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We review the notions of multivariate regular variation (MRV)
and hidden regular variation (HRV) for distributions of random vec-
tors and then discuss methods for generating models exhibiting both
properties concentrating on the non-negative orthant in dimension
two. Furthermore we suggest diagnostic techniques that detect these
properties in multivariate data and indicate when models exhibiting
both MRV and HRV are plausible fits for the data. We illustrate our
techniques on simulated data, as well as two real Internet data sets.

1. Introduction. This paper discusses methods for constructing mul-
tivariate heavy-tailed models on particular sub-cones of R2

+ = [0,∞)2 by
adapting techniques from multivariate regular variation theory. We evaluate
two different methods for generating models exhibiting multiple heavy-tailed
regimes. The results obtained in the different regimes are governed by the
sub-cone that serves as the state-space, the choice of scaling function, and
often the interaction between different regimes. We also discuss statistical
detection methods which validate that data is consistent with particular
multivariate heavy-tailed models; these methods are adapted from those
developed for the conditional extreme value model (CEV) [8]. We discuss
multivariate regular variation (MRV) on the cones R

2
+ \ {0} and (0,∞)2.

When regular variation exists on both cones, the regular variation on the
smaller cone (0,∞)2 is called hidden regular variation (HRV).

Data that may be modeled by distributions having heavy tails appear in
many contexts, for example, hydrology [1], finance [31], insurance [14], In-
ternet traffic [6], social networks and random graphs [3, 13, 28, 30] and risk
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management [9, 19]. Often the observed data are multidimensional and gen-
erated by complex systems. Empirical evidence often indicates heavy-tailed
marginal distributions and the dependence structure between the various
components must be discerned.

Analysis of multivariate heavy-tailed models is facilitated by knowledge
of model generation methods. Generation methods often lead to efficient
simulation algorithms, suitable statistical models, appropriate estimation
techniques, and control policies. In a risk-assessment setting, generation
techniques help in stress-testing worst-case scenarios.

We pursue two broad themes in this paper: First, we adapt a standard
general model generation technique based on the polar coordinate transform
[26, p. 198] that produces tractable models in the particular cases of regular
variation on E := R

2
+ \ {0} and E0 := (0,∞)2. We discuss proposals that

produce models with both MRV and HRV and outline their strengths and
weaknesses. Second, we discuss diagnostics for exploratory detection and
identification of multivariate heavy-tailed models prior to estimating model
parameters. These ideas can be adapted for dimensions higher than two but
we do not pursue this adaptation here.

Fig 1. Remote risk region
R = (x,∞).

1.1. Motivation. Suppose we have a vector
Z = (Z1, Z2) giving the risk of two assets and
we wish to estimate the probability P[Z ∈ R]
of a remote risk region beyond the range of ob-
served data. A solution based on the asymptotic
assumption of data being heavy tailed is to as-
sume convergence of the measures

(1.1) nP

[
Z

b(n)
∈ ·

]
→ ν(·)

to a limit measure ν(·) for some limit function
b(n) → ∞ as n → ∞. Temporarily ignore tech-
nical issues such as the meaning of the arrow “→”, how we estimate ν(·),
how to get b(n), and which sets are allowed to be inserted in place of (·) in
(1.1). A quasi-solution in this simple view is to estimate with

P[Z ∈ R] ≈ 1

n
ν̂(R/b̂(n)),

where hats indicate quantities needing estimates. We wonder if risk conta-
gion is present and if both components can be simultaneously large; that is,
whether P[Z1 > x1, Z2 > x2] > 0? For models with asymptotic independence
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(which means ν((0,∞2)) = 0; see Section 1.4), we estimate this probability
as 0 because ν(·) concentrates all its mass on the axes. Does this mean that
the risk is actually zero or merely that we used the wrong asymptotic regime
for the estimation? Perhaps the scaling function b(t) was too big. Should the
state space for the risk estimation problem be R

2
+ or (0,∞)2?

In general if R is disjoint from the support of ν(·), our risk estimate is zero
and we wonder if we chose an asymptotic method ill-suited to the purpose.
The idea behind hidden regular variation is if the support of ν(·) is small
(eg. the two co-ordinate axes from 0) and does not contain R, we further
concentrate on the complement of the support (eg. (0,∞)2) for a second,
more appropriate regular variation property where the limit measure has
support intersecting R.

1.2. Outline. The mathematical framework for the study of multivariate
heavy tails is regular variation of measures. The theory is flexible when given
for closed subcones of metric spaces [21], but we specialize to subcones of
R
2
+ where statistical results are most readily exhibited. Statistical extensions

to higher dimensions will be discussed elsewhere. We list needed notation
in Section 1.3 for reference. The definitions of multivariate regular variation
(MRV) and hidden regular variation (HRV) are reviewed in Section 1.4 where
general concepts are adapted for subcones in two dimensions. In Section 2,
assuming asymptotic limit measures are specified, we adapt the standard
multiplicative method for generating regularly varying models based on the
generalized polar coordinate transform [10, 21, 26] to E = R

2
+ \ {0} and

E0 = (0,∞)2 producing relatively tractable models.
In Section 3 we discuss generation of models that exhibit both MRV and

HRV.When both MRV and HRV are present, one must be careful to properly
take into account their interaction since otherwise estimation procedures will
be misinterpreted. We review two model generation methods that yield both
MRV on E and HRV on E0 and discuss properties of each method. These
methods are (i) the mixture method, and (ii) the additive method. We give
particular attention to the recently proposed additive generation method
(ii) of [32] and study why interaction of MRV and HRV means asymptotic
parameters may not be coming from the anticipated summand of the repre-
sentation. Accompanying simulation examples illustrate our discussion.

Section 4 gives techniques for detecting when data is consistent with a
model exhibiting MRV and HRV. These techniques rely on the fact that un-
der broad conditions, if a vector X has a multivariate regularly varying dis-
tribution on a cone C, then under a generalized polar coordinate transforma-
tion (see (1.4)), the transformed vector satisfies a conditional extreme value
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(CEV) model for which detection techniques exist from [8]. Our method-
ology is more reliable than one dimensional techniques such as checking if
one dimensional marginal distributions are heavy tailed or checking whether
one dimensional functions of the data vector such as the maximum and the
minimum component are heavy tailed.

In Section 5, we give two examples of our detection and model estima-
tion techniques applied to Internet downloads and HTTP response data.
Concluding comments are in Section 6 and Section 7 contains proofs of the
propositions in Section 3.

1.3. Basic notation. We summarize some notation and concepts here.
For this paper, we have dimension d = 2 unless otherwise specified. We
use bold letters to denote vectors, with capital letters for random vectors
and small letters for non-random vectors, e.g., y = (y1, y2) ∈ R

2. We also
define 0 = (0, 0) and ∞ = (∞,∞). Vector operations are always understood
component-wise, e.g., for vectors x and y, x � y means xi � yi for i = 1, 2.
Some additional notation follows with explanations that are amplified in
subsequent sections. Detailed discussions are in the references provided.

RVβ Regularly varying functions with index β > 0; that is, functions
f : R+ �→ R+ satisfying limt→∞ f(tx)/f(t) = xβ , for x > 0. We
can and do assume such functions are continuous and strictly
increasing. See [2, 11, 27].

E R
2 \ {0}.

[axes] ({0} × R+) ∪ (R+ × {0}).
E0 R

2
0 \ [axes].

M(C \ C0) The set of all non-zero measures on C \ C0 which are finite on
subsets bounded away from the forbidden zone C0.

C(C \ C0) Continuous, bounded, positive functions on C \ C0 whose sup-
ports are bounded away from the forbidden zone C0. Without
loss of generality [21], we may assume the functions are uni-
formly continuous.

μn → μ Convergence in M(C \ C0) means μn(f) → μ(f) for all f ∈
C(C \ C0). See [10, 18, 21] and Definition 1.1.

X ⊥⊥ Y The random elements X and Y are independent.

d(x,y)] Euclidean metric in R
2.

So d(x,y) =
√
(x1 − y1)2 + (x2 − y2)2.

d(x,C) inf
y∈C

d(x,y) for x ∈ E and C ⊂ E.

ℵC {x : d(x,C) = 1}.
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ℵ0 {x ∈ E : d(x, {0}) = 1}.
ℵ[axes] {x ∈ E0 : d(x, [axes]) = 1} = {1} × [1,∞) ∪ [1,∞)× {1}.
MRV multivariate regular variation; for this paper, it means regular

variation on E.

HRV hidden regular variation; for this paper, it means regular varia-
tion on E0.

GPOLAR Polar co-ordinate transformation relative to the deleted forbid-
den zone C0,
GPOLAR(x) = (d(x,C0),x/d(x,C0)). See [10, 21].

1.4. Regularly varying distributions on cones. We review material from
[10, 18, 21] describing the framework for the definition of MRV and HRV
specialized to two dimensions. Note that the convergence concept used for
defining regular variation is M-convergence which is slightly different from
vague convergence traditionally used in such cases. Reasons for preferring
M-convergence are discussed in Remark 1.1 below and in [10, 21].

