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PORTFOLIO REBALANCING ERROR WITH JUMPS AND
MEAN REVERSION IN ASSET PRICES
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We analyze the error between a discretely rebalanced portfolio
and its continuously rebalanced counterpart in the presence of jumps
or mean-reversion in the underlying asset dynamics. With discrete
rebalancing, the portfolio’s composition is restored to a set of fixed
target weights at discrete intervals; with continuous rebalancing, the
target weights are maintained at all times. We examine the differ-
ence between the two portfolios as the number of discrete rebalanc-
ing dates increases. With either mean reversion or jumps, we derive
the limiting variance of the relative error between the two portfolios.
With mean reversion and no jumps, we show that the scaled limiting
error is asymptotically normal and independent of the level of the
continuously rebalanced portfolio. With jumps, the scaled relative
error converges in distribution to the sum of a normal random vari-
able and a compound Poisson random variable. For both the mean-
reverting and jump-diffusion cases, we derive “volatility adjustments”
to improve the approximation of the discretely rebalanced portfolio
by the continuously rebalanced portfolio, based on on the limiting
covariance between the relative rebalancing error and the level of the
continuously rebalanced portfolio. These results are based on strong
approximation results for jump-diffusion processes.

1. Introduction. The analysis of a portfolio’s dynamics is often simpli-
fied by assuming that the constituent assets can be traded continuously. For
a trading strategy defined by portfolio weights, meaning the fraction of the
portfolio held in each asset, continuous trading leads to an idealized model in
which the actual weights match the target weights at each instant. For highly
liquid stocks bought and sold on electronic exchanges, continuous trading is
often a close approximation of reality. But for many other asset classes the
practical reality of discrete trading cannot be entirely ignored. A portfolio
manager may not be able to maintain an ideal set of portfolio weights con-
tinuously in time; transactions costs and liquidity constraints may limit the
portfolio manager to rebalancing the portfolio to target weights at discrete
intervals.
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In this paper, we analyze the error in approximating a discretely rebal-
anced portfolio with one that is continuously rebalanced and thus more
convenient to model. Our focus is on the effect of jumps and mean reversion
in the dynamics of the underlying assets. For both features, we examine
the limiting difference between the continuous and discrete portfolios as the
rebalancing frequency increases. Our main results are as follows. With ei-
ther mean reversion or jumps, we derive the limiting variance of the relative
error between the two portfolios. With mean reversion and no jumps, we
show that the limiting error, scaled by the square root of the number of
rebalancing dates, is asymptotically normal and independent of the level of
the continuously rebalanced portfolio; moreover, the limiting distribution
is identical to the one achieved without mean reversion. In the presence of
jumps, we show that the scaled relative error converges to the sum of a nor-
mal random variable and a compound Poisson random variable, based on
an argument provided by a referee. For both the mean-reverting and jump-
diffusion cases, we derive “volatility adjustments” to improve the approxi-
mation of the discretely rebalanced portfolio by the continuously rebalanced
portfolio. These adjustments are based on the limiting covariance between
the relative rebalancing error and the level of the continuously rebalanced
portfolio.

The simpler case in which the underlying assets are modeled as a mul-
tivariate geometric Brownian motion is analyzed in Glasserman [12]. The
analysis there is motivated by the incremental risk charge (IRC) introduced
by the Basel Committee on Banking Supervision [2, 3]. The IRC is intended
to capture the effect of potential illiquidity of assets in a bank’s trading
portfolio. It models illiquidity by imposing a fixed rebalancing frequency for
each asset class: some bonds, for example, might have a liquidity interval of
two weeks, and tranches of asset backed securities might have liquidity in-
tervals of a month or even a quarter. The IRC is thus based on the difference
between discrete and continuous rebalancing.

The possibility of jumps in asset prices is clearly relevant to portfolio risk
and to the modeling of less liquid assets. One would also expect jumps to
have a qualitatively different effect on rebalancing error than pure diffusion
— adding jumps should cause the discretely rebalanced portfolio to stray
farther from the target weights — and this is confirmed in our results. The
potential impact of mean reversion is less evident: one might expect mean
reversion to offset part of the effect of discrete rebalancing if it helps restore
a portfolio’s weights to their targets. We will see that this is the case, but
only for the volatility adjustment that comes from the covariance between
the rebalancing error and the portfolio level. The distribution of the relative
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rebalancing error itself is, in the limit, unaffected by the presence of mean
reversion.

