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User profiling is a useful primitive for constructing personalised
services, such as content recommendation. In the present paper we
investigate the feasibility of user profiling in a distributed setting,
with no central authority and only local information exchanges be-
tween users. We compute a profile vector for each user (i.e., a low-
dimensional vector that characterises her taste) via spectral transfor-
mation of observed user-produced ratings for items. Our two main
contributions follow:

(i) We consider a low-rank probabilistic model of user taste. More
specifically, we consider that users and items are partitioned in a con-
stant number of classes, such that users and items within the same
class are statistically identical. We prove that without prior knowl-
edge of the compositions of the classes, based solely on few random
observed ratings (namely O(N logN) such ratings for N users), we
can predict user preference with high probability for unrated items
by running a local vote among users with similar profile vectors. In
addition, we provide empirical evaluations characterising the way in
which spectral profiling performance depends on the dimension of
the profile space. Such evaluations are performed on a data set of
real user ratings provided by Netflix.

(ii) We develop distributed algorithms which provably achieve an
embedding of users into a low-dimensional space, based on spectral
transformation. These involve simple message passing among users,
and provably converge to the desired embedding. Our method essen-
tially relies on a novel combination of gossiping and the algorithm
proposed by Oja and Karhunen.

1. Introduction. Recommendation systems have attracted much in-
terest lately, mostly because of their relevance to core businesses of several
major companies (e.g. Amazon, Netflix, Yahoo) who offer large catalogues
of products to a vast user base. While the advertisement of highly popular
items is straightforward, a significant portion of business stems from sales of
only mildly popular items. The latter cannot be advertised indiscriminately,
and must be recommended to the “right” users, through targeted recom-
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mendations. Such companies dispose of large storage and computational
resources which enable a centralised computation of recommendations.

In this paper we take a different perspective on the problem of recommen-
dation. Namely, we aim to develop strategies suited to distributed operation,
where the burden of recommendation is not offloaded to the server, but is
rather shared among the users. More specifically, we propose the following
two-stage approach for generating recommendations:

• In the first stage, distributed algorithms assign coordinates (or profiles)
to the users within a certain profile space, such that proximity in this
space translates to proximity of user taste for content. We say that
such algorithms perform user profiling.

• In the second stage, recommendations are obtained via simple and
distributed algorithms which rely on the primitive of user profiling.
We thereby avoid the need for complex machine learning techniques.

The performance of such an approach will depend heavily on the properties
of the considered embedding of users in the profile space. For this reason,
the focus in this paper is on the first stage of the process, i.e., user profiling.
Namely, we argue that spectral profiling techniques retrieve hidden structure.

The techniques employed in a centralised setting for generating content
recommendation are widely known under the generic name of “collaborative
filtering”. They are typically implemented by a provider who wishes to offer
a recommendation service to a large customer base. In such a setting, the
information requested from the customers (or users) is typically related both
to their identity (via the registration procedure) and to their taste (via the
opinions they express regarding the items).

It is not clear to which extent identity information characterises user taste.
Moreover, the nature of such information gives rise to privacy concerns. On
the contrary, the opinions that users express about items constitute the truly
relevant data for solving the problem. For this reason, we advocate a purely
agnostic approach to recommending content, which does not use information
about the real identity of users, or the nature of content.

Opinions are expressed in the form of ratings assigned by a user to the
items she has already purchased. Ratings characterise the satisfaction of a
user with respect to a specific item. They are discrete and range from a
lowest to a highest value (e.g., number of stars). In particular, the mere fact
that a user has consumed or not a specific item can be regarded as a binary
rating. In this paper we consider the latter form of rating.

Since the number of items on offer from the provider is overwhelmingly
large, the vast majority of users only consume a small fraction of items.
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Hence, for a typical user, only a small number of ratings are known. In
the case of binary ratings, if an item has not been consumed it does not
necessarily follow that the user dislikes it. It is possible that the user is simply
unaware of the item’s existence. Hence, in this case we cannot distinguish
between missing ratings and disliked items.

A recent illustration of the possible machine learning techniques and of the
corresponding performance comes from the Netflix prize competition [17].
The goal of the competition was to design an algorithm that, when trained
on a data set made publicly available by Netflix, would manage to im-
prove prediction accuracy by 10% (measured via Root Mean Squared Er-
ror) compared to the proprietary Cinematch algorithm. The designers of
such an algorithm [13] were awarded a prize of $1M three years after the
start of the competition. It is important to note that the last two years of
the three were spent trying to improve the gain in prediction from 8.42%
to 10.04%.

The strenuous advancement of the Netflix prize suggests the existence
of an important obstacle in the way of achieving high prediction accu-
racy. A possible explanation is given in the study conducted by Amatriain
et al. [1], which showed that when presented with a movie title several times,
users provide inconsistent ratings. Hence, there exists an implicit noise in
any collection of ratings due to the fact that human taste is variable and not
easily quantified. The authors [1] used the RMSE to characterise the distance
between two sets of ratings assigned by the same users to the same movies.
They found RMSE values between 0.55 and 0.63. It is arguable whether these
specific values can be compared to the target RMSE value 0.8563 of Netflix
(the considered movies in the conducted study [1] are indeed a subset of the
ones in the Netflix data set, but their number is significantly smaller, the
user base is different and also much smaller, etc.). However what they sug-
gest is that there exists a RMSE threshold (of the order of the Netflix target
RMSE) that cannot be overcome by any recommendation algorithm, seeing
as users themselves do not necessarily provide consistent ratings. Since user
preference has a significant random component, parameters of a probabilis-
tic model are the best suited to characterize user taste. Throughout this
paper we make the following

Assumption 1. The taste of each user is characterised by a certain
probability distribution defined on the set of all possible ratings for the set of
items (which includes the possibility that an item is “not rated”). A user’s ob-
served ratings are obtained by sampling her corresponding multi-dimensional
distribution.
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We now restrict ourselves to the binary rating model, where we do not
distingush between an item that was not rated and a “disliked” item (i.e., 0-
rated items). We describe a natural way of representing the observed pur-
chases. Denote the set of users by U and the set of items by F . Consider a
rectangular matrix S ∈ {0, 1}|U|×|F| which we call the rating matrix (in the
literature it is also referred to as the “term-document” matrix). Each row
corresponds to a user and each column corresponds to an item. An entry
Sui corresponds to the user-item pair (u, i) ∈ U × F . The entry holds 1 if
user u has purchased item i, and 0 otherwise. As previously stated, most of
the zero entries in the rating matrix correspond to cases in which a user has
not considered purchasing a specific item.

By Assumption 1, each row of the rating matrix is a realisation of a {0, 1}
random |F|-dimensional vector. Relying only on matrix S, we need to assign
profiles to the users, such that users with similar taste have similar profiles.

The instances of the problem we consider are extremely large, it is not
uncommon to have a user base U of the order of millions and a catalogue
of items F of the order of tens of thousands. In the case of binary ratings,
simply representing the probability distribution in Assumption 1 for a single
user requires an exponential amount of memory 2|F|. We are thus constrained
to consider very simple approximations of such probability laws, for the sake
of computational tractability.

Like most proposed models of user taste found in the literature (e.g., [11]),
we consider a low-rank model of user taste. Our model is probabilistic. More
specifically, we make the following

Assumption 2. Each entry Sui of the rating matrix is given by an inde-
pendent Bernoulli random variable of parameter S̄ui. The matrix S̄ = (S̄ui)
has rank K, where K ≪ |U| and K ≪ |F|.

In Section 3 we propose a user profiling technique based on the Singular
Value Decomposition of matrix S. For a probabilistic model of user taste
satisfying Assumption 2, and under further weak statistical assumptions,
we prove that a simple voting scheme among users with similar profiles
manages to produce accurate recommendations for most of the items with
high probability. Furthermore, we use actual movie ratings to compute the
profiles of anonymous users of the Netflix system. We find that users with
similar profiles have indeed similar taste in movies.

Motivated by the ability to recover hidden structure of the spectral tech-
niques, in the second part of this paper (Section 4), we design a distributed
algorithm that computes individual spectral profiles based on local exchanges
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among users. We prove almost sure convergence of the algorithm and provide
evaluations on a synthetic trace. We conclude in Section 5.

2. Related work. Keshavan et al. [11] consider the problem of low-
rank matrix reconstruction from sparsely observed noisy entries. Their mod-
eling approach is more general and overlaps to some extent with the one we
adopt in this paper. They propose a reconstruction method using gradient
descent on a matrix manifold starting from an initial point given by the SVD
of a “trimmed” version of the observed matrix. For a given rank r “well-
behaved” αn × n matrix, given |E| = Ω(n log n) uniformly revealed noisy
entries, they give a probabilistic upper bound [11, Theorems 1.2 and 1.3]
on the Frobenius distance between the reconstructed matrix and the orig-
inal one as a function of the spectral radius of the noise matrix. We focus
on a binary low-rank probabilistic model of user taste, which we analyse
using simpler methods. We are interested in retrieving the structure of the
hidden model, not its exact parameters; e.g., for a given user we care to
deduce the correct ranking of items according to her preference from the
noisy observations, without quantifying in absolute this preference.

Instead of using the low-rank fitting of a target partially observed matrix,
Srebro et al. [21] take a different path and investigate low-norm factorisation.
They advocate this method because it allows unbounded dimensinality in the
feature space. Moreover, it can be formulated as a semi-definite optimisation
problem. The authors give error bounds for n×m binary matrix reconstruc-
tion from uniformly distributed sample entries of size at least n log n.

In Section 3 we consider a low-rank probabilistic model of user taste.
Users are partitioned into classes, such that users within the same class are
statistically identical. We show (Theorems 1 and 2) that the profile vectors
corresponding to each user computed via spectral methods are clustered
around distinct points corresponding to the classes. In this respect, our re-
sults are related to spectral clustering. There is a vast literature on the topic
of spectral clustering, of which we now give a brief overview.

Among the most relevant work, Ng et al. [18] propose a clustering algo-
rithm based on spectral decomposition. Our results provide a comprehen-
sive analysis by giving conditions under which the underlying partition into
classes is retrieved exactly.

In [6], Dasgupta et al. propose an algorithm based on iterative splitting
of groups into two subgroups. In contrast, we obtain the desired groups
in one go. In [15], McSherry proposes a different clustering method based
on projections onto the column space of the original matrix. In both [6]
and [15], the probabilistic model of the observed similarity matrix is akin to
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ours (which extends the classical “planted partition” model). However, our
model is less expressive in the sense that we do not consider “mixtures” of
the distributions that characterise classes of users, and moreover in our case
each user class accounts for a constant fraction of the total number of users.
That said, the required separability conditions are similar, and we establish
our results under far less stringent conditions on the average degree of the
observed matrix. Namely, we require an average degree of order Ω(log(N))
while they require an order of Ω(log(N)6).

The recent paper [20] by Shi et al. discusses rationales for choosing which
eigenvectors to use when performing spectral clustering. This issue is to a
large extent complementary to the ones we address in this paper. We could
rely on [20] to specify which eigenvectors to keep in our profiling context.

In Section 3.2 we extend the previous results in the more general setting of
content recommendation, where a sparse so-called rating matrix (or “term-
document” matrix) is available. The literature in this field is extensive, for
brevity we mention only a few significant works: [4, 7, 14].