Consider R
2
+ as a metric space with Euclidean metric d(x,y). A subset

C ⊂ R
2
+ is a cone if it is closed under positive scalar multiplication: if x ∈ C

then cx ∈ C for c > 0. A proper framework for discussing regular variation
is measure convergence defined by M-convergence [10, 21] on a closed cone
C ⊂ R

2
+ with a closed cone C0 ⊂ C deleted. Call the deleted cone C0 the

forbidden zone. The two cases of interest in this paper are

1. C = R
2
+ and C0 = {0}. Then E := C \ C0 = R

2
+ \ {0} is the space

for defining M-convergence appropriate for regular variation of distri-
butions of positive random vectors. The forbidden zone is the origin
{0}.

2. C = R
2
+ and C0 = {x : ∧2

i=1xi = 0} =: [axes]. Then E0 := C \ C0 =
(0,∞)2, the first quadrant without its axes, is the space for defining
M-convergence appropriate for HRV. The forbidden zone is the set of
axes emanating from the origin in the positive direction.

Let M(C \C0) be the set of Borel measures on C \C0 which are finite on
sets bounded away from the forbidden zone C0 [10, 18, 21]. We think of sets
bounded away from the forbidden zone C0 as tail regions. We now formulate
M-convergence which becomes the basis for our definition of multivariate
regular variation.

Definition 1.1. For μn, μ ∈ M(C \ C0) we say μn → μ in M(C \ C0)
if
∫
fdμn →

∫
fdμ for all bounded, continuous, non-negative f on C \ C0

whose support is bounded away from C0.
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Definition 1.2. A random vector Z � 0 is regularly varying on C \C0

with index α > 0 if there exists b(t) ∈ RV1/α, called the scaling function,
and a measure ν(·) ∈ M(C \C0), called the limit or tail measure, such that
as t → ∞,

(1.2) tP[Z/b(t) ∈ · ] → ν(·), in M(C \ C0).

We write Z ∈ MRV (α, b(t), ν,C\C0) to emphasize that regular variation
depends on an index α, scaling function b ∈ RV1/α, limit measure ν, and
state space C \ C0. Since b(t) ∈ RV1/α, the limit measure ν(·) has a scaling
property,

(1.3) ν(c ·) = c−αν(·), c > 0.

If C = R
2
+, C0 = {0} and ν satisfies ν((0,∞)2) = 0 so that ν concentrates

on the axes, then Z possesses asymptotic independence [11, 26, 27]. This
means the probability of simultaneous occurrence of large values on both
co-ordinates is estimated to be zero.

1.4.1. Regular variation under polar coordinate transformation. It is con-
venient to transform (1.2) and (1.3) using generalized polar coordinates
[10, 21]. We define this for general cones of the form C \ C0, but will re-
strict our attention eventually to E and E0.

Fig 2. E0 = First quadrant
minus axes; ℵ[axes] is the dark
dashed lines.

Set ℵC0 = {x ∈ C \ C0 : d(x,C0) = 1}, the
locus of points at distance 1 from the deleted
forbidden zone C0. Define GPOLAR : C \ C0 �→
(0,∞)× ℵC0 by

(1.4) GPOLAR(x) =

(
d(x,C0),

x

d(x,C0)

)
.

Consequently, the inverse GPOLAR← : (0,∞)×
ℵC0 �→ C \ C0 of the GPOLAR function is

(1.5) GPOLAR←(r, θ) = rθ.

Then (1.2) and (1.3) are equivalent to

(1.6) tP

[
GPOLAR

(
Z

b(t)

)
∈ ·

]
→ (να × S)(·) = (ν ◦GPOLAR←)(·) ,

in M ((0,∞)× ℵC0) where να(x,∞) = x−α, x > 0, α > 0 and S(·) is a
probability measure on ℵC0 [10, 21]. The transformation GPOLAR depends
on the forbidden zone C0 and this dependence should be understood from
the context.
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(i) For E = R2
+ \ {0}, we have ℵ0 = {x ∈ E : d(x, {0}) = 1}.

(ii) For E0 = R
2
+ \ {x : x1 ∧ x2 = 0} =: R

2
+ \ [axes] = (0,∞)2, the

appropriate unit sphere is ℵ[axes] := {x ∈ E : x1∧x2 = 1}. See Figure 2.

1.4.2. MRV and HRV. Consider simultaneous existence of regular varia-
tion on both the big cone E and the smaller cone E0. We provide equivalent
polar-coordinate conditions for this simultaneous existence. These defini-
tions and conditions help us untangle origins of various limit measures ob-
tained while generating multivariate models in Sections 2 and 3 and aid in
formulation of model detection techniques in Section 4.

Definition 1.3. The vector Z is regularly variation on E and has hidden
regular variation on E0 if there exist 0 < α � α0, scaling functions b(t) ∈
RV1/α and b0(t) ∈ RV1/α0

with b(t)/b0(t) → ∞ and limit measures ν, ν0
such that

Z ∈ MRV(α, b(t), ν,E) ∩MRV(α0, b0(t), ν0,E0).

Unpacking the notation we obtain the two regular variation limits

tP[Z/b(t) ∈ · ] → ν(·) in M(E),(1.7)

tP[Z/b0(t) ∈ · ] → ν0(·) in M(E0).(1.8)

Using GPOLAR, separately for the two cones (1.7) and (1.8) we get for any
norm ‖ · ‖,

tP [(‖Z‖/b(t),Z/‖Z‖) ∈ · ] → να × S(·) in M((0,∞)× ℵ0),(1.9)

tP

[(
Z1 ∧ Z2

b0(t)
,

Z

Z1 ∧ Z2

)
∈ ·

]
→ να0 × S0(·) in M

(
(0,∞)× ℵ[axes]

)(1.10)

where S and S0 are probability measures on ℵ0 and ℵ[axes] respectively. Note

(
z

z1 ∧ z2

)
=

{
(1, z2/z1), if z1 � z2,

(z1/z2, 1), if z2 < z1

and
ℵ[axes] = ([1,∞)× {1}) ∪ ({1} × [1,∞)) .

So we may rewrite (1.10) as two statements: for x � 1,

tP

[
Z1

b0(t)
> r,

Z2

Z1
> x

]
→ r−α0S0{(1, z) : z > x} =: r−α0pḠ1(x),(1.11)
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tP

[
Z2

b0(t)
> r,

Z1

Z2
> x

]
→ r−α0S0{(z, 1) : z > x} =: r−α0qḠ2(x),(1.12)

where p := S0{{1} × [1,∞)}, q := S0{[1,∞)× {1}} = 1− p and G1, G2 are
probability distributions on [1,∞) and Ḡi = 1−Gi, i = 1, 2. In terms of G1,
G2, p and q, (1.10) is equivalent to

tP

[
Z1 ∧ Z2

b0(t)
> r,

(
Z1

Z2

∨ Z2

Z1

)
> x

]
→ r−α0

(
pḠ1(x) + qḠ2(x)

)
.(1.13)

and we will often use (1.13) in place of (1.10).

Remark 1.1. Traditionally, regular variation on E relied on vague con-
vergence, the polar coordinate transform x �→ (‖x‖,x/‖x‖) and Radon
measures being finite on relatively compact sets; see [26]. In order to make
the natural tail regions appearing in practice to be relatively compact, the
theory required one point uncompactification of a compactified version of
E; see [26] for further details. On E = [0,∞)2 this works fine because
{x ∈ E : ‖x‖ = 1} is compact and lines through ∞ cannot carry mass.
However, on E0 the traditional unit sphere {x ∈ E0 : ‖x‖ = 1} is no longer
compact. Hence, Radon measures on {x ∈ E0 : ‖x‖ = 1} may not be finite
(eg. ν0(x,∞) = (x1x2)

−1) and for estimation problems the approach rely-
ing on vague convergence is a dead end if estimation of a possibly infinite
measure is required. Since ℵ[axes] is bounded away from the forbidden zone,
limit measures on this set are finite. By using ℵ[axes] as the new unit sphere
and the equivalent convergence condition (1.13) we are able to estimate the
hidden measure (at least a transformed version) by estimating probability
measures irrespective of whether the hidden angular measure is finite or not.
More details on why M-convergence, an approach without compactification,
is desirable are in [10, 18, 21].

2. Generating regularly varying models. In this section we discuss
methods for generating regularly varying models on cones in R

2
+. We adapt

a standard scheme for generating regularly varying distributions. This ap-
proach generates the full totality of asymptotic limits but not the full totality
of pre-asymptotic models; so there can be many other ways to get the same
asymptotic models. This approach is a multiplicative method relying on the
polar co-ordinate transformation of the random vectors.

2.1. Generating regular variation on E. The easiest way to obtain a reg-
ularly varying model on E with scaling function b(t) and limit measure
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ν(·) = να × S ◦ GPOLAR is as follows: Suppose R is a random element of
(0,∞) with a regularly varying tail and scaling function b(t):

tP[R/b(t) > x] → x−α, x > 0, α > 0.

Let Θ be a random element of ℵ0 with distribution S

P[Θ ∈ · ] = S(·)

which is independent of R. Then Z := RΘ = GPOLAR←(R,Θ) is regularly
varying on E with limit measure ν = (να×S)◦GPOLAR on E because (1.9)
and consequently (1.7) hold. Reminder: GPOLAR is defined relative to the
deleted forbidden zone {0} in this case.

2.2. Generating regular variation on E0 (and sometimes also on E). As
suggested in [22], we may follow the same scheme as in Section 2.1. Let R0

be a random element of (0,∞) that is regularly varying with index α0 and
scaling function b0(t). Let Θ0 be a random element of ℵ[axes] with distri-
bution S0 and independent of R0. Then Z = R0Θ0 = GPOLAR←(R0,Θ0)
is regularly varying with scaling function b0(t) and limit measure ν0 :=
(να0 × S0) ◦ GPOLAR on E0 because (1.10) and therefore (1.8) hold. Re-
minder: GPOLAR in this case is defined relative to the deleted forbidden
zone consisting of [axes].