Discretely rebalanced portfolios arise in models of transaction costs and
discrete hedging, including Bertsimas, Kogan, and Lo [4], Boyle and Emanuel
[5], Duffie and Sun [11], Leland [21], and Morton and Pliska [22]. Sepp [24]
examines the asymptotic error of delta hedging with proportional transac-
tion costs under a jump-diffusion model with lognormal jump sizes. Gua-
soni, Huberman, and Wang [14] analyze the effect of discrete rebalancing
on the measurement of tracking error and portfolio alpha. In their analysis
of leveraged ETFs, Avellaneda and Zhang [1] examine the impact of dis-
crete rebalancing and derive an asymptotic relation between the behavior
of the fund and the underlying asset as the rebalancing frequency increases.
Jessen [16] studies the discretization error for CPPI portfolio strategies us-
ing simulation. Although these applications do not fit precisely within the
specifics of our setting, we nevertheless view our analysis as potentially rel-
evant to extending work on these applications. In Glasserman and Xu [13],
we use a continuously rebalanced portfolio to design an importance sam-
pling procedure to estimate the tail of a discretely rebalanced portfolio in
a pure-diffusion setting, and the results we develop here suggest potential
extensions to models with jumps.

The distribution of the difference between a diffusion process and its
discrete-time approximation has received extensive study motivated by sim-
ulation methods, as in Kurtz and Protter [20]. Jacod and Protter [15] study
this error for more general processes, including processes with jumps. Tankov
and Voltchkova [26] apply the results of Jacod and Protter [15] to analyze
the error in discrete delta-hedging, thus extending the results of Bertsimas
et al. [4] to models with jumps. In their analysis of discretization methods,
Kloeden and Platen [19] develop strong approximation results for stochas-
tic Taylor expansions; Bruti-Liberati and Platen [6, 7] derive corresponding
expansions for jump-diffusion processes. These results provide very useful
tools for our investigation of rebalancing error.

The rest of the paper is organized as follows. Section 2 introduces the
mean-reverting and jump-diffusion models and states our main results on
the limiting rebalancing error. Section 3 derives our volatility adjustments
for discretely rebalanced portfolios. Numerical examples are given in Sec-
tion 4. The rest of the paper is then devoted to proving our main results.
In Section 5, we provide background on strong approximation and then
apply these tools to our results for the jump-diffusion model. Section 6
covers the mean-reverting case. Proofs for the volatility adjustments are
given in Section 7. Section 8 addresses complications that arise from the
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possibility of portfolio values becoming negative, which we interpret as a
default.

2. Model dynamics and main results. We begin by introducing two
models of the dynamics of the d underlying assets in the portfolio, one with
mean reversion and one with jumps. The first model is as follows:
Exponential Ornstein-Uhlenbeck (EOU) model:

dSi(t)

Si

= µidt+ dUi(t), i = 1, . . . , d,

dUi(t) = β(θi − Ui)dt+ σ⊤
i dW (t), Ui(0) = 0.

For each i = 1, . . . , d, the drift µi and volatility vector σi = (σi1, . . . , σid)
are constants. The model is driven by W = (W1, . . . ,Wd)

⊤, a d-dimensional
standard Brownian motion, and each Ui is a Ornstein-Uhlenbeck process.
We recover geometric Brownian motion as a special case by taking β = 0.

We also investigate portfolios under the following dynamics for asset
prices:
Jump-Diffusion (JD) model:

dSi(t)

Si(t−)
= µidt+

d
∑

j=1

σijdWj(t) + d

(

N(t)
∑

j=1

(Y i
j − 1)

)

, i = 1, . . . , d.

Here, N is a Poisson process with intensity 0 < λ < ∞, and Y i
j > 0 is the

jump size associated with the ith asset at the jth jump of N . The {Y i
j }i

are i.i.d. across different values of j. All of W , N and {Y i
j } are mutually

independent. Each Si is right-continuous, so the left limit Si(t−) is the value
of Si just prior to a possible jump at t.

The two models could be combined to introduce both mean reversion
and jumps in the asset dynamics. However, our interest lies in analyzing
the impact of each of these features, so we keep them separate. To avoid
confusion between the two models, we underline variables that are specific
to the EOU case.

Given a model of asset dynamics, we consider portfolios defined by a fixed
vector of weights w = (w1, . . . , wd)

⊤, such that
∑d

i=1 wi = 1. Interpret wi

as the fraction of value invested in the ith asset. The weights could be the
result of a portfolio optimization, but we do not model the portfolio selection
problem. In considering only fixed weights, we exclude portfolios in which
the weights themselves change with asset prices, and this is a restriction
on the scope of our results. Kallsen [17] showed that under an exponential
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Levy model such as our JD model, constant weights are in fact optimal for
investors with power and logarithmic utilities. There is a sizeable literature
that argues the merits of rebalancing to fixed weights. Kim and Omberg [18]
studied portfolio optimization with mean reversion, but their framework
does not fit our setting. See, e.g., Chapters 4–6 of Dempster, Mitra, and
Pflug [10] and the many references cited there.

With continuous rebalancing to target weights w1, . . . , wd, the value of
the portfolio in the EOU model evolves as

dV (t)

V (t)
=

d
∑

i=1

wiµidt+

d
∑

i=1

wi dUi(t),

and thus

V (t) = V (0) exp

{

(

µw−
1

2
σ2
w

)

t+

d
∑

i=1

wiσ
⊤
i

∫ t

0
e−β(t−s)dWs+(1− e−βt)θ̄

}

,

(1)

where θ̄ =
∑

i wiθi, µw =
∑

iwiµi, Σ = (Σij) with Σij =
∑d

k=1 σikσjk and

σw =
√
w⊤Σw.