In Section 4.1 we propose a method for computing the eigenvectors of
the adjacency matrix of a graph in a distributed manner. A variant of the
method was briefly described in [23]. Eigenvector extraction is the object
of Oja’s algorithm [19]. This basic algorithm was refined by Borkar and
Meyn [2]. None of these approaches is distributed however. Our contribution
in Section 4.1 consists precisely in augmenting these methods to make them
distributed.

A significant contribution towards computing the top k eigenvectors of a
symmetric weighted adjacency matrix in a distributed fashion was brought
by Kempe and McSherry [10]. The setting is similar to the one we consider
in Section 4.1. The authors give bounds on the required running time of their
algorithm. Due to the fact that we explicitly introduce noise in our iterations,
obtaining such bounds is more difficult in our case. Both our algorithm and
the distributed gossiping algorithm in [10] perform iterations to converge
to the desired eigenvectors. In the latter, at each iteration all participating
nodes first perform a coordinate-update step followed by an orthonormalisa-
tion step (that lasts for a determined number of rounds ensuring a bounded
error). By explicitly separating the two steps in each iteration, synchronised
time becomes a necessary assumption. In contrast, our approach facilitates
an asynchronous implementation, since the coordinate-update and the or-
thonormalisation steps are performed simultaneously with different gains
(and thus on different time scales). Furthermore, the algorithm we propose in
Section 4.1 uses few elementary computations at each node, whereas in [10]
at every iteration each node needs to perform a Cholesky factorisation.
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A similar approach to the one presented in this paper has been taken in
a recent publication [12]. The authors aim to determine the eigenvectors of
a deterministic matrix based on random sparse observations. They derive
useful bounds on convergence time. However, the gossiping stage in their
proposed algorithm is treated as a “black box”. We explicitly construct an
algorithm that incorporates two stages: gossiping, performed on a faster
time scale, and Oja’s method, performed on a slower time scale. Moreover,
we explicitly determine multiple eigenvectors, whereas the authors of [12]
focus on determining a single eigenvector, and argue that the extension can
be achieved. Finally, we propose an asynchronous algorithm. We show on
synthetic data that the latter determines the desired eigenvectors.

3. Spectral recovery of probabilistic taste. We begin by analysing
a simple setting in which the observations consist of measures of similarity
between users. We prove that a profiling technique based on the spectral
decomposition of the square matrix regrouping the observed similarities be-
tween pairs of users successfully recovers hidden structure.

We apply these findings to the case in which ratings of items by users
are observed. We show that a simple distributed voting algorithm provides
asymptotically accurate predictions for most items.

Finally, we observe the benefits of spectral profiling on a real trace.
We make use of notations described in Table 1. Unless otherwise indicated,

all vectors are column vectors.

3.1. Similarity-based profiling. Denote by N = |U| the number of users.
Let us consider in this first stage that we are given partial observations of
user taste similarity in the form of a symmetric matrix

A ∈ {0, 1}N×N .

Namely, for any two users u, v the elements Auv = Avu take value 1 if users
u and v have been evaluated as similar, and value 0 if the users are deemed

Table 1
General notations

A⊤ The transposition of matrix A

x⊤ The transposition of column vector x
e The all-ones column vector

diag(α) The K ×K diagonal matrix having the elements on the main
diagonal given by the K-dimensional vector α

‖y‖α The α-norm of vector y, where (0 < αk < 1)Kk=1 and y are
column vectors with the same dimension, ‖y‖α :=

√
∑

k αky
2
k

y(k), yk The k-th element of column vector y
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dissimilar, or if the similarity between the two users has not been evaluated.
By convention Auu = 0.

We propose the following spectral representation of users based on these
partial similarity observations. For some fixed dimension L, extract the nor-
malised eigenvectors x1, . . . , xL corresponding to the L largest magnitude
eigenvalues of matrix A. We define the profile space as R

L. In the profile
space, to each user u there corresponds a scaled row vector

√
Nz⊤u , where

z⊤u = (x1(u), . . . , xL(u)).

We refer to this vector as the profile of user u. The scaling factor
√
N is

introduced to compensate for the fact that the eigenvectors of the N ×
N matrix A are taken of norm 1. In what follows, we propose a simple
probabilistic user taste model for which this spectral representation of users
enables us to retrieve hidden structure.

3.1.1. Statistical model. We assume the following probabilistic model of
user taste: The N users are partitioned into K classes C1, . . . , CK , such that
users within the same class are statistically identical. We denote the size of
class Ck, 1 ≤ k ≤ K, by |Ck| = αkN , for fixed αk > 0, which are such that
∑

k αk = 1. For any user u ∈ U we denote by k(u) her unique corresponding
class.

Each pair of classes 1 ≤ k, ℓ ≤ K is characterised by probabilities bkℓ = bℓk
as follows. User u ∈ Ck and user v ∈ Cℓ are similar with probability bkℓ and
dissimilar with probability 1 − bkℓ. Moreover, for all pairs of users, their
similarity is observed with probability p = ω

N , where ω is a parameter of the
model. The similarity of unobserved pairs of users is set to 0 by default.

Equivalently, for all ordered pairs of users u < v, the observed similarities
Auv = Avu are the outcome of independent Bernoulli random variables of
parameters pbk(u)k(v). As previously stated, the diagonal elements are all
null, Auu = 0.

Given the observed similarity matrix A, without knowledge of the K×K
profile similarity matrix B = (bkℓ)k,ℓ, we wish to recover the partition of
users in the unknown classes Ck using their spectral representation. Below
we provide sufficient scaling assumptions for which such recovery is possible.

In Table 2 we summarise the notations we have introduced so far:

3.1.2. Scaling assumptions. Let us describe the dependence of the vari-
ous parameters of the model on the number of users.

We have made the Assumption 2, namely that our model is low-rank.
Thus, we consider that the number of classes K, as well as the fraction αk
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Table 2
Notations and conventions

u, v Indices referring to users
k, ℓ User profile indices
k(u) Index of the profile containing user u: u ∈ Ck(u)

{Ck}
K
k=1 Partition of users into K unknown disjoint profiles

α Vector grouping fractions of users per profile: |Ck| = αkN

B Constant unknown K ×K matrix of probabilities
p = ω

N
Probing probability

L Dimension of profile space

of users in each class, and the similarity probability matrix B = (bkℓ)k,ℓ are
constant as the number of users in the system grows.

However, we assume that the probing probability p vanishes as the number
of users grows. Namely, ω goes to infinity slower than N ,

(3.1) ω →N ∞, ω = o(N).

Hence, each user probes on average a fraction p = ω
N → 0 of users with

whom she evaluates taste similarity. Equivalently, matrix A can be regarded
as the adjacency matrix of a random graph on the set of users having average
degree of Θ(ω).

3.1.3. Hidden structure recovery. Theorem 1 below states that under
mild conditions, for large N , the spectral representations

√
Nz⊤u of users are

clustered according to their respective classes Ck. Consider the vector

α := (αk)
K
k=1.

The α-norm of a K-dimensional vector t is ‖t‖2α =
∑

k αkt
2
k (see Table 1).

Define the following constant matrix

M := (bkℓαℓ)1≤k,ℓ≤K .

Before stating the theorem, we introduce the following conditions:

The profile space dimension is upper bounded L ≤ rank(M).(3.2a)

The L largest magnitude eigenvalues of M have distinct ab-
solute values.

(3.2b)

The corresponding eigenvectors y1, . . . , yL, normalised for
the α-norm, satisfy t⊤k 6= t⊤ℓ , 1 ≤ k 6= ℓ ≤ K, where

t⊤k := (y1(k), . . . , yL(k)).

(3.2c)

ω ≥ C log(N), for some absolute constant C.(3.2d)
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Theorem 1. Under assumptions (3.2) and for some positive constants
c1 > 0 and 0 < c2 < 1/4 the following claim holds: with high probability

1−O(N−c1), an increasingly large fraction 1−O(ω− 1
2
+2c2) of users u is such

that their scaled profile vectors are in a ball of vanishing radius centered in
a constant vector tk(u) that corresponds to their class k(u):

‖
√
Nz⊤u − t⊤k(u)‖ = O(ω−c2).

Each vector t⊤k corresponds to a class Ck. If two classes k, ℓ were such that
tk = tℓ = t, the theorem ensures that the profiles of users of both classes
would be grouped around the constant vector t in the profile space. Hence,
it would be impossible to distinguish between the users of the two classes
based solely on their profile vectors. Condition (3.2c) ensures that

‖t⊤k − t⊤ℓ ‖ = Ω(1),

thus guaranteeing the ability to distinguish between distinct classes for a
large enough number of users.

We prove that eigenvectors corresponding to non-zero eigenvalues of ma-
trix A can be used to recover the hidden classes. Condition (3.2a) ensures
selection of a suitable dimension L. We impose the technical condition (3.2b)
for presentation ease.

Condition (3.2d) gives a lower bound of logN on order of the required
average user neighbourhood size ω. The theorem states that for ω growing
at least as fast as logN , the initial partition in profiles Ck can be recovered
with high probability for almost all users.

Remark 1. Concerning condition (3.2d), it is plausible that an even
lower requirement for ω (i.e. constant) suffices. Such a case has been explored
in the context of bounding the second eigenvalue of the adjacency matrix
of a sparse random graph to O(

√
ω), by removing high degree outlier nodes

from the graph (see [9, 5]).

Remark 2. Other flavours of matrices than the adjacency matrix A
could be considered for spectral analysis (e.g. Laplacian matrix, normalised
Laplacian matrix). We do not address either of these scenarios in the present
work.

We now give the main steps in the proof of Theorem 1. The auxiliary
lemmas are proved in the appendix. Consider the matrix

Ā := (pbk(u)k(v))u,v,

which, according to our model, is equal to the expectation EA of the partially
observed similarity matrix A. We can write A = Ā+Q, where Q := A− Ā.
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The theorem relies on the fact that the block matrix Ā imposes the eigen-
values and eigenvectors of A, while the perturbation matrix Q has little
influence therein, as follows from the lemmas below:

Lemma 1. The top L largest magnitude eigenvalues of Ā have distinct
absolute values and are order of Θ(ω). The normalised eigenvectors (x̄ℓ)

L
ℓ=1

corresponding to these eigenvalues are constant on indices corresponding to
each user class. Specifically, using the yℓ defined in (3.2c), we can write

(3.3) x̄ℓ(u) =
yℓ(k(u))√

N
, ∀u ∈ U , 1 ≤ ℓ ≤ L.

Use the following ordering of the eigenvalues of Ā and A:

|λ̄1| > |λ̄2| > · · · > |λ̄L|
(3.4)

|λ1| ≥ |λ2| ≥ · · · ≥ |λL|.

We also denote by x̄k and xk the corresponding normalised eigenvectors.
To control the influence of the perturbation matrix Q we use the following

Lemma 2. Consider a square N ×N symmetric 0-diagonal random ma-
trix A such that its elements Aij = Aji are independent Bernoulli random
variables with parameters EAij = pij = aijωN

−1, where the aij are con-
stant and ω = Ω(logN). Then with high probability the spectral radius of the
matrix A− EA satisfies the upper bound ρ(A− EA) ≤ O(

√
ω).

We provide a proof of this lemma in Appendix B which relies on the work
of Feige and Ofek [9].