In practice we specify the measure S0 on ℵ[axes] as follows: Let G1, G2 be
two probability measures on (1,∞) and define

(2.1) Θ0 = B(Θ1, 1) + (1−B)(1,Θ2)

where B,Θ1,Θ2 are independent, B is a Bernoulli switching variable with
P[B = 1] = p = 1 − P[B = 0] and Θi has distribution Gi, i = 1, 2. So G1

smears probability mass on the horizontal line emanating from (1, 1) and G2

does the same thing for the vertical line.
For estimation purposes, note for s > 1 that

Ḡ1(s) = G1(s,∞) = ν0{x ∈ E0 : x1/x2 > s},(2.2)

Ḡ2(s) = G2(s,∞) = ν0{x ∈ E0 : x2/x1 > s}.(2.3)

Depending on the moments of Gi, i = 1, 2, it may be possible to extend
the regular variation constructed on E0 to E so that the marginals Z1, Z2

individually have tails which are regularly varying. This means [22]

ν0{x ∈ E0 : ‖x‖ > 1} < ∞,
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which occurs when
2∨

i=1

∫ ∞

1
sα0−1Ḡi(s)ds < ∞,

and is thus a somewhat restricted case. Regular variation on E0 by itself
does not in general imply one dimensional regular variation of the marginals.
Moreover, if the tails of Gi are heavier than the tail of R, we can have regular
variation on E0 with index α0 but the tails of Z1 and Z2 may be regularly
varying with a smaller index α. Full discussion is in [22].

3. Generating models that have both MRV on E and HRV on E0.
Section 2 discussed multiplicative methods to generate regularly varying
models separately on E and E0. Here we pursue the first theme of the pa-
per, namely methods that generate models with both regular variation on
E and hidden regular variation on E0. We give two methods for generating
such models that we call the mixture method and the additive method. The
mixture method is somewhat easier to analyze and the majority of the sec-
tion is devoted to the nuances of using the additive method under different
convergence regimes in E and E0. We pay particular attention to interac-
tion between limit measures which are generated by separately generating
regularly varying random vectors in E and E0.

3.1. Mixture method. This method [22, 26] expresses the random vector
Z as

Z = BY + (1−B)V ,

a mixture where Y gives the regular variation on E and V gives the regular
variation on E0 and B is a Bernoulli mixing variable with P[B = 1] =
1 − P[B = 0]. Since HRV implies that MRV on E must induce asymptotic
independence [25, 26], we need Y to model MRV with index α on E and have
asymptotic independence. So we take Y to concentrate on the set [axes] and

(3.1) Y = B1(ξ1, 0) + (1−B1)(0, ξ2)

where B1, ξ1, ξ2 are independent, B1 is a Bernoulli variable with P[B1 = 1] =
P[B1 = 0] = 1/2 and

(3.2) tP[ξi/b(t) > x] → x−α, x > 0, α > 0, t → ∞.

Construct V = (V1, V2) by the scheme of Section 2.2 to be regularly vary-
ing on E0 with limit measure ν0 and scaling function b0(t). Provided that
limt→∞ tP[Vi > b(t)] = 0 or equivalently that limt→∞ P[Vi > t]/P[ξi > t] = 0,
i = 1, 2, the resulting Z has both MRV on E and HRV on E0:

Z ∈ MRV(α, b(t), ν,E) ∩MRV(α0, b0(t), ν0,E0).
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3.2. Additive method. In their paper, [32] advocate an additive model of
the form

Z = Y + V ,

where Y ∈ MRV(α, b(t), ν,E), V has HRV with V ∈ MRV(α0, b0(t), ν0,E0)
and Y ⊥⊥ V . The idea is the limit measure of Z on E should come from
Y and the limit measure ν0 on E0 should come from V . They argue that
this representation has advantages for parameter estimation and the addi-
tive model overcomes the undesirable and usually unrealistic feature of the
mixture method where generated points are installed directly on the axes.
However, while this additive model is a nice pre-asymptotic model, it is
does not always successfully separate the limit measure on E and the hidden
measure on E0 in an identifiable manner.

We consider the additive model under three separate scenarios. Proofs for
the claims under these scenarios are deferred to Section 7.

(a) Y has form (3.1) and therefore has MRV but not HRV and V has MRV
on E without asymptotic independence and therefore has HRV on E0.
In this case Z is regularly varying on E with asymptotic independence
and has HRV with scaling function, index and limit measure same as
that of V .

(b) Y is not necessarily of form (3.1) but has MRV while V has MRV on
E (and hence HRV on E0) but not asymptotic independence. There is
a tail condition (3.5) as well. Then Z is regularly varying on E with
asymptotic independence and has HRV on E0 with scaling function,
index and limit measure same as that of V .

(c) Y has MRV but not HRV and V has both MRV on E and HRV on E0.
Identifiability issues are rampant for this case.

Case (a): Y has no HRV and V has MRV on E. We start with this
simplest result. The following proposition summarizes the findings.

Proposition 3.1. Suppose Y and V are non-negative random vectors
such that

(1) Y has the structure given in (3.1) (so that Y has no HRV) and (3.2)
holds.

(2) V has MRV on E (not E0) with index α0 � α, scaling function b0(t) =
o(b(t)), limit measure ν0 ∈ M(E) and no asymptotic independence. Reg-
ular variation of V on E has the consequence that for i = 1, 2,

(3.3) tP[Vi > b0(t)x] → cix
−α0 , x > 0, t → ∞, ci � 0, c1 ∨ c2 > 0.
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Then Z := Y + V has

1. MRV on E: Z ∈ MRV(α, b(t), ν,E) and Z has asymptotic indepen-
dence.

2. HRV on E0: Z ∈ MRV(α0, b0(t), ν0|E0 ,E0). The limit measure ν0|E0 is
ν0 restricted to E0 and

(3.4) ν0{x ∈ E0 : ‖x‖ � 1} < ∞.

Remark 3.1. Condition (2) in Proposition 3.1 is equivalent to the hid-
den limit measure ν0 having finite spectral measure with respect to the
conventional unit sphere since V has MRV on E. So the construction in
Proposition 3.1 yields only a special case of HRV since there are many cases
where (3.4) fails.

Consider an example to make the ideas clearer.

Example 3.1. Suppose Y has the structure given in (3.1) where ξ1, ξ2
are iid Pareto distributed with index α. Assume V = R0Θ0 where R0 is
Pareto distributed index α0 > α and Θ0 has the structure given in (2.1)
where Θi = 1 + Ei and E1, E2 are two standard iid exponential random
variables. Then V = R0Θ0 ∈ MRV(α0, b0(t), ν0,E) and the limit measure
of V is

ν0 = (να0 × P[Θ0 ∈ · ]) ◦GPOLAR.

This construction makes the marginals of V = (V1, V2) regularly varying
with index α0 which is consistent with V being MRV on E rather than just
E0:

P[V1 > x] =pP[R(1 + E1) > x] + qP[R > x]

∼px−α0E ((1 + E1)
α0) + qx−α0 = (const)x−α0 .

where the ∼ can be verified either directly or by applying Breiman’s theorem
[4] on products. Here p = 1− q = P(Θ0 ∈ ((1,∞)× {1})).

To check whether we can identify the distributions of Y and V from a
data sample of Z = Y +V , we simulate data following this model for three
different choices of α while keeping α0 fixed. We then check whether we
can estimate back the values of α and α0. In all three cases α0 = 2 with
Θ1

d= Θ2 and (Θ1 − 1), (Θ2 − 1) are iid standard exponential distributions,
and p = 0.5. In each case we simulate 10000 iid samples from Z. Then we
create Hill plots for the marginals of Z1 and Z2 to identify the value of α. To
detect the hidden part we create a Hill plot for min(Z1, Z2) to find the value
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Fig 3. Exploratory plots for Example 3.1, case 1, with α = 1, α0 = 2. Top panel:
Hill plots for the marginals Z1 and Z2. Bottom left: Hill plot for min {Z1, Z2}. Bottom
right: exponential QQ plot of max {Z1/Z2, Z2/Z1} thresholded by the 100 largest values of
min{Z1, Z2}.

of α0. Referencing (1.13), we also make a QQ plot of max(Z1/Z2, Z2/Z1)
for the 100 highest values of min(Z1, Z2) against the quantiles of standard
exponential which is the distribution of Θ1 and Θ2. We discuss the cases
below.

• Case 1: α = 1. The top panel of Figure 3 indicates that we can
identify the tails of Z to be heavy tailed. The correct index α = 1 is
slightly overestimated. The Hill plot of min(Z1, Z2) also indicates HRV
on E0 with index close to α0 = 2. The QQ plot of max(Z1/Z2, Z2/Z1)
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Fig 4. Exploratory plots for Example 3.1, case 2, with α = 1.5, α0 = 2. Top panel:
Hill plots for the marginals Z1 and Z2. Bottom left: Hill plot for min{Z1, Z2}. Bottom
right: exponential QQ plot of max{Z1/Z2, Z2/Z1} thresholded by the 100 largest values of
min{Z1, Z2}.

thresholded by the 100 largest values of min(Z1, Z2) against standard
exponential shows a decent fit.