In the jump-diffusion model, portfolio value evolves as

dV (t)

V (t−)
=

d
∑

i=1

wi
dSi(t)

Si(t−)
= µwdt+

d
∑

i=1

wiσ
⊤
i dW (t) +

d
∑

i=1

wid

(N(t)
∑

j=1

Y i
j − 1

)

= µwdt+ σwdW̃ (t) + d

(N(t)
∑

j=1

d
∑

i=1

wi(Y
i
j − 1)

)

,

where W̃ is a scalar Brownian motion, W̃ (t) =
∑

i,j wiσijWj(t)/σw. This
expression assumes that V remains strictly positive, a requirement we will
return to shortly. The solution to this equation is then given by

V (t) = exp

{(

µw − 1

2
σ2
w

)

t+ σwW̃ (t)

}N(t)
∏

j=1

[

d
∑

i=1

wiY
i
j

]

.(2)

We fix a horizon T over which we analyze the evolution of the portfolio.
For the discretely rebalanced case, we fix a rebalancing interval ∆t = T/N ,
corresponding to a fixed number N of rebalancing dates in (0, T ]. Denote
the value of the discretely rebalanced portfolio by V̂ (or V̂ in the EOU case).
With discrete rebalancing, the portfolio composition is restored to the target



114 P. GLASSERMAN AND X. XU

weights at each rebalancing opportunity. Thus, the portfolio value evolves
as

V̂ ((n+ 1)∆t) = V̂ (n∆t)
d
∑

i=1

wi
Si((n + 1)∆t)

Si(n∆t−)
, n = 1, . . . , N − 1,

and similarly for V̂ . We normalize the initial portfolio value to V (0) =
V̂ (0) = V̂ (0) = 1.

To ensure that the continuously rebalanced portfolio preserves strictly
positive value (i.e., to rule out bankruptcy), we impose the requirement
that, almost surely,

d
∑

i=1

wiY
i > 0,(3)

where Y 1, . . . , Y d have the distribution of the jump sizes associated with
the d assets. That this condition is sufficient can be seen from (2), and dif-
ferentiating (2) reproduces the stochastic differential equation that precedes
it. This condition still allows jumps to decrease portfolio value to levels
arbitrarily close to zero. It holds automatically if all portfolio weights are
positive. The condition is crucial for our analysis because we work with the
relative error between the discrete and continuous portfolios, and the de-
nominator in the relative error is the value of the continuous-time portfolio.
We also make the following technical assumption on the jump sizes:

∥

∥

∥

∥

Y k

∑

iwiY i

∥

∥

∥

∥

3

< ∞ and ‖Y k‖ < ∞ for k = 1, . . . , d;(4)

and later,

∥

∥

∥

∥

log

(

Y k

∑

iwiY i

)
∥

∥

∥

∥

< ∞.(5)

Here, ‖.‖3 indicates the L3-norm of a random variable, and ‖.‖ indicates
the L2-norm. Assumptions (3)–(4) will be in force whenever we consider the
jump-diffusion model; we use (5) in Section 3.

Even under these assumptions, we cannot rule out the possibility that
the discretely rebalanced portfolio value drops to zero and lower. We there-
fore adopt the convention that the portfolio value is absorbed at zero if it
would otherwise become less than or equal to zero; we refer to this event as
bankruptcy. We will show (in Section 8) that we can ignore the possibility
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of bankruptcy for our limiting results because the effect becomes negligi-
ble asymptotically. Thus, in most of our discussion, we treat the discretely
rebalanced portfolio as a positive process.

We now proceed to state our main results for the EOU model. Our first
result approximates the relative error between the discrete and continuous
portfolios with a sum of independent random variables and identifies the
limiting variance of the relative error.

Theorem 2.1. For the EOU model, there exist random variables {ǫn,N ,
n = 1, . . . , N,N = 1, 2, . . . }, with {ǫ1,N , . . . , ǫN,N} i.i.d. for each N , such
that

E

[(

V̂ (T )− V (T )

V (T )
−

N
∑

n=1

ǫn,N

)2]

= O(∆t2);(6)

in particular, with σ̄ =
∑d

i=1 wiσi

ǫn,N =
d
∑

i=1

wi

∫ n∆t

(n−1)∆t

∫ s

(n−1)∆t
(σi − σ̄)⊤dW (r)(σi − σ̄)⊤dW (s),

and

V ar[ǫn,N ] = σ2
L∆t2 :=

[

1

2
(w⊤(Σ ◦ Σ)w − 2w⊤ΣΩΣw + (w⊤Σw)2)

]

∆t2,(7)

where “◦” denotes elementwise multiplication of matrices, Ω is a diagonal
matrix with Ωii = wi.