Denote by D = diag(bk(u)k(u)
ω
N , 1 ≤ u ≤ N). By application of Lemma 2

to matrix A, we get that the spectral radius of Q0 := A − EA is upper
bounded by O(

√
ω) with high probability. Since ρ(D) ≤ O( ω

N ), we have
that the spectral radius of Q = Q0 − D is also upper bounded by O(

√
ω)

with high probability.
The previous two lemmas are instrumental in proving that Ā and A have

the same spectral structure:

Lemma 3. Using the ordering (3.4) for the eigenvalues of Ā and A, it
holds that for all 1 ≤ k ≤ K

∣
∣ |λk| − |λ̄k|

∣
∣ ≤ O(

√
ω) whp,(3.5)

sin(x̂k, x̄k) ≤ O(ω−1/4) whp.(3.6)

Note that (3.5) also follows from Weyl’s inequality.
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We conclude by an averaging argument. Lemma 3 shows that with high
probability have ‖xℓ − x̄ℓ‖2 ≤ O(ω−1/2), for all 1 ≤ ℓ ≤ L. Condition (3.2c)
guarantees that ‖t⊤k − t⊤l ‖ = Ω(1).

The fraction of users that have their profile vectors at a distance larger
than some constant a > 0 from the vector tk corresponding to their class is

1

N

∣
∣
∣

{

u : ‖z⊤u − t⊤k(u)‖ ≥ a
}∣
∣
∣ ≤ 1

N

N∑

u=1

‖
√
Nz⊤u − t⊤k(u)‖2

a2

(3.3)
=

L∑

ℓ=1

‖xℓ − x̄ℓ‖2
a2

= O(a−2ω−1/2).

Thus we will be able to conclude the result of the theorem if we can find
an a such that a = o(1) and a−2ω−1/2 = o(1). It is easy to see that for
instance a = ω−1/6 satisfies these conditions. �

3.2. Application: Extension to content recommendation. Let us now con-
sider the scenario exposed in Section 1. Denote again by N = |U| the number
of users and by F = |F| the number of items. Assume without loss of gen-
erality that N > F . We can write F = γN , with 0 < γ < 1. We consider
the rectangular observed rating matrix

S ∈ {0, 1}N×F ,

where Sui = 1 if user u has rated and liked item i and 0 otherwise. If an
entry Sui is null, it is not necessarily true that user u dislikes item i (the item
might have simply not been rated).

We propose the following representation of users based on this collected
information. For some dimension L, extract the L normalised left singular
vectors x1, . . . , xL of S, corresponding to its L largest singular values. Like
in the previous subsection, consider the L-dimensional profile space R

L, in
which we associate a scaled row vector

√
Nz⊤u to user u, where

z⊤u = (x1(u), . . . , xL(u)).

The scaling by
√
N is again due to the fact that the singular vectors are

normalised.
Recall that the Singular Value Decomposition (SVD) of a rectangular real

matrix S = XΣY ⊤ is always well defined, where matrices X ∈ R
N×F and

Y ∈ R
F×F are unitary and matrix Σ ∈ R

F×F is positive diagonal.
Again, we claim that users with similar taste will be mapped to close-by

locations in the profile space. More specifically, we show that local voting in
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the profile space provides users with accurate recommendations for most of
the items. In what follows, we give a probabilistic model of user taste and
scaling assumptions for which we prove these claims.

3.2.1. Statistical model. We consider a probabilistic model of user taste
similar to the one in Section 3.1.1. The N users are partitioned into K dis-
joint classes C1, . . . , CK and the F items are partitioned into K ′ disjoint
classes D1, . . . ,DK ′ . Users and items in the same class are statistically iden-
tical. The size of user class Ck is denoted by

|Ck| = αkN, 1 ≤ k ≤ K,

while the size of item class Dk′ is denoted by

|Dk′ | = βk′F, 1 ≤ k′ ≤ K ′.

The (αk)k and (βk′)k′ are strictly positive and sum to 1:
∑

k

αk =
∑

k′

βk′ = 1, αk > 0, βk′ > 0.

For any user u ∈ U we denote by k(u) her unique corresponding user class,
and for any item i ∈ F we denote by k′(i) its unique corresponding item
class.

Pairs of user and item classes (Ck,Dk′), 1 ≤ k ≤ K, 1 ≤ k′ ≤ K ′, are
characterised by probabilities rkk′ in the following way: Any user u ∈ Ck

likes any item i ∈ Dk′ with probability rkk′ and dislikes it with probability
1 − rkk′ . For all user-item pairs (u ∈ U , i ∈ F), u decides to rate i with
probability p = ω

N . Equivalently, any element Sui of the observed rating
matrix S is obtained by drawing a Bernoulli random variable of parameter
S̄ui := p · rk(u)k′(i).

Given the observed rating matrix S, without knowledge of the K × K ′

affinity matrix R := (rkk′)k,k′ , we wish to recover the partition of users in
the K classes Ck by making use of their spectral representation. We provide
sufficient scaling conditions in what follows.

We summarise the notations in Table 3.

3.2.2. Scaling assumptions. We make again Assumption 2 and take the
number of classes of users K and of items K ′ to be constant with N . We
assume that the fraction of users in each user class αk, the fraction of items
in each item class βk′ , the ratio between the number of items and the number
of users γ = F

N , as well as the class affinity matrix R = (rkk′)k,k′ are constant
with respect to N . Thus, the class sizes, as well as the total number of items
grow linearly with N .
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Table 3
Notations

N Number of users
F = γN Number of items
k′(i) Index of the class containing item i: i ∈ Dk′(i)

{Ck}
K
k=1 Partition of users into K disjoint classes

{Dk′}K
′

k′=1 Partition of items into K′ disjoint classes
α Vector grouping fractions of users per class: |Ck| = αkN

β Vector grouping fractions of items per class: |Dk′ | = βk′F

R Constant unknown K ×K′ affinity matrix

We assume that the rating probability p vanishes as the number of usersN
grows to infinity. Specifically, we again impose condition (3.1) on parameter
ω. Note that the expected number of items rated by a user is order of Θ(ω).

We now formulate an extension of Theorem 1 that we can apply in this
setting.

3.2.3. Content recommendation. Consider vectors

α = (αk)
K
k=1, β = (βk′)

K ′

k′=1,

and define the following constant square matrix

G := R diag(β)R⊤ diag(α) ∈ R
K×K.

We impose the following conditions, similar to (3.2):

The dimension of the profile space is upper bounded by L ≤
rank(G).

(3.7a)

The L largest eigenvalues of matrix G are distinct.(3.7b)

The corresponding eigenvectors {gℓ}Lℓ=1 normalised for the
α-norm satisfy: χk 6= χℓ, 1 ≤ k < ℓ ≤ K, where
χk = (g1(k), . . . , gL(k)).

(3.7c)

ω ≥ C logN for some constant C.(3.7d)

We can now state the following

Theorem 2. Under conditions (3.7), with high probability 1−O(N−c1)

(where c1 > 0), an increasing fraction 1 − O(ω− 1
2
+2c2) of users u is such

that ‖
√
Nz⊤u − χ⊤

k(u)‖ = O(ω−c2), where 0 < c2 < 1/4.

We briefly explain how this seemingly distinct setup can be mapped to the
previous one. Define the following transformation which produces a square
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matrix:

τ : S 7→ A =

[
0 S
S⊤ 0

]

∈ R
(N+F )×(N+F ),

where S⊤ denotes the transposition of matrix S. The spectrum of such
a matrix is symmetrical (i.e. if σ is an eigenvalue of A, then so is −σ).
Furthermore, the absolute values of the eigenvalues of A are the singular
values of S and its singular components are determined by the eigenvectors
of A.1

We do not give the proof of Theorem 2, since follows closely that of
Theorem 1. Essentially, we use the transformation τ to obtain a square
matrix, and subsequently we apply Lemma 2 and technical lemmas that we
reproduce in Appendix D that play the role of Lemmas 1 and 3 in the proof.

3.2.4. Characterising performance of a simple voting algorithm. Let us
now analyse a simple recommendation algorithm that relies on local voting
in the profile space. We have defined for each user u a scaled L-dimensional
profile vector which we denoted by

√
Nz⊤u . In Section 4 we propose a method

for computing such profile vectors in a distributed fashion based solely on
local information exchange.

Say we wish to characterise the taste of user u for item f . Consider a
fixed constant d > 0. We define the d-vicinity of u as the set of users that
have profile vectors at a Euclidean distance of at most d from

√
Nz⊤u in the

profile space. More formally,

B(u, d) :=

{

v ∈ U : ‖z⊤u − z⊤v ‖2 ≤
d√
N

}

.

Votes for item f are collected among users in B(u, d) reflecting their
appreciation for item f . We denote the number of collected votes by

(3.8) Vu(f) :=
∑

v∈B(u,d)

Svf .

The following proposition guarantees that, for well chosen d and as the
number of users grows to infinity, from the perspective of most users u, the
quantities Vu(f) provide an accurate ranking for items with high probability.

1To see this, consider an eigenvalue σ of A and its corresponding eigenvector ζ = [ xy ],
with x ∈ RN×1 and y ∈ RF×1. Since Aζ = σζ, we can write:

A

[

x

y

]

=

[

Sy

S⊤x

]

= σ

[

x

y

]

and A

[

x

−y

]

=

[

−Sy

S⊤x

]

= −σ

[

x

−y

]

,

and thus x⊤Sy = y⊤S⊤x = σ‖x‖2 = σ‖y‖2. Then, we have that x is a left singular vector,
and that y is a right singular vector for matrix S. For more details see for instance [22].
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Recall that by (3.7d), ω ≥ C logN .

Proposition 1. Consider a “polling” radius d = 2ρ0 with 0 < ρ0 <
1
6 infk,k′ ‖χk − χk′‖ and a large enough constant C. Then for all but a van-
ishing fraction of users u, the following property is true: Let I ⊂ F be a
sample of items of constant size picked uniformly at random. Then with
high probability the item ranking given by the (Vu(f))f∈I coincides with the
item ranking given by the (rk(u)k′(f))f∈I .

Proof. We consider a fixed user class Ck. For a specific item f ∈ Dℓ,
define Vk(f) to be the total number of votes it received from users in class
Ck. It is distributed as a binomial: Bin(αkN, rkℓω/N). We want Vk(f) to be
contained in the interval

(3.9) Vk(f) ∈ [αkrkℓω(1− εk/rkℓ), αkrkℓω(1 + εk/rkℓ)],

for a given εk. A standard application of a Chernoff bound gives:

P [|Bin(αkN, rkℓω/N)− αkrkℓω| ≥ εkαkω] ≤ 2e−αkrkℓωh(εk/rkℓ),

where h(·) is a convex increasing function such that h(0) = h′(0) = 0.
Let us generalise and define the following events:

Ek,f = {|Vk(f)− αkrkℓω| < εkαkω},

where εk are chosen such that 0 < εk = infℓ,ℓ′:|rkℓ−rkℓ′ |6=0
|rkℓ−rkℓ′ |

3 . Then by
definition, it must be that on Ek :=

⋂

f Ek,f the following desirable “separa-
bility” property holds: for two items f ∈ Dℓ and f ′ ∈ Dℓ′ , if rkℓ > rkℓ′ , then
Vk(f) > Vk(f

′). In other words, the votes of users of class Ck preserve the
inherent ranking of items.