• Case 2: α = 1.5. The top panel of Figure 4 again indicates that we can
identify the tails of Z to be heavy tailed. The index α is again overesti-
mated, this time more than in the previous case, perhaps because of the
closeness of α to α0. The Hill plot of min{Z1, Z2} also indicates HRV
on E0 with index close to α0 = 2. The QQ plot of max{Z1/Z2, Z2/Z1}
thresholded by the 100 largest values of min{Z1, Z2} against standard
exponential shows a decent fit again.
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Fig 5. Exploratory plots for Example 3.1, case 3, with α = 0.5, α0 = 2. Top panel: Hill
plots for the marginals Z1 and Z2. Bottom left: Hill plot for min{Z1, Z2}. Bottom right:
exponential QQ plot of max{Z1/Z2, Z2/Z1} thresholded by the 100 maximum values of
min(Z1, Z2).

• Case 3: α = 0.5. In this case too, the top panel of Figure 5 indicates
heavy-tailed Z. The Hill plot of min(Z1, Z2) also indicates hidden regu-
lar variation. The indices α = 0.5 and α0 = 2 are reasonably estimated
here, presumably because the original values of α and α0 are far apart.
However, the exponential QQ plot of max{Z1/Z2, Z2/Z1} for the 100
largest values of min{Z1, Z2} struggles to indicate an exponential fit.
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Case (b): Y has MRV and V has MRV. For Case (b) we remove the
restriction in Proposition 3.1 that Y = (Y1, Y2) concentrates on the axes.
However, to guarantee that the tails of V and Y do not interact in such a
way so as to obscure the fact that the hidden measure of Z is that of V we
need a tail condition comparing the tails of Y with V . Continue to suppose
Y ⊥⊥ V .

Proposition 3.2. Suppose Y and V are non-negative random vectors
such that

1. Y ∈ MRV(α, b(t), ν,E) and exhibits asymptotic independence.
2. V has MRVon E (not E0) with index α0 � α, scaling function b0(t) =

o(b(t)), limit measure ν0 ∈ M(E) with no asymptotic independence so
that

tP[V /b0(t) ∈ · ] → ν0(·) in M(E).

3. The interaction of the tails of Y and V is controlled by the condition

(3.5) tP[Y1 ∧ Y2 > b0(t)x] → 0, t → ∞, x > 0.

Then Z = Y + V has

1. MRV(α, b(t), ν,E) and asymptotic independence.
2. HRV on E0 with index α0, scaling function b0(t), limit measure ν0

restricted to E0.

Remark 3.2. For Y defined in Proposition 3.1, Y1 ∧ Y2 = 0 so (3.5) is
automatic. If Y1, Y2 are iid with P[Yi > x] ∈ RV−α, Y itself has HRV [25, 26]
with index 2α and condition (3.5) is needed to guarantee that the HRV in
Z comes from V and not Y . Condition (3.5) is equivalent in this case to

(3.6)
(P[Y1 > x])2

P[V1 ∧ V2 > x]
→ 0, (x → ∞).

and it is sufficient that
α0

2
< α < α0.

This is seen by noting that for Y1, Y2 iid regularly varying with index α,
(3.5) is

t (P[Y1 > b0(t)x])
2 =t (P[Y1 > b (b←(b0(t)))x])

2

=
t

(b←(b0(t)))2
(b←(b0(t))P[Y1 > b (b←(b0(t)))x])

2



GENERATING MRV AND HRV 211

and since b←(b0(t)) → ∞ and b(·) is the scaling function of Y1, this is
asymptotic to

∼ t

(b←(b0(t)))2
x−2α.

We need limt→∞ t/(b←(b0(t)))
2 = 0 and unwinding this condition yields

(3.6).

Case (c): Y does not have HRV and V has both MRV on E and HRV on
E0. A problem with the additive model is that the tail weights contributing
to MRV on E and HRV on E0 can be confounded between Y and V and it
is possible for V to have MRV on E, HRV on E0 but the hidden measure of
Z = Y + V is not the hidden measure of V .

To focus on the influence of V , we again assume Y satisfies (3.1) as in
Proposition 3.1.

Proposition 3.3. Suppose

1. Y has form (3.1) where ξ1, ξ2 are iid, each with distributions having
regularly varying tails with index α and scaling function b(t).

2. V has both MRV on E and HRV on E0:

(a) V ∈ MRV(α∗, b∗(t), ν,E) and has asymptotic independence.

(b) V ∈ MRV(α0, b0(t), ν0,E0).

3. The parameters α, α∗, α0 are related by α � α∗ � α0 and the scaling
functions b(t), b∗(t), b0(t) satisfy b∗(t) = o(b(t)), b0(t) = o(b∗(t)).

4. For specificity, specify the scaling functions b(t), b∗(t) by

b(t) =
( 1

P[ξ1 > ·]
)←

(t) and b∗(t) =
( 1

P[V1 > · ]
)←

(t)

and define another scaling function h(t) through its inverse h←(t) by

(3.7) h←(t) =: b←(t)b←∗ (t) ∼ 1

P[ξ1 > t]P[V1 > t]
.

Then

1. If

(3.8) h(t)/b0(t) → ∞,

Z ∈ MRV(α, b(t), ν,E) with asymptotic independence and has HRV
on E0 with index α+ α∗ and limit measure (different than the hidden



212 B. DAS AND S. I. RESNICK

measure of V ):

(3.9) νZ,hidden :=
1

2
(να × να∗ + να∗ × να) .

A sufficient condition for (3.8) is α∗ < α0 − α.
2. If

(3.10) h(t)/b0(t) → 0,

then Z ∈ MRV(α, b(t), ν,E)∩MRV(α0, b0(t), ν0,E0) and Z has asymp-
totic independence. Z has HRV on E0 with hidden limit measure ν0
and scaling function b0(t) equal to those of V . A sufficient condition
for (3.10) is α∗ > α0 − α.

3. If

(3.11) h(t)/b0(t) → c ∈ (0,∞),

then Z ∈ MRV(α, b(t), ν,E) with asymptotic independence and Z has
HRV with index α+α∗, scaling function b0(t) and hidden measure νZ
which is a linear combination of the measure given in (3.9) and ν0,
the hidden measure of V ,

νZ =
1

2
C0 (να × να∗ + να∗ × να) + ν0,(3.12)

where C0 = c1/α0 . A sufficient condition for (3.10) is α∗ = α0 − α.

See Section 7 for the proof. We discuss an example to clarify ideas here.

Example 3.2. We illustrate instances of the three cases given in Propo-
sition 3.3. We simulate data samples from three different regimes as discussed
in the Proposition 3.3 and estimate back the parameters of the additive
model from which the data was generated.

• Case 1: α∗ < α0 − α. Let α = 0.5, α∗ = 1, α0 = 2 and then α∗ = 1 <
1.5 = α0 − α. Let Y have the form (3.1) where ξ1, ξ2 are iid Pareto
random variables with parameter α = 0.5. For V it is simplest to take
V = (V1, V2) iid Pareto α∗ = 1 random variables and hence we do
so. Then α0 is the index of V1 ∧ V2 and so α0 = 2. It is easy to see
that Z = Y + V ∈ MRV(α = 0.5, t2, ε{0} × ν1/2 + ν1/2 × ε{0},E) with
asymptotic independence of the marginals. By Proposition 3.2 we have

Z ∈ MRV(α+ α∗, t
1

(α+α∗) , νZ,hidden,E0) = MRV(1.5, t
2
3 , νZ,hidden,E0).
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We can check that the limit measure νZ,hidden in (3.9) has density

1

4
z
−3/2
1 z−2

2 +
1

4
z−2
1 z

−3/2
2 , z1 > 0, z2 > 0

from which one can readily compute G1 from (1.11) for s > 1 as

Ḡ1(s) = νZ,hidden{z ∈ E0 : z1/z2 > s} = (const)s−1/2.

A similar calculation will lead to G2(s) = (const)s−1/2, s > 1 meaning
both G1 and G2 have regularly varying tail distributions with index
1/2. In fact they are both Pareto (1/2) distributions. We generate
10000 iid samples following the construction of Z = Y +V described
above and check whether we can estimate the regular variation index
α = 0.5, the hidden regular variation index α + α∗ = 1.5 and the tail
index of G1 and G2 from the sample. Figure 6 shows Hill plots for Z1

and Z2 in the top panel, both of which indicate that the marginals are
heavy tailed with parameter α = 0.5. The Hill plot of min{Z1, Z2} cor-
rectly identifies the HRV parameter α+α∗ = 1.5. The final Hill plot of
max{Z1/Z2, Z2/Z1} for the 200 highest order statistics of min{Z1, Z2}
clearly indicates a heavy tail with a tail index of 1/2 for both G1 and
G2. Note since G1 = G2, (1.13) allows doing the estimation using the
thresholded maxima of the component ratios.

• Case 2: α + α∗ > α0. Let α = 0.5, α∗ = 1, α0 = 1.25 and then
α∗ = 1 > 0.75 = α0 − α. We generate Y in exactly the same way as
in Case 1. For V we generate R, a Pareto α0 = 1.25 random variable,
B a Bernoulli (1/2) random variable and θ a Pareto α∗ = 1 random
variable. Now define:

V = BR(θ, 1) + (1−B)R(1, θ).