Thus,

NV ar

[

V̂ (T )− V (T )

V (T )

]

→ σ2
LT

2.

The variance parameter in this result can be understood as

σ2
L = V ar

[

1

2

(

d
∑

i=1

wi(σ
⊤
i Z)2 −

(

d
∑

i=1

wiσ
⊤
i Z

)2)]

,

where Z ∼ N(0, I) in R
d. We now supplement this characterization of the

limiting variance with the limiting distribution of the error:

Theorem 2.2. As N → ∞,

√
N

(

V̂ (T )− V (T ),
V̂ (T )− V (T )

V (T )

)

⇒ (V (T )X,X),
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where X ∼ N(0, σ2
LT

2) is independent of V (T ), and ⇒ denotes convergence
in distribution.

The limits in Theorems 2.1 and 2.2 coincide with those proved in Glasser-
man [12] for asset prices modeled by geometric Brownian motion. Thus, we
may paraphrase these results as stating that the presence of mean-reversion
does not change the relative rebalancing error, as measured by its limiting
distribution. The absolute error V̂ (T ) − V (T ) does change. In both cases,
its limiting distribution is that of the independent product of the continu-
ous portfolio (V (T ) or V (T )) and X, but the distribution of the continuous
portfolio is itself changed by the presence of mean-reversion.

A key feature of Theorem 2.2 is the asymptotic independence between
the portfolio value and the relative error. We will see, however, that with
appropriate scaling there is a non-trivial covariance between these terms,
and the strength of the limiting covariance depends on the speed of mean-
reversion. We take up this issue when we consider volatility adjustments in
the next section.

We proceed to the limiting variance of the relative error in the jump-
diffusion model. For each asset i = 1, . . . , d, introduce the compound Poisson
process

J i
t =

N(t)
∑

j=1

(

Y i
j

∑

k wkY
k
j

− 1

)

.

To simplify notation, we define

Ȳ i
j =

Y i
j

∑

k wkY
k
j

− 1,

and then the compensated version of J i
t becomes J̃ i

t = J i
t − λµy

i t, where
µy
i = E[Ȳ i]. Let ∆J̃ i

n = J̃ i(n∆t) − J̃ i((n − 1)∆t) and ∆Wn = W (n∆t) −
W ((n− 1)∆t). Denote XN := (V̂ (T )− V (T ))/V (T ).

Theorem 2.3. For the JD model, under assumptions (3) and (4),

E

[(

V̂ (T )− V (T )

V (T )
−

N
∑

n=1

ǫ̃n,N

)2]

= O(∆t2),(8)

where

ǫ̃n,N = ǫn,N +

d
∑

i=1

wi

[

b⊤i ∆Wn∆J̃ i
n +

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t
dJ̃ i(r)dJ̃ i(s)

]

,(9)
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and bi = σi − σ̄, i = 1, . . . , d. And

V ar[ǫ̃n,N ] = σ̃2
L∆t2

= V ar[ǫn,N ] + ∆t2(w⊤(b⊤b ◦M)w) +
∆t2

2
w⊤M ◦Mw,

where V ar[ǫn,N ] is as in (7), b = [b1, b2, . . . , bd], and M is the d× d matrix
with entries

mij := λE[Ȳ iȲ j ].(10)

Thus

V ar(XN ) → σ̃2
LT

2.

In (9), the ǫn,N are the error terms that arise in the case of geometric
Brownian motion (i.e., with λ = 0 in the JD model and, equivalently, with
β = 0 in the EOU model). As in the EOU model, the relative error has a
limit distribution. In the original version of this paper, we showed that the
limit could not be normal. The following result uses an argument due to a
referee.

Theorem 2.4. Under assumptions (3) and (4), if the jump part is not
degenerate, i.e. λ 6= 0 and P (Y i = 1, i = 1, . . . , d) 6= 1, then

√
N

V̂ (T )− V (T )

V (T )
⇒ X,

where X
d
=X +

√
T
∑N(t)

j=1

∑d
i=1 wib

⊤
i ξj Ȳ

i
j and ξj ∼ N(0, I) are i.i.d. d-

dimensional standard normal vectors for j ≥ 1, independent of everything
else. The limit does not hold in the L2 sense.

The jump-diffusion model produces a heavier-tailed distribution for the
relative error, resulting in the failure to converge to a limiting normal dis-
tribution. One can get some intuition from the asymptotics of ǫ̃n,N in (9),
where the third term is nonzero only when there are at least two jumps
in the period. Though the third term in (9) converges to zero in probabil-
ity, it does contribute to the limiting variance as well as the third absolute
moment, both of which are of order Θ(∆t2).