Let us bound the probability of the event Ek:

P(Ek) ≥ 1−
∑

ℓ

|Dℓ|2e−αkrkℓωh(εk/rkℓ).

We impose the following condition on the constant C of (3.7d):

C ≥ F1({αk}, {rkℓ}),

where

F1({αk}, {rkℓ}) = sup
k,ℓ

1

αkrkℓh(εk/rkℓ)
.

Then, since |Dℓ| = Θ(N), it follows that all the events Ek occur with high
probability (i.e., with probability converging to 1 as the number of users N
goes to infinity). We have proved the following
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Lemma 4. If ω ≥ C logN and C ≥ F1({αk}, {rkℓ}), then with high
probability for any class Ck and any two items f ∈ Dℓ and f ′ ∈ Dℓ′ such that
rkℓ > rkℓ′, we have that Vk(f) > Vk(f

′)+C ′′ω for some positive constant C ′′.

Denote the total number of votes of user u ∈ Ck by Vu. It is distributed
as a sum of binomials:

∑

ℓBin(|Dℓ|, ω
N rk,ℓ). The expected number of votes

is thus E(Vu) =
∑

ℓ |Dℓ| ωN rkℓ = Θ(ω) = mkω, where mk =
∑

ℓ βℓrkℓ.
By a similar Chernoff bound argument for a given δ > 0 we find

P(Vu ≥ mkω + δω) ≤ e
−mkωh(

δ
mk+δ

)
.

Hence,

P(∃u : Vu ≥ mk(u)ω + δω) ≤
∑

k

|Ck|e−mkωh(
δ

mk+δ
)
.

Define

F2({mk}) = sup
k

1

mkh(
δ

mk+δ )
.

The above probability goes to 0 as N goes to infinity under the additional
conditions on the constant C stated in the following

Lemma 5. Denote m̄ = maxk mk. If C ≥ F2({mk}), all users u verify
with high probability

Vu ≤ (mk(u) + δ)ω ≤ (m̄+ δ)ω.

Let us now characterise the performance of the distributed voting scheme.
By Assumption (3.7c), the constant vectors corresponding to the user classes
(χk)k are such that ‖χk − χk′‖ = Ω(1), for any 1 ≤ k 6= k′ ≤ K.

By hypothesis we have that ρ0 <
1
6 infk,k′ ‖χk −χk′‖. A user u of class Ck

queries other users having profile vectors within the ball B(
√
Nzu, 2ρ0)

about some item f . Thus, for any u such that ‖
√
Nzu − χk‖ ≤ ρ0, all

users in B(χk, ρ0) are necessarily queried. Henceforth we only take interest
in such users, as they constitute a fraction of the total number of users that
goes to 1 as N goes to infinity.

We denote by Vu(f) the number of votes collected by u for f . Then the
difference Wu(f) := Vu(f)−Vk(f) is the error that u makes when estimating
Vk(f). It can be seen as the difference between the unwanted votes of users in
various classes Ck′ whose profile vectors fall withinB(

√
Nzu, 2ρ0) (and hence

fall outside the ball of radius ρ0 around the constant vector corresponding
to their own class B(χk′ , ρ0)) and the votes of users in Ck who fall outside
B(

√
Nzu, 2ρ0) (and implicitly outside of B(χk, ρ0)).
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We can bound
∑

f |Wu(f)| as follows:
∑

f

|Wu(f)| ≤
∑

u′∈Ck :√
Nzu′ 6∈B(χk ,ρ0)

Vu′ +
∑

u′ 6∈Ck :√
Nzu′ 6∈B(χk(u′),ρ0)

Vu′ ≤ Nout · (m̄+ δ)ω,

whereNout = |{u′ :
√
Nzu′ 6∈ B(χk(u′), ρ0)}| = o(N), as shown in Theorem 2.

We call an item f “misclassified” by u if

Vu(f) = Vk(f) +Wu(f) 6∈ [αkω(rkℓ − εk − εk/2), αkω(rkℓ + εk + εk/2)].

If this is the case in Ek =
⋂

f Ek,f , then necessarily |Wu| ≥ αkω
εk
2 , and

the number of misclassified items is upper bounded as

|{f misclassified by u}| ≤
∑

f |Wu(f)|
αkω

εk
2

≤ m̄+ δ

αk
εk
2

Nout = o(N).

Thus, a constant sample of items chosen at random are well ranked (i.e.,
the order of the Vu(f) is consistent with the order of the rkℓ) with high
probability for all users u (within the same class of items the ordering is
irrelevant).

Since ρ0 might be difficult to estimate, in practice the polling radius can be
increased up to a distance that ensures collecting on average Θ(ω) = E[Vu]
votes (i.e., an average degree of the order of ω). Another option is to use
a weighted average of the collected votes with weights given by a function
of the distance to the polled user in the profile space. This point is left for
future investigation.

3.3. Spectral profiling in practice. In this section we evaluate the benefits
of spectral techniques on a real trace provided by Netflix. The Netflix data
set contains about 108 user ratings for 17, 770 movies by 480, 000 users. The
ratings are given in the form of an integer number of stars, ranging from 1
to 5.

We evaluate taste similarity between users that are assigned close-by pro-
files in the spectral embedding. We do this as follows: We select a set of
2000 users and a set of 2000 movies from the Netflix data set, such that
the selected users have given roughly the same number of ratings within the
selected movie set. The presence of a rating is viewed in this setting as a sign
that the user has viewed that particular movie, and is therefore considered
as a binary form of appreciation (the lack of a rating denoting a potential
lack of interest for that content). Subsequently, for each user we hide the
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Fig 1. Profiling Proximity.

rating of one content at random. Using the remaining observed ratings, we
build a sparse observed 0− 1 rating matrix S, and we compute the spectral
profiles

√
Nz⊤u of the users. For each user, an ordered list of neighbours is

implicitly defined, from the closest to the farthest one in the profile space.
We compute over the set of users the average frequency of the occurence
of the following event: “a user at distance k has rated the hidden content”.
The average is taken over the set of users. This “frequency of agreement”
reflects the taste proximity of users.

In Figure 1 we plot this “frequency of agreement” for different values of
the dimensionality L of the embedding. Content popularity (i.e. the fraction
of users having rated it) ranges from 0.45% to 5.3%, and the average popu-
larity of content is 2.13%. We show this value on our plots for comparison.
In Figure 1(a) we vary the dimension from 2 to 150 and plot the average
frequency of agreement with the nearest neighbour. We notice that there is a
peak in this average frequency around roughly 30 dimensions. Subsequently
the plotted frequency decays slowly. In Figure 1(b) we plot the average
frequency of agreement for 2, 30 and 150 dimensions for the 100 closest
neighbours in the profile space. We conclude that an embedding of rank 30
is appropriate to characterise user taste for the selected users in the trace.

It is important to observe that the frequency decays with distance in the
profile space. This indicates that spectral profiling manages to capture user
taste proximity.

4. Oja’s algorithm and beyond. We now propose a method for ex-
tracting the eigenvectors of the adjacency matrix of a graph in a distributed
manner. Eigenvector extraction is the object of Oja’s algorithm [19], the
basic version of which is refined by Borkar and Meyn in [2].
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Consider a sequence of symmetric square random matrices (Ak ∈ R
N×N )k

of common finite mean A ∈ R
N×N . Oja and Karhunen [19] proposed the fol-

lowing stochastic approximation algorithm for determining the s top eigen-
vectors of A:

X̃k = Xk−1 +AkXk−1Γk,(4.1)

Xk = X̃kR
−1
k ,(4.2)

where Xk is an N × L matrix, Γk is a diagonal matrix of gains and R−1
k

is a matrix achieving the orthonormalisation of the columns of X̃k. They
prove almost sure convergence under typical assumptions on the sequence
of gains, assuming unit multiplicity of the top s eigenvalues, probability
density uniformly bounded away from 0 for each of the Ak, and almost sure
boundedness and symmetry of the Ak, as well as statistical independence.

A simpler single-step form of the algorithm was also proposed by Oja and
Karhunen; the latter produces only an orthonormal basis of the subspace
spanned by the top s eigenvectors. The convergence of a slightly modi-
fied version thereof when A is positive definite was showed by Borkar and
Meyn [2], who introduced the additional factor 1

1+Tr(XkX
⊤

k )
and added the

additional i.i.d. N (0, I) noise sequence ξk:

Xk −Xk−1 =
ak

1 + Tr(XkX
⊤
k )

[(I −Xk−1X
⊤
k−1)Ak−1Xk−1 + ξk].

Here (ak) is an almost typical gain sequence:

∑

k

ak = ∞,
∑

k

a2k < ∞, sup
k

∑

n≥k a
2
n

ak
< ∞.

None of these approaches are distributed however. Our contribution con-
sists precisely in augmenting these methods to make them distributed.

4.1. A method for distributed spectral profiling. In Section 3 we have
demonstrated the benefits of spectral profiling. We have seen that, given a
set of N users, it is sufficient that each of them contact on average only
Ω(log(N)) other users at random and determine similarity with them to
essentially manage to characterise the profiles of everyone, by application of
the spectral transformation.

In this section we consider a (sparse) graph obtained via such a probing
process. We develop message-passing algorithms that enable all users to in-
dividually compute their spectral profile, while allowing communication only
between pairs of neighbours. The algorithms we propose in this section only
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require the connectivity property of the graph (and hence no specific bound
on neighbourhood sizes). However, the scenario of a sparse graph is most
appealing, as it fits very well with the model we introduced in the previous
section. We consider that the adjacency matrix of the graph does not change
over time and prove our claims in this setting. However we conjecture that
our results hold even when this matrix varies independently from one time
step to the next, so that all the matrices in this sequence have the same
finite mean (like in the assumptions of the Oja-Karhunen algorithm).

Let us thus consider a network described by an undirected graph G =
(U , E), where U is the set of N nodes (also designated interchangeably by
“users”), and E is the set of edges connecting these nodes. We denote by Nu

the set of neighbours of u, and also write u ∼ v to indicate that two nodes u, v
are neighbours. Nodes that share a link compute their “similarity” value, i.e.,
a real number Auv which reflects pairwise taste similarity (in Section 3 we
were only considering binary values). The computed values define a weighted
(undirected) graph with adjacency matrix A.

In this section we show that nodes are able to compute individually via
message passing their coordinates in an L-dimensional profile space. These
coordinates form a collection of L linearly independent vectors which span
the vector space generated by the L eigenvectors corresponding to the top L
largest magnitude eigenvalues of A. For binary similarity values, if we inter-
pret the aforementioned computed coordinates as user profiles, Theorem 1
and its corollaries still apply under the same assumptions (3.2); thus, for
the considered class-based model of user taste, clusters corresponding to the
different classes still emerge. We show this in Appendix E.

Let us now describe the proposed method for distributed user profile
computation.

By definition Auu = 0 (and thus Tr(A) = 0), thus the matrix is not
positive semidefinite (it has necessarily negative eigenvalues). We need to
alter the matrix A to guarantee positive semidefiniteness, without changing
its eigenvectors. To achieve this, pick for example either one of the two
solutions below:

– Compute the value ∆ := maxu
∑

v |Auv| (e.g., via a distributed voting
scheme), and subsequently set the diagonal values of A to a value
larger than ∆, e.g., Auu := ∆ + ǫ for some ǫ > 0. This procedure
simply adds ∆+ǫ to the eigenvalues of A, thus rendering them positive
(∆ corresponds to the maximum degree of the graph in the binary case,
and it is known that |λ1| < |∆|).