We have, Z = Y +V ∈ MRV(α = 0.5, t2, ε{0}×ν1/2+ν1/2×ε{0},E) and

furthermore Z = Y + V ∈ MRV(α0, t
1
α0 ,E0) = MRV(1.25, t

1
1.25 ,E0).

Moreover by construction we have G1(s) = G2(s) = s−1, s > 1. Of
course this is also clear from Proposition 3.3.
We generate 10000 iid samples using the construction of Z = Y + V
and from this sample we estimate the regular variation index α = 0.5,
the hidden regular variation index α0 = 1.25 and the tail index of G1

and G2 which is 1. The top panels in Figure 7 display Hill plots for Z1

and Z2 that indicate the same tail index of α = 0.5. The Hill plot for
min{Z1, Z2} correctly indicates a tail index of α0 = 1.25. Finally, the
Hill plot of max{Z1/Z2, Z2/Z1} for the 200 highest order statistics of
min{Z1, Z2} indicates a tail index of α∗ = 1 for both G1 ≡ G2.



214 B. DAS AND S. I. RESNICK

Fig 6. Exploratory plots for Example 3.2, Case 1, with α = 0.5, α∗ = 1, α0 = 2. Top
panel: Hill plots for the marginals Z1 and Z2. Bottom left: Hill plot for min{Z1, Z2}.
Bottom right: Hill plot for max{Z1/Z2, Z2/Z1} thresholded by the 200 largest values of
min{Z1, Z2}.

• Case 3: α + α∗ = α0. Let α = 0.5, α∗ = 1, α0 = 1.5 which satisfies
α + α∗ = 1.5 = α0. We generate Y as in Case 1 or 2 and gener-
ate V using the method of Case 2, except that now R is generated
from a Pareto α0 = 1.5 distribution. We verify that Z = Y + V ∈
MRV(α = 0.5, t2, ε{0} × ν1/2 + ν1/2 × ε{0},E) and Z = Y + V ∈
MRV(1.5, t1/1.5, νZ ,E0). Getting the distribution of G1 and G2 is more
difficult in this case since the hidden limit measure for Z is more com-
plicated as can be seen in (3.12). A careful calculation shows that G1

and G2 have regularly varying tails with index 0.5.
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Fig 7. Exploratory plots for Example 3.2, Case 2, with α = 0.5, α∗ = 1, α0 = 1.25. Top
panel: Hill plots for the marginals Z1 and Z2. Bottom left: Hill plot for min{Z1, Z2}.
Bottom right: Hill plot for max{Z1/Z2, Z2/Z1} thresholded by the 200 largest values of
min{Z1, Z2}.

We generate 10000 iid samples of Z = Y + V using this model. In
Figure 8 the Hill plots for Z1 and Z2 are in the neighborhood of α = 0.5
and the Hill plot for min{Z1, Z2} correctly indicates a tail index of
α0 = 1.5 The Hill plot of max{Z1/Z2, Z2/Z1} for the 200 highest
order statistics of min{Z1, Z2} indicates a tail index of α∗ = 0.5 for
both G1 ≡ G2 which was what we were expecting.
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Fig 8. Exploratory plots for Example 3.2, Case 3, with α = 0.5, α∗ = 1, α0 = 1.5. Top
panel: Hill plots for the marginals Z1 and Z2. Bottom left: Hill plot for min{Z1, Z2}.
Bottom right: Hill plot for max{Z1/Z2, Z2/Z1} thresholded by the 200 largest values of
min{Z1, Z2}.

4. Detection and estimation: Regular variation and hidden reg-
ular variation. What diagnostic tools exist to help us verify that multi-
variate data come from a distribution possessing regular variation on some
domain? Since regular variation is only an asymptotic tail property, the task
of deciding to use a multivariate regularly varying model is challenging.

Suppose we have Z = (Z1, Z2) multivariate regularly varying on E =
[0,∞)2 \ {0}. Under the transformation GPOLAR as defined in (1.4), ‖Z‖
is regularly varying with some tail index α and (1.6) holds. Diagnostics that
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investigate if Z is regularly varying often reduce the data to one dimension
for instance by taking norms or max-linear combinations of Z [26, Chapter
8] and then apply one dimensional heavy-tail diagnostics such as Hill or QQ
plotting. We propose further diagnostics for the viability of a multivariate
regularly varying model using the GPOLAR transformation since GPOLAR
converts a regularly varying model to a conditional extreme value (CEV)
model for which detection techniques exist [8].

4.1. Detecting multivariate regular variation using the CEV model. The
conditional extreme value model [7, 8, 16] requires at least one of the marginal
distributions be in the domain of attraction of an extreme value distribution.
In this section we discuss a modified version of the CEV model for bivariate
random vectors whose first components are non-negative and where conver-
gences are described by M-convergence [10, 21]. Define

E� := (0,∞)× R.

Definition 4.1. Suppose (ξ, η) ∈ R+ ×R is a random vector and there
exist functions a(t) → ∞, b(t) > 0 for t > 0 and a non-null measure μ ∈
M(E�) such that in

tP

[(
ξ

a(t)
,

η

b(t)

)
∈ ·

]
→ μ(·), in M(E�).(4.1)

Additionally assume that

(a) μ((r,∞]× · ) is a non-degenerate measure for any fixed r > 0, and,
(b) H(·) := μ((1,∞)× · ) is a probability distribution.

Then we say (ξ, η) satisfies a conditional extreme value model and write
(ξ, η) ∈ CEV(a, b, μ). Note that assumption (b) in the definition is a nor-
malization, and the theory would work assuming H to be a finite measure.

Remark 4.1. The definition has some consequences [16, Section 2]:

1. Convergence in (4.1) implies that ξ is regularly varying with some tail
index α > 0. Consequently a(t) ∈ RV1/α.

2. The limit μ is a product measure of the form

μ((r,∞)× (−∞, s]) = r−αH(s) =: να(r,∞)H(s)

for all (r, s) ∈ E� if and only if

lim
t→∞

b(tc)

b(t)
= 1.
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3. If a(t) = b(t), t > 0 then (ξ, η) is multivariate regularly varying on E�
with limit measure μ. (In such a case μ cannot be a product measure).

Remark 4.2. Statistical plots that check whether bivariate data can be
modelled by a CEV model were derived in [7] and are based on the Hillish,
Pickandsish and Kendall’s Tau statistics. If data is generated from a CEV
model, these statistics tend to a constant as the sample size increases. We
concentrate on the Hillish and Pickandsish statistics for this paper. We will
further specialize to the case where μ is a product measure μ = να ×H for
reasons that will be clear in the next subsection.

Let (ξi, ηi); 1 � i � n be iid samples in R
2
+ and (ξ1, η1) ∈ CEV(a, b, μ) for

some a(t) → ∞, b(t) > 0 and μ ∈ M(E�). We use the following notation:

ξ(1) � . . . � ξ(n) The decreasing order statistics of ξ1, . . . , ξn.

η∗i , 1 � i � n The η-variable corresponding to ξ(i), also called the
concomitant of ξ(i).

Nk
i =

k∑
l=i

1{η∗l �η∗i } Rank of η∗i among η∗1, . . . , η
∗
k. We write Ni = Nk

i .

η∗1:k � η∗2:k � . . . � η∗k:k The increasing order statistics of η∗1, . . . , η
∗
k.

Hillish statistic. For 1 � k � n, the Hillish statistic is

Hillishk,n = Hillishk,n(ξ, η) :=
1

k

k∑
j=1

log
k

j
log

k

Nk
j

(4.2)

Proposition 4.1 (Proposition 2.2 and Proposition 2.3 [8]). Suppose
(ξi, ηi); 1 � i � n are iid observations from the CEV(a, b, μ) model as in
Definition 4.1 and suppose H is continuous. If k = k(n) → ∞, n → ∞ and
k/n → 0, then

Hillishk,n
P→

∞∫
1

∞∫
1

μ((r
1
α ,∞)× [0, H←(s−1)])

dr

r

ds

s
=: Iμ.(4.3)

Moreover μ is a product measure if and only if both

Hillishk,n(ξ, η)
P→ 1 and Hillishk,n(ξ,−η) P→ 1.

The proof follows from Propositions 2.2 and 2.3 in [8]. The only difference
here is the use of measure μ instead of μ∗ and the roles of the first and the
second components are switched.
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Pickandsish statistic. This statistic gives another way to check the suit-
ability of the CEV assumption and to detect a product measure in the
limit. The Pickandsish statistic is based on ratios of differences of ordered
concomitants and is patterned on the Pickands estimate for the scale param-
eter of an extreme value distribution (Pickands [23], de Haan and Ferreira
[11, page 83], Resnick [26, page 93]). For notational convenience for s � t
write η∗s:t := η∗�s�:�t�. We define the Pickandsish statistic for 0 < q < 1 as

Pickandsishk,n(q) :=
η∗qk:k − η∗qk/2:k/2
η∗qk:k − η∗qk/2:k

.(4.4)

Proposition 4.2 (Proposition 2.4 and Corollary 2.5 [8]). Suppose (ξi, ηi);
1 � i � n are iid observations from the CEV(a, b, μ) model as in Defini-
tion 4.1. Assume that k = k(n) → ∞, n → ∞ and k/n → 0. Then

Pickandsishk,n(q)
P→ H←(q)(1− 2ρ)

H←(q)−H←(q/2)
,(4.5)

provided H←(q)−H←(q/2) �= 0. Here ρ = (log(c))−1 log
(
lim
t→∞

b(tc)
b(t)

)
. More-

over, μ is a product measure if and only if

Pickandsishk,n(q)
P→ 0

for some 0 < q < 1 where H←(q)−H←(q/2) �= 0.