Because of the presence of Ȳ in the limit distribution, we do not have an
asymptotic independence result for the JD case, but log V (T ) and XN are
asymptotically uncorrelated, as shown later in Proposition 3.2.
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3. Volatility adjustments. We now apply and extend the limiting
results of the previous section to develop volatility adjustments that ap-
proximate the effect of discrete rebalancing. To motivate this idea, consider
the continuous-time dynamics of the portfolio value in (2), and consider first
the case without mean reversion, β = 0. In this setting, V is a geometric
Brownian motion with volatility σw, with σ2

w = w⊤Σw, as defined following
(2). The parameter σw is a useful measure of portfolio risk under continuous
rebalancing. The corresponding parameter for horizon T in the EOU model
is (the square root of)

(11) σ2
w,β :=

1

T
V ar[log V (T )] = σ2

w

1− exp(−2βT )

2βT
,

and, in the jump-diffusion model, under assumption (5)

(12) σ2
w,J :=

1

T
V ar[log V (T )] = σ2

w + λE





(

log

d
∑

i=1

wiY
i

)2


 .

In practice, σw,β and σw,J serve reasonably well for large N as an approxi-
mation for discretely rebalanced portfolio. Our objective is to correct these
parameters to capture the impact of discrete rebalancing.

3.1. Volatility adjustment with mean reversion. From the definition of
XN , we can write value of the discretely rebalanced portfolio as

V̂ (T ) = V (T )(1 +XN/
√
N),

which shows that V̂ (T ) is the product of the continuously rebalanced port-
folio value and a correction factor that is asymptotically normal and inde-
pendent of V (T ). We would like to calculate the “volatility” of V̂ (T ) — the
standard deviation of its logarithm, normalized by

√
T — but because V̂ (T )

is potentially negative, we cannot do this directly. Instead, we note that

V̄ (T ) := V (T ) exp(XN/
√
N) = V̂ (T ) +Op(1/N),

which yields a strictly positive approximation. The Op(1/N) error in this
approximation is negligible compared to the Op(1/

√
N) difference between

the discrete and continuous portfolios, and we will confirm that making this
approximation does not change the limiting variance.
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For V̄ (T ) we have

V ar[log V̄ (T )]

T
=

1

T
V ar

[

log V (T ) +
XN√
N

]

= σ2
w

1− e−2βT

2βT
+

V ar[XN ]

TN
+

2Cov[log V (T ),XN ]

T
√
N

= σ2
w,β + σ2

LT∆t+ o(∆t) +
2Cov[log V (T ),XN ]

T
√
N

,(13)

with σw,β as in (11) and σ2
L the variance parameter in (7). Although XN is

asymptotically independent of V (T ), the covariance term does not vanish
fast enough to be negligible. In the following proposition, we find the limit
of the third term, and verify the validity of replacing V̂ with V̄ :

Proposition 3.1. (i) The limiting covariance is given by
√
NCov[log V (T ),XN ] → γ

L
T 2,

where

γ
L
= e−β(γL +

∑

i

wi(σ̄
⊤σi)β(θi − θ̄)),

with

γL = µ⊤ΩΣw − µwσ
2
w + σ4

w − w⊤ΣΩΣw.(14)

(ii) Moreover, E[(V̄ (T )− V̂ (T ))2] = O(N−2), and

N(V ar[log V̄ (T )]− V ar[log V (T )]) → (σ2
L + 2γ

L
)T 2.

This result applied to (13) suggests the following adjustment to the volatil-
ity for the discretely rebalanced portfolio:

σ2
adj = σ2

w,β + (σ2
L + 2γ

L
)∆t.(15)

At ∆t = 0, we recover the volatility for the continuously rebalanced port-
folio, but for small ∆t > 0, the adjusted volatility includes a correction for
discrete rebalancing. The parameter γL in (14) is the limiting covariance
derived in Glasserman [12] for assets modeled by multivariate geometric
Brownian motion; thus, at β = 0 we recover the volatility adjustment de-
rived there in the absence of mean reversion, as expected. The second part
of the proposition confirms that the difference between V̄ (T ) and V̂ (T ) is
negligible. In Section 4.2, we present numerical results illustrating the per-
formance of the volatility adjustment (15) in approximating the effect of
discrete rebalancing.
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3.2. Volatility adjustment in the jump-diffusion model. We follow similar
steps in the jump-diffusion model. We set V̄ (T ) := V (T ) exp(XN/

√
N) with

XN =
√
N

N−1
∑

n=0

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (b∆t)

V (n∆t)

)

,

and then

V ar[log V̄ (T )]

T
= σ2

w,J +
V ar[XN ]

TN
+

2Cov[log V (T ),XN ]

T
√
N

,(16)

with σw,J as defined in (12).

Proposition 3.2. (i) The limiting covariance is given by
√
NCov[log V (T ),XN ] → γ̃LT

2,

where

γ̃L := γL + λ

[

∑

i

wiσ̄
⊤σiµ

y
i

]

+ λ
∑

i

wi(µi − σ⊤
i σ̄ + λµy

i )E

[

Ȳ i

(

log
∑

l

wlY
l − µJ

)]

and

µJ = E

[

log
∑

i

wiY
i
j

]

.