– Use matrix A2, which has the same eigenvectors as A and eigenvalues
equal to the square of those of A. The advantage of this second method
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is that the ranking of the magnitudes of the eigenvalues is preserved.
However, to avoid direct communication with distance-2 neighbours,
local gossiping should be used (as described in Section 4.2).

In the rest of this section we consider that one of the solutions above is
used and thus that matrix A is rendered positive semidefinite.

Given some fixed number L of target eigenvectors to be extracted, each
user u maintains at all time t three sets of variables:

1. An L-dimensional row vector Xu(t), the sought-for eigenvector coor-
dinates;

2. An L× L matrix Φu(t) and a scalar Ψu(t), both playing an auxiliary
role in the calculation.

For ease of presentation, we assume slotted time t = 0, 1, 2, . . ., and syn-
chronous updates at all peers. Asynchronous versions will be described and
tested in the next section.

Our algorithm then takes the following form:
(4.3)

Xu(t+ 1)−Xu(t) =
a(t)

Yu(t)

[
∑

v∼u

AvuXv(t)−NXu(t)Φu(t) + ξu(t+ 1)

]

.

In the above, a(t) is a gain parameter to be specified, ξu(t + 1) is a noise
term deliberately introduced by user u, and the denominator Yu(t) is taken
equal to

(4.4) Yu(t) = max



1, |Ψu(t)|,
1

NL2

L∑

k,ℓ=1

|(Φu(t))kℓ|



 .

It is readily seen that the update (4.3) can be computed locally at u, solely
relying on variables local to node u and inputs Xv(t) from u’s neighbours
v ∈ Nu. The same is also true for the updates of variables Φu and Ψu, which
take the forms:

(4.5) Φu(t+ 1) = Φu(t) + b(t)
∑

v∼u

(Φv(t)− Φu(t)) + fu(t+ 1)− fu(t),

where b(t) is a gain parameter, fu(t) is a L× L matrix, specified by

(4.6) fu(t) = X⊤
u (t)

∑

v∼u

AuvXv(t),

and

(4.7) Ψu(t+ 1) = Ψu(t) + b(t)
∑

v∼u

(Ψv(t)−Ψu(t)) + gu(t+ 1)− gu(t),
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where gu(t) is a scalar, specified by

(4.8) gu(t) = Xu(t)X
⊤
u (t).

Before stating the main result of this section, we introduce the technical
conditions that will be required from the gain sequences a(t), b(t):

a(t), b(t) ∈ [0, 1], t > 0,(4.9a)
∑

t>0

a(t) =
∑

t>0

b(t) = +∞,(4.9b)

∑

t>0

a(t)2 < +∞,
∑

t>0

b(t)2 < +∞,(4.9c)

lim
t→∞

a(t)

b(t)
eK

∑t
s=1 a(s) = 0, K > 0(4.9d)

Note that these conditions are satisfied for instance upon taking a(t) =
1/(t log(t)), and b(t) = t−2/3. Indeed, with this choice for a(t), it is readily
seen that

t∑

s=1

a(s) ∼ log(log(t)),

and (4.9b) follows. In addition, the quantity in (4.9d) then reads

1

t1/3 log(t)
eK(1+o(1)) log(log(t)) ≤ (log(t))2K−1

t1/3
,

where we have used the upper bound of 1 on the term o(1), and prop-
erty (4.9d) readily follows.

We are now in a position to state this section’s main result:

Theorem 3. Assume that the gains a(t), b(t) verify the conditions (4.9).
Assume further that the noise terms ξu(t) are i.i.d, white Gaussian noise.
Assume finally that the overlay graph over which peers communicate is con-
nected, and that matrix A is positive semidefinite (see discussion above).
Then the distributed updating algorithm (4.3–4.8) verifies the following prop-
erty: With probability 1, the columns of X(t) := (Xu(t))u∈U converge to a
collection of L orthonormal vectors spanning the vector space associated with
the L largest eigenvalues of A.

The proof of the theorem is given in Section F. In what follows, we provide
some background and intuition for it.
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Consider first the main equation, (4.3). If we ignore the denominator
Yu(t), the noise term ξu(t + 1), and replace the term NXu(t)Φu(t) by
∑

v Xu(t)fv(t), where f(t) is as given in (4.6), this equation reads, written
in matrix form:

X(t+ 1)−X(t) = a(t)
[

AX(t)−X(t)X⊤(t)AX(t)
]

.

This is in fact the celebrated Oja algorithm, proposed by Oja and Karhu-
nen [19] to extract precisely the eigenvectors of the largest eigenvalues of A.
Oja’s algorithm is subject to some stability issues, that Borkar and Meyn [2]
proposed to fix by scaling down the right-hand side of the previous equation
by some factor Z(t) = 1 +

∑

u,k X
2
u,k(t), and by adding an extra noise term

ξ(t + 1) in the bracket in the right-hand side. Thus, the update rule they
considered reads:

(4.10) X(t+ 1)−X(t) =
a(t)

Z(t)

[

AX(t)−X(t)X⊤(t)AX(t) + ξ(t+ 1)
]

,

and is proved in ([2]) to converge with probability 1 to the desired eigenvec-
tors, under assumptions (4.9b),(4.9c) on the gains a(t), and similar condi-
tions on the noise ξ(t) as in our theorem.

However, algorithm (4.10) does not lend itself to a distributed implemen-
tation, since neither of the two terms X⊤(t)AX(t) or Z(t) can be computed
locally by the users.

To solve this issue, we introduce the auxiliary local variables Φu, Ψu. The
dynamics (4.5–4.7) according to which they evolve is best understood by
setting to zero the input terms fu(t+1)− fu(t) and gu(t+1)− gu(t) in the
right-hand side. It then becomes apparent that these dynamics perform local
averaging (also known as gossiping in [3]). Thus these eventually converge to
a state where all variables Φu(t) coincide with the average (1/N)

∑

v Φv(0)
of the original entries.

We can now provide a heuristic argument for the theorem. On a fast time
scale, characterised by the gain parameters b(t), the gossiping dynamics
converge to almost constant vectors, with

Φu(t) ≡ 1
N

∑

v fv(t), u ∈ U ,
Ψu(t) ≡ 1

N

∑

v gv(t) u ∈ U .

Then on a slower time scale dictated by the gain parameters a(t), the vari-
ables of interest Xu(t) follow dynamics very close to (4.10). Indeed, the aux-
iliary parameters Φu, Ψu track accurately the desired terms X⊤(t)AX(t)
and Z(t) respectively.
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A couple of remarks are in order. The stabilisation by the scaling factor
Z(t) in (4.10) seems insufficient in the presence of the additional dynamics
(4.5, 4.7). This leads us to introduce our alternative stabilisation via Yu(t)
in (4.4). Also, in problems with dynamics at two time scales a common
assumption on the gain parameters is that a(t)/b(t) → 0. In the present
case, a stronger form of time scale separation (namely, condition (4.9d)) is
needed, to prevent reinforcing instabilities between the two dynamics.

4.2. Evaluation of an asynchronous version. In this section we present
numerical evaluations on synthetic data. We exhibit convergence of an asyn-
chronous version of the distributed coordinate assignment scheme presented
in the previous section on synthetic data generated according to the model
presented in Section 3.1.

In Section 4.1 we showed that the distributed algorithm (4.3–4.5) con-
verges almost surely towards L linearly independent vectors spanning the
vector space generated by the eigenvectors corresponding to the top L mag-
nitude eigenvalues of the adjacency matrix A.

In the following, we evaluate the asynchronous version of the algorithm.
In this setting, each node u keeps track of its own coordinates Xu as well as
the gossiped variables Φu and Ψu. However, instead of explicitly imposing a
timescale separation via gains a(t) and b(t) while enforcing a synchronised
evolution of all the quantities, we impose distinct rates at which the updates
are performed. Namely, the coordinate updates (4.3) are performed indepen-
dently according to Poisson processes of rate λ, while gossiping (4.4–4.5) is
performed independently “pairwise” according to Poisson processes of rate
µ ≫ λ. By pairwise we mean that a pair of nodes (u, v) ∈ E will exchange
and update their values for Φ and Ψ at rate µ similarly to the randomised
gossiping technique from [3].

Furthermore, we replace the adjacency matrix by its square A2. We choose
to do so, since the latter is positive semidefinite, has the same eigenvectors
as A, and a spectrum composed of the squared eigenvalues of A. Implicitly,
the eigenvectors are ordered according to the magnitude of the eigenvalues
of A, instead of their actual values. In turn, this modification alters the
function fu from (4.6), which becomes:

(4.11) f (2)
u =

(
∑

v∼u

AuvXv

)⊤(
∑

v∼u

AuvXv

)

.

The algorithm executed at each node is summarised in Algorithm 1.
Since sparsity is not preserved by taking the square of A, we cannot simply

use A2 as a new adjacency matrix. Thus, we need to compute products
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Algorithm 1 Distributed profiling algorithm

Node(u)::Update-Local() at rate λ

Local Variables: Xu,Πu, wu, X
0

u
,Π0

u
,Ψu,Φu

1: if wu = 1 then

2: Retrieve partial product vectors Πv from v ∈ Nu

3: Xu := Xu + γ
∑

v∼u
AuvΠv−NXuΦu

Yu(Ψu,Φu)

4: else

5: Retrieve vectors Xv from v ∈ Nu

6: Πu :=
∑

v∼u AuvXv

7: end if

8: wu := 1− wu

Link(u, v)::Gossip() at rate µ

1: Retrieve local variables at u and v

2: for (H,h) in {(Φ, f (2)), (Ψ, g)} do

3: α := Hu+Hv

2

4: for i in {u, v} do

5: δi := hi(Xi,Πi)− hi(X
0
i ,Π

0
i )

6: Hi := α+ δi
7: end for

8: end for

9: X0
u := Xu, Π

0
u := Πu, X

0
v := Xv , Π

0
u := Πu

A2X specifically: For some node u, every other call to the Update-Local()

procedure computes the partial products Πu =
∑

v∼uAuvXv (State 6 in
the Algorithm). Subsequently, the neighbours’ partial product vectors Πv

are used in the coordinate update procedure (4.3) at State 3 and for the

gossiping of f
(2)
u = Π⊤

uΠu. Each node additionally stores its previous vectors
X0

u and Π0
u for use in the Gossip() procedure.

The only piece of global information required is the number of users in the
system (or an approximation thereof). In the Update-Local() procedure, we
used a fixed gain γ. The noise component ξ is omitted in the algorithm. Even
so, noise is intrinsic to the algorithm as it is introduced by both the gossip
averaging and by the fact that exchanges are asynchronous.

For evaluation of convergence, we used a synthetic data trace generated
according to our model from Section 3.1. This trace considers 2200 users
clustered in 4 classes of sizes 200, 500, 600 and 900. The probability matrix
pB characterising the classes is

pB =
1

100







0.5 1.5 2.0 1.0
1.5 0.55 1.0 2.0
2.0 1.0 0.45 4.0
1.0 2.0 4.0 0.5







.
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Fig 2. Pure and noisy user profiles.