The proof follows from Proposition 2.4 in [8]. The second part is imme-
diate from (4.5).

4.2. Relating MRV and CEV. We have methods to detect a CEV model
and indicate when the limit is a product measure. What is the connection
with multivariate regular variation? This connection is given in (1.7)–(1.10).
Regular variation of a vector Z on E and E0 with scaling functions b(t) ∈
RV1/α and b0(t) ∈ RV1/α0

respectively with 0 < α � α0 is equivalent to:

tP [(‖Z‖/b(t),Z/‖Z‖) ∈ · ] → να × S(·), in M((0,∞)× ℵ0) and(4.6)

tP

[(
Z1 ∧ Z2

b0(t)
,

Z

Z1 ∧ Z2

)
∈ ·

]
→ να0 × S0(·) in M

(
(0,∞)× ℵ[axes]

)
.

(4.7)

If ℵ0 and ℵ[axes] were subsets of R we could conclude that (4.6) and (4.7)
describe CEV models and modest changes, described in the next two results,
allow use of the CEV model diagnostics.
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Proposition 4.3. Suppose Z is a random element of R2
+. Fix a norm

for z ∈ R
2
+ : ‖(z1, z2)‖ = z1+z2. Then Z ∈ MRV(α, b(t), ν,E) (which means

(1.9) also holds) if and only if
(
‖Z‖, Z1

‖Z‖

)
∈ CEV (b, 1, μ) with limit measure

μ = να × S̄ where S̄(A) = S((x, y) ∈ ℵ0 : x ∈ A) for any A ∈ B[0,∞).

Proposition 4.4. Suppose Z � 0 is regularly varying on E with func-
tion b(t) ∈ RV1/α. Then Z exhibits HRV on E0 with scaling function b0(t) ∈
RV1/α0

, α0 � α if and only if

(
Z1 ∧ Z2,

(
Z1

Z2

∨ Z2

Z1

))
∈ CEV(b0, 1, μ0)

with limit measure given by μ0 = να0 × (pG1 + (1− p)G2) where G1(s) =
S0([1, s]× {1}) and G2(s) = S0({1} × [1, s]) for s � 1 and G1(s) = G2(s) =
0, s � 1.

Proposition 4.3 is easily deducible from the relationship between S and
S̄ and Proposition 4.4 follows from the connection between S0 and G1, G2.

5. Testing for MRV and HRV: data examples. Here we analyze
data sets to see whether a multivariate regularly varying model is a valid
assumption. We also look for asymptotic independence and if it exists we
test for the existence of hidden regular variation. The relevant plots for this
section appear at the end of the paper.

Example 5.1 (Boston University: HTTP downloads.). The first data set
is obtained from a now classical Boston University study [5] which suggested
self-similarity and heavy-tails in web-traffic data. Our dataset was created
from HTTP downloads in sessions initiated by logins at a Boston University
computer laboratory. It consists of 8 hours 20 minutes worth of downloads in
February 1995 after applying an aggregation rule to downloads to associate
machine-triggered actions with human requests and is discussed in [15, page
176]. The result of the aggregation is 4161 downloads which are characterized
by the following variables:

• S = the size of the download in kilobytes,
• D = the duration of the download in seconds,
• R = throughput of the download; that is, = S/D.

Previous studies [26, page 299, 316] indicate heavy-tailed behavior of all
three variables and asymptotic independence between D and R. We con-
centrate on the variables (D,R) so our data is {(Di, Ri); 1 � i � 4161}.
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Fig 9. BU dataset. Top panel: Hill plots of tail parameters for D and R. Bottom left plot:
angular density of (D∗, R∗). Bottom right plot: Hill plot for min(D∗, R∗).

Moreover the rank-transformed variables are denoted:

D∗
i =

4161∑
j=1

1{Di�Dj}, R∗
i =

4161∑
j=1

1{Ri�Rj}.

for 1 � i � 4161 with the generic rank-transformed variables denoted D∗

and R∗ respectively.
In Figure 9 we plot Hill estimates of the tail parameters of D and R

for increasing number of order statistics of their respective univariate data
values. Both plots are consistent with D and R being heavy tailed with
tail parameters αD and αR greater than 1. (This is confirmed [12, 26, 29]
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Fig 10. BU dataset. Top panel (D∗ > R∗): Hillish plots for (A, θ1) and (A,−θ1) and
Pickandsish plot for (A, θ1) at q = 0.8. Bottom panel (D∗ < R∗): Hillish plots for (A, θ2)
and (A,−θ2) and Pickandsish plot for (A, θ2) at q = 0.8.

by altHill and QQ plots (not shown) showing α̂D = 1.4 and α̂R = 1.2.)
The angular density plot of (D∗, R∗) shows data concentration near 0 and
π/2 consistent with asymptotic independence of the quantities. Asymptotic
independence does not automatically imply HRV so we check for HRV on
E0. We proceed by testing the following:

1. Is the variable A = min{D∗, R∗} regularly varying with parameter
greater than 1? The bottom right plot in Figure 9 plots Hill estimates
for increasing number of order statistics of A and stabilizes between 2
and 3 indicating the desired heavy-tail behavior.

2. For D∗ > R∗, we check whether (A, θ1) := (min{D∗, R∗}, D∗
R∗ ) fol-

lows a CEV model. In the top panel of Figure 10, the Hillish plots
of (A, θ1) and (A,−θ1) are close to 1 near the left side of their plots.
Moreover we observe that the Pickandsish estimate at q = 0.8 also
remains near 0. From Propositions 4.1 and 4.2, this is consistent with
(A, θ1) ∈ CEV(b0, 1, μ0) with a limit measure of the CEV being a
product measure.

3. ForD∗ < R∗, we similarly check whether (A, θ2) := (min{R∗, D∗}, R∗
D∗ )

follows a CEV model. In the bottom panel of Figure 10 we observe
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Fig 11. BU dataset. Proportion of data with D∗
i > R∗

i for order statistics of Ai =
min{D∗

i , R
∗
i }.

that the Hillish plots of (A, θ2) and (A,−θ2) are close to 1 near the
left side of their plots. We also observe that the Pickandsish estimate
at q = 0.8 remains near 0. Hence we again conclude that the evidence
is consistent with (A, θ2) ∈ CEV(b0, 1, μ0) with a limit measure of the
CEV being a product measure.

The rank transformation causes (D∗, R∗) to be standard regularly varying
with α = 1 and Proposition 4.4 implies (D∗, R∗) has hidden regular variation
on E0 if (and only if)

(A, θ) :=

(
min{D∗, R∗},max

{
D∗

R∗ ,
R∗

D∗

})
∈ CEV(b0, 1, μ0)

for some function b0.
Thus modeling the joint distribution of (D,R) using MRV and HRV is

consistent with the data. The next step is to estimate the distributions of
θ1 ∼ G1 and θ2 ∼ G2 as well as q defined in Proposition 4.4. Figure 11 plots
q̂k = 1

k

∑4161
i=1 1{D∗

i >R∗
i ,Ai>A(k)}, k = 2, . . . , 4161, where Ai = min{R∗

i , D
∗
i }

and A(1) � A(2) � . . . form order statistics from Ai; 1 � i � 4161. Observing
Figure 11 for k near 0, an estimate of q is q̂ = 0.6.

To find the distribution of θ1 we make a standard exponential QQ plot
of log(D∗

i /R
∗
i ) where Ai = min(D∗

i , R
∗
i ) > A(100), which serves as an ex-

ploratory diagnostic for heavy tails. We also create Hill plots for D∗
i /R

∗
i
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Fig 12. BU dataset. Top panel: QQ plot of log(D∗/R∗) when Ai > A(100) and Hill plots
of D∗/R∗ when Ai > A(100) and Ai > A(400). Bottom panel: Histogram of D∗/R∗ when
Ai > A(100) and kernel density estimates of D∗/R∗ when Ai > A(100) and Ai > A(400).

where Ai > A(k) for two choices of k. The top panels of Figure 12 give the
QQ plot for k = 100 (left) and the Hill plots for k = 100 and 400 (middle
and right). The bottom panels in Figure 12 have a histogram of D∗

i /R
∗
i for

Ai > A(100) (left) and kernel density plots of D∗
i /R

∗
i for Ai > A(100) (middle)

and Ai > A(100) (right). The plots indicate G1 is heavy tailed with an index
between 1.5 and 2 and we can provide a density estimate for the distribution
of θ1.

We create the same set of plots for finding G2 in Figure 13 which also
indicates towards a similar conclusion of heavy-tailed behavior for G2 with
an index close to but less than 2.

Example 5.2 (UNC Chapel Hill HTTP response data). A response is
the data transfer resulting from an HTTP request. The data set [17] consists
of 21,828 thresholded responses bigger than 100 kilobytes measured between
1:00pm and 5:00pm on 25th April, 2001. We use similar notation as in
Example 5.1.