(ii) Moreover, E[(V̂ (T )− V̄ (T ))2] = O(N−2) and

N(V ar[log V̄ (T )]− V ar[log V (T )]) → (σ̃L + γ̃L)T
2.

The resulting volatility adjustment is

σ̃2
adj = σ2

w,J + (σ̃2
L + 2γ̃L)∆t.(17)

The asymptotic variance parameters for the relative error (σ2
L and σ̃2

L) do not
depend on the drift parameters µi, but, interestingly, the drifts do appear
in the asymptotic covariance γL (and γ

L
and γ̃L). We will see that in a

stochastic Taylor expansion of the relative error, the µi appear only in those
terms with norms of order O(∆t3/2). For the variance, it turns out that
only terms with norms up to order O(∆t) are relevant, but the covariance
involves terms of norm O(∆t3/2), and these involve the µi.

Since the volatility adjustments are explicitly related to the weights, one
could reverse the approximation as a guideline for adjusting portfolio weights
to control the portfolio volatility σ with discrete rebalancing.
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Table 1

Parameters estimated from S&P 500, FTSE 100, Nikkei 225, DAX, Swiss Market Index,
CAC 40, FTSE Straits Times Index for Singapore, Hang Seng, Mexico IPC, Thai Set 50

and Argentina Merval

SP500 FTSE NIK DAX SSMI CAC STI HSI MXX SET50 MERV

λ
3.0142

w
−1.22 −0.22 0.22 0.87 −3.30 0.82 0.44 −0.47 1.32 1.17 1.38

µ
0.15 0.13 0.12 0.25 0.09 0.12 0.17 0.21 0.25 0.35 0.40

µJ ×10−2

−0.74 0.24 −1.71 −0.10 0.22 1.28 0.00 0.18 −0.85 −0.01 0.46

σJ ×10−2

2.91 2.65 1.47 2.92 2.24 4.68 2.46 2.87 2.58 3.56 4.69

Σ ×10−2

3.14 2.00 0.27 2.35 1.52 2.56 0.50 0.44 2.14 0.41 3.17
2.00 2.84 0.75 2.94 1.93 3.26 0.92 1.00 1.72 1.05 2.48
0.27 0.75 4.53 0.60 0.77 1.03 1.76 2.74 0.33 1.81 0.30
2.35 2.94 0.60 3.83 2.29 3.87 0.92 0.98 2.00 1.12 2.93
1.52 1.93 0.77 2.29 2.02 2.54 0.65 0.68 1.14 0.72 1.78
2.56 3.26 1.03 3.87 2.54 4.37 1.05 1.14 2.08 1.16 3.02
0.50 0.92 1.76 0.92 0.65 1.05 2.54 2.47 0.68 1.86 0.78
0.44 1.00 2.74 0.98 0.68 1.14 2.47 4.65 0.88 2.58 0.68
2.14 1.72 0.33 2.00 1.14 2.08 0.68 0.88 2.74 0.73 2.65
0.41 1.05 1.81 1.12 0.72 1.16 1.86 2.58 0.73 4.88 0.91
3.17 2.48 0.30 2.93 1.78 3.02 0.78 0.68 2.65 0.91 6.23

4. Numerical experiments and further discussion of the limits.

4.1. Example for the jump-diffusion model. We begin with the JD model
model and examine the approximation for the relative error provided by
Theorem 2.4.

We calibrated the JD model from the daily returns of global equity indices
based on the method introduced in Das [9]. The weights are computed as the
optimal weights for power utility with risk aversion parameter γ = 2 follow-
ing the results of [9]1. The data used is from March 2009 to March 2011, and
the calibrated results are as in Table 1. Jump sizes are modeled by Merton’s
jump model with log(Y i) ∼ N(µi

J , σ
i
J ). We calibrate the parameters by as-

suming the jump sizes are perfectly correlated as in [9]. However, perfectly
correlated jumps would have the same effect as constant jump sizes because

1The negative weights could cause defaults, even in the continuous portfolio, though
this occurs very rarely with out estimated value of σJ . In our numerical examples, we
exclude paths with defaults. We address this issue in Section 8.
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Fig 1. Jump-diffusion model: QQ plots of XN versus X at N = 4 (upper left), N = 12
(upper right), N = 360 (lower left).

we are considering relative error. To make the example more interesting, we
simulate independent jumps sizes instead.

Figure 1 shows QQ plots of the value of discrete portfolios versus the
limit as described in Theorem 2.4, both simulated over 2500 replications.
We choose N to be 4, 12 and 360 to represent quarterly, monthly and daily
rebalancings. As the number of steps N gets larger, the figure indicates
convergence to the theoretical limit, though relatively slower than in the
EOU model.

Since the limiting distribution is not normal, we do not have an asymp-
totic independence result of the type in Theorem 2.2. But the numerical
results in Table 2 still show the correlation between log V (T ) and XN de-
creasing toward zero as N increases. This is to be expected because part
(i) of Proposition 3.2 shows the covariance of log V (T ) and XN converging
to zero at rate O(1/

√
N), and XN has a non-degenerate limiting variance.