We consider an adjacency matrix A generated using the aforementioned
parameters. This matrix is sparse (the average node degree is 40). For vi-
sualisation ease, we consider the case L = 2 (i.e. the profile space is a
2-dimensional plane). In Figure 2 we plot the first two eigenvectors of the
expected adjacency matrix Ā. They are constant on each of the 4 classes,
hence the plot is constituted of 4 points, which are depicted as the four black
squares. They represent the pure user profiles which characterise each of the
four classes. Additionally, we plot the first two eigenvectors of the “noisy”
adjacency matrix A, with elements belonging to a specific class marked with
the same symbol. We have the visual confirmation that despite the sparsity
of matrix A, the noisy profiles are grouped around the pure profiles.

We choose a gain γ = 0.001, an update rate λ = 0.2 and a gossip rate
µ = 10. We initialise the algorithm at a random state. In Figure 3 we plot the
time evolution of the proportion of the mass of the two coordinate vectorsX·1
and X·2 (aggregated across users) that falls on the space orthogonal to the 2-
dimensional eigenspace generated by the first two eigenvectors of matrix A2.
Additionally, we plot the scalar product of the two coordinate vectors. After
roughly 400 time units, we observe convergence towards orthogonal vectors
spanning the desired eigenspace.

5. Conclusions. In this paper we addressed the problem of distributed
user profiling and recommendation.

We first showed that spectral techniques constitute an appealing ap-
proach, and obtained novel results on their efficiency, thereby improving



28 D.-C. TOMOZEI AND L. MASSOULIÉ
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Fig 3. Convergence of the asynchronous distributed algorithm.

upon previous literature on the subject of spectral clustering. We showed
that for a low-rank probabilistic model of user taste, a simple distributed
algorithm based on local votes in the profile space asymptotically achieves
accurate prediction of user preference.

We developed techniques for computing eigenvectors in a distributed man-
ner. Our solution combines ideas from Oja’s algorithm with gossiping algo-
rithms. From a theoretical standpoint, it essentially relies on a special form
of multiple time scale stochastic approximation. The resulting technique may
have other applications besides user profiling.

Finally we evaluated our proposed methods on synthetic and actual data
traces. We thereby validated our analysis in observing convergence to the de-
sired eigenvectors. We could further show, based on the Netflix prize dataset,
that accurate recommendations could be made at limited communication
cost based on our spectral embedding.

Several research directions can be envisioned to take this work further.
One intriguing problem concerns privacy. While our methods do not rely on
direct exchange of sensitive private information, they may nevertheless lead
to private information leakage. A distributed solution avoiding the issue is
yet unavailable.

Other directions concern the fine tuning of the methods. The issue of
analytical selection of the number of eigenvectors has not been addressed
here. The recent work of Shi et al. [20] could be an appealing solution.
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APPENDIX A: PROOF OF LEMMA 1

Consider an eigenvalue λ̄ 6= 0 of Ā and a corresponding normalised eigen-
vector x̄, ‖x̄‖2 = 1. For 1 ≤ u ≤ N ,

(Āx̄)(u) =
ω

N

N∑

v=1

bk(u)k(v)x̄(v) =
ω

N

K∑

ℓ=1

bk(u)ℓ
∑

v:k(v)=ℓ

x̄(v) = λ̄x̄(u).

For a large enough N , we have that |Ck| > 1, for all k. This is true, since the
size of each class grows linearly with N . Then for all k and for all u, u′ ∈ Ck,
with u′ 6= u it follows that x̄(u′) = x̄(u).

Denote the value of x̄(u) by ŷ(k(u)). Then, for all 1 ≤ ℓ ≤ K,

K∑

ℓ′=1

αℓ′bℓℓ′ ŷ(ℓ
′) =

λ̄

ω
ŷ(ℓ).

Thus ŷ is an eigenvector of the K×K matrix M = Bdiag(α) correspond-

ing to its eigenvalue λ̄
ω . Since M is a constant matrix, its eigenvalues are

also constants. Hence it must be that there exists a constant c such that
λ̄ = cω = Θ(ω). By Condition (3.2b) we conclude that the top L magnitude
eigenvalues of Ā have distinct absolute values.

Finally, since x̄(u) = ŷ(k(u)) we have that

1 = ‖x̄‖2 =
√
N‖ŷ‖α ⇐⇒ ‖ŷ‖α =

1√
N

.

Since y = ŷ
‖ŷ‖α , we must have that x(u) = ŷ(k(u)) = y(k(u))√

N
, which

proves (3.3). �

Note that a consequence of this result is that Ā can have a number of
non-zero eigenvalues that is at least L (by Condition (3.2a)) and at most K
(i.e. the maximum number of eigenvalues of matrix M).

APPENDIX B: PROOF OF LEMMA 2

We start by establishing a simple result of stochastic dominance.
By definition a random variableX is dominated for the convex ordering by

another random variable Y (written as X ≤cx Y ) if for any convex function
f : [c, d] → R such that Ef(X) and Ef(Y ) exist, we have Ef(X) ≤ Ef(Y ).

It is known that (see for instance [16], Theorem 1.5.20): If X ≤cx Y , then
there exist X̂ and Ŷ with the same distributions as the original variables,
but which are such that E(Ŷ |X̂) = X̂ .
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Another result found in [16] states that for some closed interval [c, d], if
X : Ω → [c, d] and Y : Ω → {c, d} are two random variables such that
EX = EY , then X ≤cx Y .

In this latter setting, we wish to establish a variant of the former result.
Namely, for some closed interval [c, d], if X : Ω → [c, d], we wish to construct
a random variable Ŷ : Ω → {c, d} supported on the extremities {c, d} of the
interval, such that EX = EŶ and E(Ŷ |X) = X. To achieve this, pick a
uniformly distributed random variable U ∼ U [0, 1] independent of X. We
define the random variable Ŷ : Ω → {c, d} as Ŷ = F (X,U), where

F (x, u) = d− 1{x≤u(d−c)+c}(d− c).

Then

E(Ŷ |X) = E(F (X,U)|X) = d− d−X

d− c
(d− c) = X.

Since Ŷ can possibly take only two values, we can compute the corresponding
probabilities:
(B.1)

P(Ŷ = d) =

∫ d

c
PX(dx)

∫ x−c
d−c

0
du =

EX − c

d− c
and P(Ŷ = c) =

d− EX

d− c
,

and hence EX = EŶ .
Let us now proceed with the proof of the Lemma.
Denote by Q := A − EA. Denote further by pmax = maxij pij and

by pmin = minij pij . Then the elements of Q all belong to the interval
[−pmax, 1 − pmin]. For a large enough N such that pmax < 1, there exist
α = 1−pmin

1−pmax
> 1 and p = pmax, such that [−pmax, 1− pmin] ⊂ α[−p, 1− p].

Consider a symmetric matrix U of independent uniformly distributed ran-
dom variables {Uij = Uji ∼ U [0, 1]}i<j . Then for each entry Qij of Q, such
that i < j, which we regard as a random variable with values in the interval
α[−p, 1− p], we construct the random variable Zij = F (Qij , Uij) which has
the desired property written in matrix form

(B.2) E(Z|Q) = Q.

Note that the entries of Z are mutually independent by construction. Fur-
thermore, the random variables defined as {Yij = α−1Zij + p, Yji = Yij}i<j

are mutually independent Bernoulli random variables of parameter p and
hence form the adjacency matrix Y of an Erdos-Renyi graph of parameters
(N, p). Denote Ȳ := EY = p(ee⊤− I), where e is the all-ones column vector
and e⊤ denotes transposition.
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Let us now prove that the spectral radius of Z = α(Y − Ȳ ) is upper
bounded by O(

√
ω) with high probability.

Since ω = Ω(logN), and the {Yij}i<j are mutually independent, we can
apply the results from [9]. Let y be any vector of norm 1 and denote u :=
1√
N
e. We can decompose y as follows: y = ax+ bu, where a2 + b2 = 1, and

x is a vector of norm 1 orthogonal to u, x ⊥ u.

|y⊤(Y − Ȳ )y| ≤ 2 |abx⊤(Y − Ȳ )u|
︸ ︷︷ ︸

T1

+a2 |x⊤(Y − Ȳ )x|
︸ ︷︷ ︸

T2

+b2 |u⊤(Y − Ȳ )u|
︸ ︷︷ ︸

T3

.

Denote by δi the degree of node i and by δ̄ :=
∑

i δi
N the average degree.

According to Lemma 2.2 from [9] and taking into account the fact that e is
an eigenvector of Ȳ we have

T1 = |x⊤Y u| ≤ 2
√

δ̄, with probability 1− e−Ω((Nω)1/3).

By Theorem 2.5 and Claim 2.4 from [9], we have that for every constant
c1 > 0, there exists another constant c2 > 0 such that:

(B.3) |x⊤Y x| ≤ c2
√
ω, with probability 1−N−c1 .

We will restrict ourselves to constants c1 > 1 for reasons that will become
apparent later in the proof. Thus, we can bound the second term with prob-
ability 1−N−c1 :

T2 ≤ |x⊤Y x|+ |x⊤Ȳ x|
(B.3)

≤ O(
√
ω) +

∣
∣
∣
∣

∑

i

xi
∑

j:i 6=j

pxj

∣
∣
∣
∣

= O(
√
ω) +

∣
∣
∣
∣
−p
∑

i

x2i

∣
∣
∣
∣
= O(

√
ω) + Θ

(
ω

N

)

.

Finally, using a Chernoff bound we find

T3 = |δ̄ − ω| = O(
√
ω), with prob. 1− e−Ω(N).

Thus, ρ(Z) = O(
√
ω), with probability 1 − N−c1 . Furthermore, there

exists a constant a > 0 such that ρ(Z) < aN .
Let us now finally characterise the spectral radius of Q.
Using the fact that the spectral radius is a convex function and by Jensen’s

inequality, we get

ρ(Q) = ρ(E [Z|Q]) ≤ E [ρ(Z)|Q]
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We have a random variable R := ρ(Z) supported on [0, aN ], such that
P(R > t) ≤ O(N−c1) for t = O(

√
ω) and we wish to deduce that the

conditional expectation S := E(R|Q) is also upper bounded by O(
√
ω) with

high probability.
Since R and S have countable state spaces, it makes sense to consider

β(s) := P(R > t|S = s).

Since R : Ω → [0, aN ], and since E(R|S) = S, we have that β(s)(aN)+ (1−
β(s))t ≥ s, and thus, β(s) ≥ (s − t)/(aN − t). Denoting γ := P(S > t+ 1),
we have

P(R > t) = E(β(S)) ≥ E(β(S)1{S>t+1}) ≥
t+ 1− t

aN − t
γ =

γ

aN − t
.

Hence

γ = P(S > t+ 1) ≤ (aN − t)P(R > t) = (aN − t)O(N−c1) = o(1),

since we considered c1 > 1. �

APPENDIX C: PROOF OF LEMMA 3

We will show the two claims (3.5) and (3.6) by induction. Denote (3.5)
by Pk and (3.6) by Qk.

We will begin by proving P1 and Q1. Since we make extensive use of
Lemma 2, it is implied that all inequalities in this proof hold with high
probability in the sense of Lemma 2 (that is with probability 1 − N−c for
c > 0). All vectors are column vectors and we denote by x⊤ the transpose
of vector x. Furthermore, for two vectors x and y by x ⊥ y we mean that
their scalar product x⊤y equals zero.