• S = HTTP response size; total size of packets transferred in kilobytes,
• D = the elapsed duration between first and last packets in seconds of
the response,
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Fig 13. BU dataset. Top panel: QQ plot of log(R∗/D∗) when Ai > A(100) along with
Hill plots of R∗/D∗ when Ai > A(100) and Ai > A(400). Bottom panel: Histogram of
R∗/D∗ when Ai > A(100) and kernel density estimates of R∗/D∗ when Ai > A(100) and
Ai > A(400).

• R = throughput of the response = S/D.

Thus, the data set consists of {(Si, Di, Ri); 1 � i � 21828}. Our interest
is in the variables (S,R) which exhibit heavy tails and asymptotic indepen-
dence [17]. Denote the rank-transformed variables:(

S∗
i =

21828∑
j=1

1{Si�Sj}, R
∗
i =

21828∑
j=1

1{Ri�Rj}

)
, 1 � i � 21828,

with the generic rank-transformed variables denoted S∗ and R∗ respectively.
The top left plots in Figure 14 give Hill plots of the tail indices of the
distributions of S and R and suggest these indices are between 1 and 2.
Asymptotic independence of S,R is exhibited in the angular density plot
(top middle plot) for (S∗, R∗).

We next inquire if HRV exists on E0. The Hill plot for min(S∗, R∗) on the
upper right panel of Figure 14 gives a tail estimate α̂0 clearly greater than
1 and is consistent with HRV. We transform the data {(S∗, R∗); 1 � i �
21828} with the transformation GPOLAR) to obtain:
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Fig 14. UNC HTTP responses dataset. Top panel: (Left:) Hill plots of tail parameters
for S(blue), R(magenta); (Middle:) angular density of (S∗, R∗); (Right:) Hill plot for
min(S∗, R∗)). Middle panel (S∗ > R∗): Hillish plots for (A, θ1) and (A,−θ1) and Pickand-
sish plot for (A, θ1) at q = 0.8. Bottom panel (S∗ < R∗): Hillish plots for (A, θ2) and
(A,−θ2) and Pickandsish plot for (A, θ2) at q = 0.8.

(A, θ) := GPOLAR(S∗, R∗) =

(
min{S∗, R∗},max

{
S∗

R∗ ,
R∗

S∗

})
.

From Proposition 4.4 we know (A, θ) ∈ CEV(b0, 1, μ0) for some function
b0 and measure μ0 on E0. For both the cases S∗ > R∗ (see middle panels
in Figure 14) and S∗ < R∗ (see bottom panels in Figure 14), we employ
the Hillish and Pickandsish diagnostics to check consistency of (A, θ1) :=
(min{S∗, R∗}, S∗/R∗) and (A, θ2) := (min{S∗, R∗}, R∗/S∗) with the CEV
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Fig 15. UNC HTTP responses. Proportion of data with S∗
i > R∗

i for order statistics of
Ai = min{S∗

i , R
∗
i }.

model with product limit measure. The Hillish plots are reasurringly hover-
ing at height 1 and the Pickandsish plots center at 0.

So we have accumulated evidence that the data is consistent with an HRV
model on E0. Now we proceed to provide some estimates on the structure
of the hidden angular measure, which boils down to estimating three things

1. The proportion q appearing in μ0 in Proposition 4.4: this can be esti-
mated by

q̂k =
1

k

21828∑
i=1

1{S∗
i >R∗

i ,Ai>A(k)}, k = 2, . . . , 21, 828.

where Ai = min{S∗
i , R

∗
i } and A(1) � A(2) � . . . form order statistics

from Ai; 1 � i � 21, 828 as in Figure 15. Looking at the plot for k near
zero, we can estimate p̂ = 0.55.

2. The distribution of θ1 ∼ G1: see Figure 16. First we make a standard
exponential QQ plot of log(S∗

i /R
∗
i ) when Ai > A(100). This acts as

a diagnostic for heavy tails. This plot clearly indicates against heavy
tails as does a Hill plot of S∗

i /R
∗
i when Ai > A(100). A histogram and

kernel density estimate plot of (S∗
i /R

∗
i ) for Ai > A(100) points towards

a light-tailed distribution.
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Fig 16. UNC HTTP responses: Top: QQ plot of log(S∗/R∗) when Ai > A(100) along with
Hill plots of S∗/R∗ when Ai > A(100) and Ai > A(400). Bottom: Histogram and kernel
density estimates of S∗/R∗ when Ai > A(100)

3. The distribution of θ2 ∼ G2: see Figure 17. As before, first we make a
standard exponential QQ plot of log(R∗

i /S
∗
i ) when Ai > A(100), and the

points nicely hug a straight line which indicates presence of heavy tails.
The Hill plots of R∗

i /S
∗
i when Ai > A(100) and Ai > A(400) provide an

estimate of the tail index to be between 1 and 1.5. The histograms
and kernel density estimates seem to support that the distribution of
G2 is heavy tailed.
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Fig 17. UNC HTTP responses. Top: QQ plot of log(R∗/S∗) when Ai > A(100) and Hill
plots of R∗/S∗ when Ai > A(100) and Ai > A(400). Bottom: Histogram of R∗/S∗ when
Ai > A(100) and kernel density estimates of R∗/S∗ for Ai > A(100) and Ai > A(400).

6. Conclusion. In this paper we have discussed different techniques
to generate models which exhibit both regular variation and hidden regular
variation. We have seen some simulated examples where we can estimate the
parameters of both MRV and HRV but there are also examples where it is
difficult to correctly estimate parameters. We restricted ourselves to the two
dimensional non-negative orthant here, but clearly some of the generation
techniques can be extended to higher dimensions. Moreover, the detection
techniques for HRV on E0 using the CEV model can also be extended to de-
tect HRV on other types of cones especially in two dimensions but perhaps
even more. Overall this paper serves as a starting point for methods of gener-
ating and detecting multivariate heavy-tailed models having tail dependence
explained by HRV.

7. Proofs. This section contains proofs for Propositions 3.1 and 3.2.

Proof of Proposition 3.1. The statement about MRV on E can be
deduced from known results, eg. Resnick [26, p. 230], Jessen and Mikosch
[20], Resnick [24]. (Note, assuming V ∈ MRV(α0, b0, ν0,E0) would not be
enough here.) To prove HRV of Z on E0, we apply criterion (ii) of the
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Portmanteau Theorem 2.1 in [21] and let f ∈ C((0,∞)2) and without loss
of generality assume that f is uniformly continuous, bounded by a constant
‖f‖ and

f(x) = 0, if x1 ∧ x2 < η,

for some η > 0. Uniform continuity of f means that the modulus of conti-
nuity

ωf (δ) := sup{|f(x)− f(y)| : ‖x− y‖ < δ} → 0 (δ → 0).

Since V has MRV on E we have

tEf(V /b0(t)) → ν0(f) =

∫
f dν0,

and so it suffices to show as t → ∞,

(7.1) tEf

(
Y + V

b0(t)

)
− tEf

(
V

b0(t)

)
→ 0.

Because of the special structure of Y , we have a bound for the absolute
value of the difference in the previous line as∣∣∣∣∣tEf

(
Y + V

b0(t)

)
− tEf

(
V

b0(t)

) ∣∣∣∣∣ � t

2
E

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣
+

t

2
E

∣∣∣∣∣f
(

V1

b0(t)
,
ξ2 + V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣
=
1

2
I +

1

2
II.

For any small δ > 0 with δ < η, write

I =tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

�δ
]

+ tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

>δ
]

=Ia+ Ib.

Since f(x1, x2) = 0 if x1∧x2 < η, if if V1/b0(t) < η− δ, then both quantities
in Ia are zero. So we can write

Ia = tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

�δ,
V1

b0(t)
>(η−δ)

]
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� ωf (δ)tP[V1 > b0(t)(η − δ)]

→ c1 ωf (δ)(η − δ)−α0 (t → ∞),

→ 0 (δ → 0),

where we used (3.3). Following a similar argument as in Ia, if V2/b0(t) < δ,
then both quantities in 2Ib are zero. Hence we write,

Ib = tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

>δ,
V2

b0(t)
>δ

]

� 2‖f‖tP[V2 > b0(t)δ]P[ξ1 > b0(t)δ]

→ 0 (t → ∞),

since as t → ∞ we have tP[V2 > b0(t)δ] → c2δ
−α0 and P[ξ > b0(t)δ] → 0.

We handle II similarly to show that II → 0 completing the proof.

Proof of Proposition 3.2. As in Proposition 3.1, we focus on the
HRV claim. Again assume that f ∈ C((0,∞)2) where f is uniformly contin-
uous, bounded by a constant ‖f‖ and

f(x) = 0, if x1 ∧ x2 < η,

for some η > 0. We need to show (7.1). For any small δ > 0 with δ < η, the
absolute value of the difference in (7.1) is bounded by

tE

∣∣∣∣∣f
(
Y + V

b0(t)

)
−f

(
V

b0(t)

) ∣∣∣∣∣1[ Y1∨Y2
b0(t)

>δ
]

+tE

∣∣∣∣∣f
(
Y + V

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ Y1∨Y2
b0(t)

<δ,
V1∧V2
b0(t)

>(η−δ)
]

= I + II,

since for the second term, the only way the difference can be non-zero is if
both V1 and V2 are sufficiently large. Observe that

II � ωf (δ)tP[V1 ∧ V2 > b0(t)(η − δ)]

∼ (constant)ωf (δ)(η − δ)−α0 , (t → ∞)

→ 0, as δ → 0.