In separate experiments, we have found large discrepancies in the QQ plots
when σi

J are doubled. Estimation of mij in (10) becomes unstable, and con-
dition (4) may be violated. Table 3 shows the error reduction of volatility as

1−
∣

∣

∣

∣

σ̃adj − σ̂N
σw,J − σ̂N

∣

∣

∣

∣

,(18)
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Table 2

Correlations for JD model and EOU model, between log V (T ) (or log V (T )) and XN ,
with 2500 replicates

N 4 12 360

JD −12% −13% −4%

EOU −85% −61% −13%

Table 3

Volatility error reductions for JD model and EOU model, with 50,000 replications.
Formula (18) and (19) are used for JD model and EOU model, respectively

N 4 12 360

JD 87% 46% 2%

EOU 69% 55% 18%

where σ̃adj is defined in (17). This measure shows the relative improvement
achieved in approximating the volatility using the adjustment; a small value
indicates small improvement, and a value close to 1 indicates good improve-
ment. These estimates are based on 50,000 replications. When the correlation
between V (T ) and XN is small, the error reduction tends to be unstable.
As suggested by (16), when N is small and the covariance term in (16) is
negative, the error reduction can be small, or even negative. In this situa-
tion, numerical errors, especially from computing the required expectation
of the Ȳ i, can contaminate the results.

4.2. Example for the EOU model. For the purpose of illustration, we use
the same parameters w, µ and Σ from Section 4.1. We use the mean-reversion
rate β = 1 and long-run levels θi = 0.1×i/d, i = 1, . . . , d. Figure 2 illustrates
the convergence to normality as N increases, using 2500 replicates.

Table 2 reports estimated correlations between log V (T ) and XN using
the same parameters as Figure 2. As expected, the correlation decreases
toward zero as N increases.

Table 3 evaluates the volatility adjustment by reporting the estimated
error reduction using the adjustment, calculated as

1−
∣

∣

∣

∣

σadj − σ̂N
σw,β − σ̂N

∣

∣

∣

∣

,(19)

where σadj is defined in (15) and σ̂N is the volatility of the discretely re-
balanced portfolio as estimated by simulation. The results in Table 3 show
appreciable error reduction, especially when the number of rebalancing dates
N is small. When N becomes large, the denominator σw,β − σ̂ will become
very small. The magnitude of the reduction is not necessarily monotone in
N . More examples for the diffusion case without mean reversion can be
found in Glasserman [12].
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Fig 2. EOU model: QQ plots of XN/σ
L
T versus standard normal at N = 4 (upper left),

N = 12 (upper right) and N = 360 (lower left).

5. Asymptotic error via strong approximation. In this section, we
develop tools for the strong approximation of jump-diffusion models which
we will need to prove our results for that case.

If X solves dXt = ã(Xt)dt + b̃(Xt)dWt + c̃(Xt)dJt, and ‖XN − X‖2 =
O(∆tk), then we call XN a strong approximation of order k. In the absence
of jumps, Kloeden and Platen [19] show the same order then applies to
almost sure convergence. Bruti-Liberati and Platen [6] and [7] treat strong
approximation for the jump-diffusion case. In following their approach it is
convenient to think of dt as having order 1, and dW and dJ as each having
order 1/2, in terms of their L2-norm. Approximations of order k then involve
keeping all terms of order k or lower.

We use the following representations of the continuous and discrete port-
folios. We set

V (1) =

N
∏

n=1

V (n∆t)

V ((n + 1)∆t)
=

N
∏

n=1

Rn,N ,

and

V̂ (1) =
N
∏

n=1

V̂ (n∆t)

V̂ ((n + 1)∆t)
=

N
∏

n=1

R̂n,N ,
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where

R̂n,N :=
V̂ (n∆t)

V̂ ((n − 1)∆t)

=

d
∑

i=1

wi exp

{(

µi −
1

2

d
∑

j=1

σ2
ij

)

∆t+ σ⊤
i ∆Wn

}

N(n∆t)
∏

j=N((n−1)∆t)+1

Y i
j

and

Rn,N :=
V (n∆t)

V ((n− 1)∆t)

= exp

{(

µw − 1

2
σ2
w

)

∆t+ σ̄⊤∆Wn

} N(n∆t)
∏

j=N((n−1)∆t)+1

(

d
∑

i=1

wiY
i
j

)

.