Using the variational characterisation of eigenvalues and Lemma 2, we
get:

∣
∣|λ1| − |λ̄1|

∣
∣
wlog
= |λ1| − |λ̄1| ≤ |λ1| − |x⊤1 Āx1| ≤ |x⊤1 (A− Ā)x1| ≤ O(

√
ω),

which proves P1.
We denote the first eigenvector of A by x1 = a1x̄1+b1ȳ1, where a

2
1+b21 = 1,

x̄1 is the first eigenvector of Ā and x̄1 ⊥ ȳ1. Then, by making use of P1,
there exist positive constants θ1 and θ2 such that

|λ̄1| − θ1
√
ω ≤ |λ1| ≤ a21|x̄⊤1 Āx̄1|+ b21|ȳ⊤1 Āȳ1|+ θ2

√
ω.
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We took into account the symmetry of Ā and the fact that Āx̄1 = λ̄1x̄1. By
the Courant-Fischer theorem, we get the following inequality:

(C.1) |λ̄1| − θ
√
ω ≤ |λ̄1| − b21(|λ̄1| − |λ̄2|), θ > 0

and since the top L eigenvalues of Ā are distinct (by Condition (3.2b)), it
holds that 0 < |λ̄1|−|λ̄2| = Θ(ω). We get that b21 ≤ O( 1√

ω
), thus proving Q1.

In order to generalise this result, we make use of the following simple
lemma:

Lemma 6. Let x1 and x̄1 be two non-orthogonal vectors of norm 1 such
that

(C.2) 1− (x⊤1 x̄1)
2 ≤ O

(
1√
ω

)

.

Then for all vectors x2 of norm 1 such that x2 ⊥ x1, (x
⊤
2 x̄1)

2 ≤ O( 1√
ω
).

Proof. We have x1 = ax̄1+bȳ1, where x̄1 ⊥ ȳ1, ‖ȳ1‖ = 1 and a2+b2 = 1.
By hypothesis (C.2), b2 ≤ O( 1√

ω
). Thus,

x⊤2 x1 = ax⊤2 x̄1 + bx⊤2 ȳ1 = 0,

and thus, since a 6= 0,

|x⊤2 x̄1|2 =
b2

1− b2
|x⊤2 ȳ1|2 ≤ θ

1√
ω

√
ω√

ω − θ
,

where θ > 0 is a constant.

We proceed by complete induction. We showed P1 and Q1. Now assume
Pℓ and Qℓ are true for all 1 ≤ ℓ < k. We wish to show Pk and Qk.

Let us write xk = αx̄k + βȳ + γz̄, where ȳ ∈ Span{x̄k+1, x̄k+2, . . . } and
z̄ ∈ Span{x̄1, . . . , x̄k−1} and α2 + β2 + γ2 = 1. Lemma 6 and the induction
hypothesis show that γ2 ≤ O( 1√

ω
). Since

|x⊤k Āxk| ≤ (1− γ2)|λ̄k|+ γ2|λ̄1| ≤ |λ̄k|+O(
√
ω),

we can conclude that

∣
∣|λk| − |λ̄k|

∣
∣
wlog
= |λk| − |λ̄k| ≤ |λk| − |x⊤k Āxk|+O(

√
ω) ≤ O(

√
ω),

thus proving Pk.
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We have that,

|λk| ≤ |x⊤k Āxk|+ |x⊤k (A− Ā)xk| ≤ α2|λ̄k|+ β2|λ̄k+1|+ γ2|λ̄1|+O(
√
ω)

≤ |λ̄k|+
a√
ω
(|λ̄1| − |λ̄k|)− β2(|λ̄k| − |λ̄k+1|) + θ

√
ω,

where a and θ are positive constants. Without loss of generality take ||λk|−
|λ̄k|| = |λ̄k| − |λk| and using Pk we get

β2 ≤
ϕ
√
ω + a√

ω
(|λ̄1| − |λ̄k|)

|λ̄k| − |λ̄k+1|
≤ O

(
1√
ω

)

, ϕ > 0

thus proving Qk. �

APPENDIX D: TECHNICAL LEMMAS FOR PROVING THEOREM 2

We make the following notation:

S̄ := (prk(u)k′(i))u,i = ES.

The following Lemmas characterise the structure of the singular decompo-
sition of S̄ and S. They show that the two matrices have the same spectral
structure.

Lemma 7. For L ≤ K ′, the top L largest singular values of S̄ are distinct
and of order Θ(ω). The normalised left-singular vectors (x̄ℓ)

L
ℓ=1 correspond-

ing to these singular values are constant on indices corresponding to each
user class. Specifically, using the gℓ defined in (3.7c), we can write

(D.1) x̄ℓ(u) =
gℓ(k(u))√

N
, ∀u ∈ U , 1 ≤ ℓ ≤ L.

Proof. Consider a non-zero singular value of S̄, σ > 0 and corresponding
left and normalised right singular vectors x̄ and ȳ. Then we can write:

(S̄⊤x̄)(i) =
N∑

u=1

S̄uix̄(u) = σȳ(i)
not.
= σh(k′(i)),

(S̄ȳ)(i) =
F∑

i=1

S̄uiȳ(i) = σx̄(u)
not.
= σĝ(k(u)),

since S̄ui = prk(u)k′(i) depends only on the class of u, k(u), and the class of
i, k′(i). Since ȳ is a right-singular vector of S̄, it is also an eigenvector of
S̄⊤S̄ corresponding to eigenvalue σ2, and thus after some simplification we
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have that
σ2

γω2
ĝ = Rdiag(β)R⊤diag(α)ĝ,

that is the K-dimensional vector ĝ is an eigenvector of the constant matrix
Rdiag(β)R⊤diag(α) corresponding to the eigenvalue σ2

γω2 . Since the eigenval-
ues of a constant matrix are constant, it follows that there exists a constant
λ such that σ = λω = Θ(ω). By Condition (3.7b) it follows that the largest
L singular values of S̄ are distinct. Moreover, matrix Rdiag(β)R⊤diag(α)
can have at most K distinct non-zero eigenvalues and hence the same holds
for the singular values of S̄.

Finally, we have that

1 = ‖x̄‖2 =
√
N‖ĝ‖α.

Thus, if we consider a vector g = ĝ
‖ĝ‖α normalised under the α-norm, Equa-

tion (3.3) holds.

We denote the singular values of S̄ and S by

(D.2)
σ̄1 > σ̄2 > · · · > σ̄L > 0
σ1 ≥ σ2 ≥ · · · ≥ σL > 0.

and the corresponding left and right normalised singular vectors by x̄k, ȳk′ ,
xk, and yk′ .

Lemma 8. For all 1 ≤ k ≤ K

|σk − σ̄k| ≤ O(
√
ω) whp,(D.3)

sin(x̂k, x̄k) ≤ O(ω−1/4) whp,(D.4)

sin(ŷk, ȳk) ≤ O(ω−1/4) whp.(D.5)

Proof. For Ā = τ S̄ we denote by ζ̄+k the normalised eigenvector cor-
responding to the eigenvalue σ̄k and by ζ̄−k the normalised eigenvector cor-
responding to the eigenvalue −σ̄k. We introduce similar notation for the
eigenvectors of A = τS, namely ζ+k and ζ−k . Then it holds that

ζ̄+k =
1√
2

[
x̄k
ȳk

]

, ζ̄−k =
1√
2

[
x̄k
−ȳk

]

, ζ+k =
1√
2

[
xk
yk

]

, ζ−k =
1√
2

[
xk
−yk

]

.

By Condition (3.7b), we can apply a slightly modified Lemma 3 to ma-
trix A. The only modification we need to make is to change the considered
ordering of the eigenvalues – instead ordering them by largest magnitude,
we order them decreasingly by value. Since we can apply Lemma 2 to A− Ā,
it is straightforward to see that the proof also holds in this setting.



36 D.-C. TOMOZEI AND L. MASSOULIÉ

We have thus that (D.3) holds and that with high probability

sin(̂ζ+k , ζ̄
+
k ) ≤ O(ω−1/4).

We now show that (D.4) holds as well. For (D.5) the analysis is similar. We
write

1−
〈
ζ+k , ζ̄+k

〉2
= 1− 1

4
(〈xk, x̄k〉+ 〈yk, ȳk〉)2 ≤ O(ω−1/2),

−
〈
ζ+k , ζ̄−k

〉2
= −1

4
(〈xk, x̄k〉 − 〈yk, ȳk〉)2 ≤ 0.

By summing the two expressions we get that: 1
2(1 − 〈xk, x̄k〉2) + 1

2(1 −
〈yk, ȳk〉2) ≤ O(ω−1/2).

APPENDIX E: APPLICABILITY OF THEOREM 1 IN THE SETTING
OF SECTION 4

In Section 3.1 we had defined the profile of user u as
√
Nz⊤u , a scaled

row vector containing the u-th coordinate of each of the top L eigenvectors
of matrix A (i.e., the user profiles are scaled rows of the N × L matrix
X = (x1, . . . , xL) of the top L normalised eigenvectors of A). The algorithms
we investigate in Section 4 produce slightly different coordinates for the
users: these coordinates form a collection of L linearly independent vectors
which span the vector space generated by the L eigenvectors corresponding
to the top L largest magnitude eigenvalues of A.

Specifically, for some unknown full rank L× L matrix W = (w1, . . . , wL)
of linear coefficients, we redefine the profile of user u as a scaled row vec-
tor

√
Nẑ⊤u containing the u-th coordinates of an orthonormal basis of the

space spanned by the top L eigenvectors (i.e., the rows of the matrix XW ):
ẑu = ((Xw1)(u), . . . , (XwL)(u)). Even in this setting, Theorem 1 and its
corrolaries still apply under the same assumptions (3.2). Hence, for a large
number of users, clusters will emerge, and there is no need to know the
matrix of linear coefficients W .

To give an intuition as to why this result still holds, recall Lemma 1
which shows that the top L largest eigenvectors X̄ of the block matrix Ā
are constant on indices within the same user class. Hence, a linear combi-
nation thereof has the same property. Thus, the redefined user profiles con-
centrate around constant vectors (t̂⊤k )k corresponding to the user classes:
t̂⊤k := ((Y w1)(k), . . . , (Y wL)(k)), where Y = (y1, . . . , yL) is the matrix of
eigenvectors of M = Bdiag(α) normalised under the α-norm. As previously
stated, the following condition needs to hold in order to distinguish users of
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separate classes:

The normalized eigenvectors Y under the α-norm are such
that t̂⊤k 6= t̂⊤ℓ , k 6= ℓ. (3.2c′).

Due to the fact that matrix W is full rank, one can show that condi-
tion (3.2c′) is equivalent to (3.2c). Moreover, the averaging argument in
the proof of the theorem yields:

1

N

∣
∣
∣

{

u : ‖ẑ⊤u − t̂⊤k(u)‖ ≥ a
}∣
∣
∣ ≤ 1

N

N∑

u=1

‖
√
Nẑ⊤u − t̂⊤k(u)‖2

a2

= a−2
N∑

u=1

L∑

ℓ=1

[
L∑

i=1

wℓ(i)[xi(u)− x̄i(u)]

]2

Cauchy-
Schwartz

≤ ‖W‖2F
L∑

ℓ=1

‖xℓ − x̄ℓ‖2
a2

= O(a−2ω−1/2),

since the Frobenius norm ‖W‖F of matrix W is constant (all of its elements
are subunitary).

