness of
stationary distributions, and the limit interchange, for flexible multi-pool
service systems in the Halfin-Whitt regime. The behavior of such systems
can be very complicated, which makes the problem challenging. This is, in
particular, due to the difficulty of constructing Lyapunov functions. Our
approach uses a (family of) Lyapunov function(s), defined as an integral
functional of the drift-based fluid limits (DFL) y(·): G(x) =

∫∞
0 g(y(t))dt,

y(0) = x. The problem then reduces to studying the (first and second)
derivatives of a DFL – and the corresponding integral G(x) – on the initial
state x. We apply this approach to show the tightness property for the N -
model under a priority discipline.

Both the approach and many parts of our analysis are quite generic and
might be applicable to other models as well. In this respect, note that there
is a lot of flexibility in choosing the “distance” function g(·). It might also
be possible to combine the approach with other techniques. For example,
a Lyapunov function of the type we consider could be defined and applied
on a subspace, if it could be shown by other means that the stationary
distributions concentrate (in appropriate sense) on that subspace. Exploring
these directions may be a subject of future research.

APPENDIX A: POSITIVE RECURRENCE PROOF

Let us drop superscript (n). Consider the process with fixed initial state
such that X2(0) = 0. Consider the sequence of time points 0 < t1 < t2 < . . .
at which X2(t) changes to 0; let t0 = 0. These are renewal points for X2(·)
viewed in isolation; X2(·) is positive recurrent. The renewal interval dura-
tions t�+1 − t�, � = 0, 1, . . ., are of course i.i.d. with some finite mean T . Let
A� be the random number of type 1 arrivals into the system in the interval
(t�, t�+1]; and S� be the random number of type 1 service completions in the
interval (t�, t�+1], assuming that all servers (in both pools), not occupied by
type 2 customers, serve type 1 customers. Clearly, (A�, S�) are i.i.d. across
�, EA� = λ1nT , ES� = λ1nT + bμ12

√
nT , EA� − ES� = −bμ12

√
nT < 0.

Using these facts, it is easy to see that the discrete time Markov chain
X1(t�), � = 0, 1, 2, . . . is positive recurrent; let N < ∞ denote the mean re-
turn time to 0 for this chain. This implies that, for the original continuous-
time process (X1(t), X2(t)), the mean time to return to state (0, 0) is upper
bounded by NT . We omit further details.
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