For I we have

I � Ia+ Ib+ Ic.
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where

Ia = tE

∣∣∣∣∣f
(
Y + V

b0(t)

)
− f

(
V

b0(t)

)∣∣∣∣∣1[ Y1∧Y2
b0(t)

>δ
]

Ib = tE

∣∣∣∣∣f
(
Y + V

b0(t)

)
− f

(
V

b0(t)

)∣∣∣∣∣1[ Y1
b0(t)

>δ,
Y2

b0(t)
�δ

]

Ic = tE

∣∣∣∣∣f
(
Y + V

b0(t)

)
− f

(
V

b0(t)

)∣∣∣∣∣1[ Y1
b0(t)

�δ,
Y2

b0(t)
>δ

]

The term Ia can be quickly killed,

Ia � 2‖f‖tP[Y1 ∧ Y2 > b0(t)δ] → 0, (t → ∞)

from (3.5). The term Ib also tends to zero since

Ib � 2‖f‖tP[Y1 > b0(t)δ, V2 > b0(t)(η − δ)],

= 2‖f‖tP[V2 > b0(t)(η − δ)]P[Y1 > b0(t)δ]

∼ 2‖f‖(η − δ)−α0P[Y1 > b0(t)δ] (for large t),

→ 0 (t → ∞).

The term Ic is handled similarly.

Proof of Proposition 3.3. Begin with the following observations for
all cases: As t → ∞,

tP

[(
ξ1
h(t)

,
V2

h(t)

)
∈ ·

]
→ (να × να∗) (·),(7.2)

tP

[(
V1

h(t)
,
ξ2
h(t)

)
∈ ·

]
→ (να∗ × να) (·)(7.3)

in M((0,∞)2). To see this, write for x > 0, y > 0,

lim
t→∞

tP[ξ1 > h(t)x,V2 > h(t)y]

= lim
s→∞

h←(s)P[ξ1 > sx]P[V2 > sy]

= lim
u→∞

b←(u)P[ξ1 > ux] lim
v→∞

b←∗ (v)P[V2 > vx]

= lim
u→∞

uP[ξ1 > b(u)x] lim
v→∞

vP[V2 > b∗(v)x]

= να(x,∞)να∗(y,∞).

The convergence in (7.3) can be similarly proved.



GENERATING MRV AND HRV 233

Now assume f ∈ C((0,∞)2) is uniformly continuous, bounded by ‖f‖ and

f(x) = 0, if x1 ∧ x2 < η,

for some η > 0. Write

tEf

(
Y + V

h(t)

)
=

1

2
tEf

(
ξ1 + V1

h(t)
,
V2

h(t)

)
+

1

2
tEf

(
V1

h(t)
,
ξ2 + V2

h(t)

)
(7.4)

=
1

2
A+

1

2
B.(7.5)

Case 1: In this case (3.8) holds. For any small δ > 0 with δ < η we get a
limit for A by writing∣∣∣∣∣tEf

(
ξ1 + V1

h(t)
,
V2

h(t)

)
− tEf

(
ξ1
h(t)

,
V2

h(t)

) ∣∣∣∣∣
� tE

∣∣∣∣∣f
(
ξ1 + V1

h(t)
,
V2

h(t)

)
− f

(
ξ1
h(t)

,
V2

h(t)

) ∣∣∣∣∣
= tE

∣∣∣∣∣f
(
ξ1 + V1

h(t)
,
V2

h(t)

)
− f

(
ξ1
h(t)

,
V2

h(t)

) ∣∣∣∣∣1[ V1
h(t)

�δ,
ξ1
h(t)

>(η−δ),
V2
h(t)

>η
]

+ tE

∣∣∣∣∣f
(
ξ1 + V1

h(t)
,
V2

h(t)

)
− f

(
ξ1
h(t)

,
V2

h(t)

) ∣∣∣∣∣1[ V1
h(t)

>δ,
V2
h(t)

>η
]

= I + II.

Now

I � ωf (δ)tP[ξ1 > h(t)(η − δ), V2 > h(t)η]

→ ωf (δ)να((η − δ),∞)να∗(η,∞) (using (7.2))

→ 0 (δ → 0).

We can control II by observing

II � 2‖f‖tP[V1 > h(t)δ, V2 > h(t)η]

� 2‖f‖ t

b←0 (h(t))
b←0 (h(t))P[V1 ∧ V2 > b0 ◦ b←0 (h(t))(δ ∧ η)]

→ 0 (t → ∞),

from (3.8). The second term in (3.9) can be seen as a limit of B in a similar
fashion as in the derivation of A, relying on (7.3). This completes case (1)
where (3.8) holds.
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Case 2: This is the case when (3.10) holds. Replace h(t) with b0(t) in (7.4)
and focus on the term A. We compare it with tEf(V /b0(t)):∣∣∣∣∣tEf

(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− tEf

(
V

b0(t)

) ∣∣∣∣∣
� tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣
= tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

<δ,
V1

b0(t)
>(η−δ),

V2
b0(t)

>η
]

+ tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

>δ,
V2

b0(t)
>η

]

= I + II.

Since tEf(V /b0(t)) →
∫
f dν0, we only have to show that both I and II go

to zero. For I we have

I � ωf (δ)tP [V1 ∧ V2 > b0(t) ((η − δ) ∧ η)]

→ ωf (δ)((η − δ) ∧ η))−α0 (t → ∞)

→ 0 (δ → 0).

Also using (3.10),

II � 2‖f‖ t b
←(b0(t)P[ξ1 > b ◦ b←(b0(t))δ] b

←
∗ (b0(t))P[V2 > b∗ ◦ b←∗ (b0(t))η]

b←(b0(t))b←∗ (b0(t))

∼ (constant)
t

b←(b0(t))b←∗ (b0(t))
(for large t)

= (constant)
t

h←(b0(t))
→ 0 (t → ∞).

We can deal with the term B similarly which completes the treatment of
Case (2).

Case 3: Finally, assume (3.11). Again, replace h(t) by b0(t) in (7.4) and
consider the term A. Write for small δ > 0 with δ < η

A = tEf

(
ξ1 + V1

b0(t)
,

V2

b0(t)

)(
1[ ξ1

b0(t)
�δ

] + 1[ ξ1
b0(t)

>δ
]
)

= tE

[
f

(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
V

b0(t)

)]
1[ ξ1

b0(t)
�δ

]
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+ tE

[
f

(
ξ1 + V1

b0(t)
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b0(t)

)
− f

(
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b0(t)
,

V2

b0(t)

)]
1[ ξ1

b0(t)
>δ

]

+ tEf

(
V

b0(t)

)
1[ ξ1

b0(t)
�δ

] + tEf

(
ξ1

b0(t)
,

V2

b0(t)

)
1[ ξ1

b0(t)
>δ

]

= I + II + III + IV.

We have III →
∫
f(x)ν0(dx) since P[ξ1 � b0(t)δ] → 1 as t → ∞. For IV

note that since f(x) = 0 if x1 ∧ x2 < η, with δ < η,

IV = tEf

(
ξ1

b0(t)
,

V2

b0(t)

)
1[ ξ1

b0(t)
>δ

]

= tEf

(
ξ1

b0(t)
,

V2

b0(t)

)

=
t

h←(b0(t))
h←(b0(t))Ef

(
ξ1

h(h←(b0(t)))
,

V2

h(h←(b0(t)))

)

→ C0

∫
f d(να × να∗)

using (7.2) and the fact that (3.11) is equivalent to t/h←(b0(t)) → c1/α0 =:
C0 as t → ∞. Take the absolute value of I and add to it the indicator of the
events [V1 > b0(t)(η − δ)] and [V2 > b0(t)η] (since otherwise both terms in
the difference are zero) and

|I| � ωf (δ)tP[V1 ∧ V2 > b0(t)(η − δ)]

→ ωf (δ)(η − δ)−α0 (t → ∞)

→ 0 (δ → 0).

For II write for some small ε > 0,

|II| � tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
ξ1

b0(t)
,

V2

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

>δ,
V1

b0(t)
�ε

]

+ tE

∣∣∣∣∣f
(
ξ1 + V1

b0(t)
,

V2

b0(t)

)
− f

(
ξ1

b0(t)
,

V2

b0(t)

) ∣∣∣∣∣1[ ξ1
b0(t)

>δ,
V1

b0(t)
>ε

]

= |IIa|+ |IIb|.

For |IIa| we add the condition [V2 > b0(t)η] to avoid both terms in the
difference being zero and get

|IIa| � ωf (ε)tP[ξ1 > b0(t)δ, V2 > b0(t)η]
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= ωf (ε)
t

h←(b0(t))
h←(b0(t))P[ξ1 > h(h←(b0(t)))δ, V2 > h(h←(b0(t)))η]

→ ωf (ε) · C0 · ((να × να∗)((δ,∞)× (η,∞))) (t → ∞)

→ 0 (ε → 0)

applying (7.2) and using condition (3.11) which is equivalent to t
h←(b0(t))

→
c1/α0 = C0 as t → ∞. On the other hand we can dominate |IIb| after adding
the condition [V2 > b0(t)δ] to avoid both terms in the difference from being
zero, to get

|IIb| � 2‖f‖P[ξ1 > b0(t)δ] tP[V1 ∧ V2 > b0(t)(δ ∧ ε)]

∼ (constant)(δ ∧ ε)−α0P[ξ1 > b0(t)δ] → 0 (t → ∞).

The terms involving B are handled similarly.
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