APPENDIX F: PROOF OF THEOREM 3

The main ingredient in the proof is the following

Lemma 9. The update equation (4.3) is such that for all t > 0,

(F.1) ‖X(t+ 1)‖ ≤ eK
∑t

s=1 a(s) (‖X(1)‖ +M)

for some positive constant K (i.e., that does not depend on t) and some
almost surely finite random variable M .

Proof. Rewrite Equation (4.3) in matrix form as

X(t+ 1)−X(t) = a(t)
[
F ((X,Φ,Ψ)(t)) +D−1(t)ξ(t+ 1)

]

for some suitable function F , and where D(t) denotes the N ×N diagonal
matrix with diagonal entries Yu(t). By the specific form of the terms Yu(t),
and their role in the function F , it is readily seen that the latter verifies

‖F (X,Φ,Ψ)‖ ≤ K1‖X‖

for some suitable constant K1. This readily implies that

‖X(t + 1)‖ ≤ (1 +K1a(t))‖X(t)‖ + a(t)η(t),



38 D.-C. TOMOZEI AND L. MASSOULIÉ

where the η(t) = ‖ξ(t+ 1)‖ are iid. By induction, one then establishes that

‖X(t + 1)‖ ≤
t∏

s=1

(1 +K1a(s))

[

‖X(1)‖ +
t∑

s=1

a(s)η(s)

]

.

Denote now η̄ the expectation of η(s), and let M(t) :=
∑t

s=1 a(s)[η(s)− η̄].
It is readily seen that M(t) is a uniformly integrable martingale, and hence
the supremum sups>0M(s) is almost surely finite; denote it by M̂ . It then
follows from the above equation that

‖X(t + 1)‖ ≤
t∏

s=1

(1 +K1a(s))

[

‖X(1)‖ +
t∑

s=1

η̄a(s) + M̂

]

.

Using the elementary inequality 1 + x ≤ ex, one deduces:

‖X(t+ 1)‖ ≤ e
∑t

s=1 K1a(s)
[

‖X(1)‖ + e
∑t

s=1 η̄a(s) + M̂
]

.

The result (F.1) then follows by settingK = K1+η̄, andM = 1+max(0, M̂ ).

An additional result that is used is the following

Lemma 10. For a given sequence ǫ(t) with limt→∞ ǫ(t) = 0, the sequence
z(t) defined as

z(t+ 1) = (1− λb(t))z(t) + b(t)ǫ(t+ 1)

converges to 0 as t goes to ∞.

Proof. By induction, one can deduce from the previous expression the
identity

z(t+ 1) = z(1)

t∏

s=1

(1− λb(s)) +

t∑

s=1

ǫ(s)b(s)

t∏

σ=s+1

(1− λb(σ)).

Elementary analysis can then be used to deduce from this last display, as-
sumptions (4.9b),(4.9c) on gains b(t), and convergence of ǫ(t) to 0 that z(t)
also converges to 0.

Indeed, take any fixed ε > 0. Since ǫ(t) → 0, there exists some t0 such
that ǫ(t) < ελ

3 , for all t ≥ t0. Then, we can write:

z(t+ 1) ≤ z(1)

t∏

s=1

(1− λb(s))(F.2)
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+

t0∑

s=1

ǫ(s)b(s)
t∏

σ=s+1

(1− λb(σ))(F.3)

+
ελ

3

t∑

s=1

b(s)
t∏

σ=s+1

(1− λb(σ)).(F.4)

Term (F.2) develops as

z(1)
t∏

s=1

(1− λb(s)) = z(1)e
∑t

s=1 log(1−λb(s)) ≤ z(1)e−λ
∑t

s=1 b(s) → 0,

by assumption (4.9c). Term (F.3) consists of t0 terms (a finite number), each
of which converges to 0 by the same argument as above. Hence, there exists
t1 such that for all t ≥ t1, we have

z(1)
t∏

s=1

(1− λb(s)) +

t0∑

s=1

ǫ(s)b(s)
t∏

σ=s+1

(1− λb(σ)) ≤ 2ε

3
.

It can be shown that term (F.4) can be written as:

ελ

3

t∑

s=1

b(s)
t∏

σ=s+1

(1− λb(σ)) =
ελ

3

1

λ

(

1−
t∏

s=1

(1− λb(s))

)

≤ ε

3
.

We have shown that for all ε > 0, there exists some t2 = t0 ∨ t1 such that
for all t > t2, we have z(t+ 1) ≤ ε.

The previous lemmas are now used to establish the following result:

Lemma 11. The auxiliary variables Φu(t), Ψu(t) verify

(F.5)
limt→∞ |NΦu(t)−

∑

v fv(t)| = 0,

limt→∞ |NΨu(t)−
∑

v gv(t)| = 0,

i.e. asymptotically, these quantities do track accurately their intended tar-
gets.

Proof. We shall only consider the case of Ψu(t), the other one being
entirely similar. Rewrite the update rule (4.5) in matrix form as

(F.6) Ψ(t+ 1) = (I − b(t)Λ)Ψ(t) + g(t+ 1)− g(t),

where Λ is the so-called Laplacian matrix of the overlay graph: Λuu = |Nu|,
Λuv = −1u∼v for u 6= v. Recall that the Laplacian Λ is positive semi-definite,
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with eigenvector e = (1, . . . , 1)⊤ associated to the eigenvalue 0. Also, when
the overlay graph is connected, all other eigenvectors are associated with
strictly positive eigenvalues λ > 0.

We have by definition of g:

g(t+ 1)− g(t) = {Xu(t+ 1)Xu(t+ 1)⊤ −Xu(t)Xu(t)
⊤}u

= {Xu(t+ 1)(Xu(t+ 1)⊤ −Xu(t)
⊤)}u

+ {(Xu(t+ 1)−Xu(t))Xu(t)
⊤)}u

= a(t){Xu(t+ 1)[Fu((X,Φ,Ψ)(t))⊤]}u
+ {[Fu((X,Φ,Ψ)(t))]Xu(t)

⊤)}u

+ a(t)

{

Xu(t+ 1)
ξu(t+ 1)⊤

Yu(t)
+

ξu(t+ 1)

Yu(t)
Xu(t)

⊤
}

u

.

We can rewrite this as g(t+1)− g(t) = a(t)(r(t+1)+ s(t+1)+w(t+1)),
where

r(t+ 1) = {(Xu(t+ 1) +Xu(t))[Fu((X,Φ,Ψ)(t))⊤]}u,

s(t+ 1) =

{

[2Xu(t) + a(t)Fu((X,Φ,Ψ)(t))]
ξu(t+ 1)⊤

Yu(t)

}

u

,

w(t+ 1) = a(t)

{‖ξu(t+ 1)‖2
Y 2
u (t)

}

u

By Lemma 9 and the bound on function F therein we have that

‖r(t+ 1)‖ ≤ K ′e2K
∑t

s=1 a(s).

Additionally,
E[s(t+ 1)|Ft] = 0.

Consider z an eigenvector of Λ corresponding to a non-zero eigenvalue
λ > 0 and define

ǫ(t+ 1) :=
a(t)

b(t)
z⊤[r(t+ 1) +w(t+ 1)],

ǫ′(t+ 1) :=
a(t)

b(t)
z⊤s(t+ 1).

Then limt→∞ ǫ(t) = 0 almost surely. For the term a(t)
b(t) z

⊤r(t+1) the conver-

gence follows from condition (4.9d), while for a(t)
b(t) z

⊤w(t+1) it follows from

the fact that the ‖ξu‖ have finite variance and from condition (4.9c).
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Denote ẑ(t) the scalar product z⊤Ψ(t). One then deduces from (F.6) the
equation

ẑ(t+ 1) = (1− λb(t))ẑ(t) + b(t)(ǫ(t+ 1) + ǫ′(t+ 1)).

We wish to show that ẑ(t) converges to 0. We know that the sequence z(t)
defined in Lemma 10 converges to 0. Consider ∆(t) := ẑ(t)− z(t). It verifies

∆(t+ 1) = (1− λb(t))∆(t) + b(t)ǫ′(t+ 1),

with ǫ′ such that E[ǫ′(t+ 1)|Ft] = 0.
If we manage to show that ∆(t) converges to 0, then the same follows

for ẑ(t). The convergence of ∆(t) follows from Theorem 1.IV.26. (Robbins-
Monro) of [8]. We need to check that the hypothesis of the latter are verified.
We only give details for the following condition

∑

t b(t)
2
E[‖ǫ′(t+1)‖2] ≤ +∞,

as the others are immediately verified.
A sufficient condition is:

∑

t

b(t)2E







(
a(t)2

b(t)2
e2K

∑t
s=1 a(s)

)

︸ ︷︷ ︸

→0

(K ′′(1 + M̂))2‖ξ(t+ 1)‖2






< ∞,

where M̂ is the supremum of the martingale M(t) =
∑t

s=0 a(s)(η(s) − η̄)
from Lemma 9, with η(s) = ‖ξ(t+ 1)‖, and η̄ = Eη(t+ 1).

We need that E(M̂2‖ξ(t+1)‖2) < ∞ and that
∑

t b(t)
2 < ∞ to conclude.

E(M̂2‖ξ(t+ 1)‖2) ≤ 1

2
[EM̂4 + E‖ξ(t+ 1)‖4

︸ ︷︷ ︸

<∞

].

By Doob’s inequality

P(sup
s≤t

M(s) ≥ x) ≤ EM(t)

x
.

Then

P(sup
s≤t

M(s)≥ x)=P(sup
s≤t

eθM(s)≥ eθx)≤ e−θx
E[eθM(t)] = e−θxe

∑t
s=0 ϕ(θa(s)),

where ϕ(y) := logEey(η−η̄) (by independence). Moreover, ϕ(y) ≈ Cy2, for a
small enough y and some constant C > 0. Thus, there exists a large enough
s∗ such that ϕ(θa(s)) ≤ C(θa(s))2 for all s ≥ s∗

P(sup
s≥0

M(s) ≥ x) ≤ e−θxe
∑s∗

s=0 ϕ(θa(s))+
∑

s>s∗ C(θa(s))2 = C ′e−θx,
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since
∑

s a(s)
2 < ∞. Hence,

EM̂4 = E(sup
s≥0

M(s)4) =

∫ ∞

0
P(M̂4 > t) dt ≤ A

∫ ∞

0
e−θt1/4 =

24A

θ4
< ∞,

for some constant A ≥ 0.
We thus obtain that when decomposing vector Ψ(t) according to the eigen-

basis of matrix Λ, one finds vanishing coordinates except along eigenvector e.
Since the scalar product e⊤Ψ(t) is always equal to

∑

u gu(t), by (F.6) the
announced result follows.

To conclude the proof of the theorem, note now that, by the previous
lemma, and our specific choice of gain parameters Yu(t) in (4.4), for large
enough t, Equation (4.3) reads in vector form

(F.7)

X(t+ 1)−X(t) =
a(t)

max(1,
∑

k,v X
2
vk(t) + o(1))

[AX(t)−X(t)X⊤(t)AX(t)

+ o(‖X(t)‖) + ξ(t+ 1)].

As is readily seen, this coincides with the update rule (4.10), except for the
o(·) terms. The analysis of [2] for establishing convergence of (4.10) also
applies in fact to its perturbed version (F.7), and Theorem 3 follows. �
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