Then

R̂n,N

Rn,N
=

d
∑

i=1

wi exp

{(

µi − µw − 1

2
‖σi‖2 +

1

2
σ2
w

)

∆t+ (σi − σ̄)⊤∆Wn

}

×
N(n∆t)
∏

j=N((n−1)∆t)+1

Y i
j

∑d
i=1 wiY i

j

=
R̂c

n,N

Rc
n,N

∑d
i=1 wi exp{(µi−µw− 1

2‖σi‖2+ 1
2σ

2
w)∆t+(σi−σ̄)⊤∆Wn}

∏

j Y
i
j

∑

iwi exp{(µi−µw− 1
2‖σi‖2+ 1

2σ
2
w)∆t+(σi−σ̄)⊤∆Wn}

∏

j

∑

iwiY i
j

,

where R̂c
n,N/Rc

n,N is the ratio of returns in the absence of jumps, as in
Glasserman [12],

R̂c
n,N

Rc
n,N

=

d
∑

i=1

wi exp

{(

µi − µw − 1

2
‖σi‖2 +

1

2
σ2
w

)

∆t+ (σi − σ̄)⊤∆Wn

}

.

5.1. Background on strong approximations. As in Kloeden and Platen
[19] and Platen [23], we use the following notation. For a string α = (i1, . . . ,
ik−1, ik) of indices, let α− := (i1, . . . , ik−1) and −α := (i2, . . . , ik), for k > 0.
The length of the string is given by l(α) = k, and n(α) denotes the number of
zeros in the string α. Define the hierarchical sets Al = {α|l(α)+n(α) ≤ 2l},
and the corresponding remainder sets B(Al) = {α /∈ Al,−α ∈ Al}, for
l = 1

2 , 1,
3
2 , 2, . . ..

For a predictable g satisfying certain regularity and integrability condi-
tions in the main theorem of Platen [23], an iterated integral Iα is defined



126 P. GLASSERMAN AND X. XU

as follows:

Iα[g]t =























g(t) if l(α) = 0;
∫ t
0 Iα−[g]zdz if il(α) = 0 and l(α) > 0;
∫ t
0 Iα−[g]zdW

i
z if il(α) = i > 0 and l(α) > 0;

∫ t
0 Iα−[g]zdJ̃

i
z if il(α) = i < 0 and l(α) > 0.

To have a better understanding of the notation, one can interpret the string
α = (i1, . . . , ik) as the order for iterated integration, with the direction
from left to right corresponding to the order of integration from innermost
to outermost integral. Each entry ik indicates the process against which
the integral is taken. For example, ik > 0 indicates an integral against the
ithk component of the Brownian Motion, while ik < 0 indicates an integral
against J̃ ik .

The main result of Platen [23] shows that under our particular setting
where all coefficient functions are linear, we have the Ito-Taylor expansion

f(t,Xt) =
∑

α∈Al

Iα[fα(0,X0)]t +
∑

α∈B(Al)

Iα[fα(· ,X.)]t.

Here we choose f(x) = x and coefficients are defined by

fα(t, x) =























x if l(α) = 0;
ã(x) if l(α) = 1,i1 = 0 ;

b̃i1(x) if l(α) = 1,i1 > 0 ;
c̃(x) if l(α) = 1,i1 < 0 ;
Li1f−α if l(α) > 1;

where

Lif(t, x) =











∂f
∂t + ã∂f

∂x + 1
2

∑

j b̃
2
j
∂2f
∂x if i = 0;

b̃i
∂f
∂x if i > 0;

f(t, x+ c̃(x)) − f(t, x) if i < 0.

A more detailed treatment of strong approximations and this notation can
be found in Platen[23].

For our application, we need to approximate
∑

wiXi(∆t) := R̂n,N/Rn,N ,
where

Xi,N (t) = exp

{(

µi−µw− 1

2
‖σi‖2+

1

2
σ2
w

)

t+(σi− σ̄)⊤W (t)

}N(t)
∏

j=1

Y i
j

∑

wkY
k
j

.
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Each Xi,N satisfies the following SDE:

dXi,N (t)

Xi,N (t−)
=

(

µi − µw − 1

2
‖σi‖2 +

1

2
σ2
w +

1

2
‖σi − σ̄‖2

)

dt

+ (σi − σ̄)⊤dWt + dJ i
t

= aidt+ b⊤i dWt + dJ̃ i
t ,

where ai = µi − µw − 1
2‖σi‖2 + 1

2σ
2
w + 1

2‖σi − σ̄‖2 + λµy
i and bi = σi − σ̄.

For our analysis, we need some standard properties of predictable quadratic
variations: < t, t >= 0, < t,W i

t >= 0 and < t, J̃ j
t >= 0 for all i and j;

< W i,W j >t= δijt, and < J̃ j , J̃ i >t= mijt, for constants mij . To derive the
appropriate constants, we observe that

E[J̃ i
t J̃

j
t ] = E[[J̃ i, J̃ j ]t]

=
1

4
E[[J̃ i + J̃ j , J̃ i + J̃ j]t − [J̃ i − J̃ j , J̃ i − J̃ j ]t]

=
1

4
E

[

∑

0<s<t

(J̃ i
s − J̃ i

s− + J̃ j
s − J̃ j

s−)
2 −

∑

0<s<t

(J̃ i
s − J̃ i

s− − J̃ j
s + J̃ j

s−)
2

]

= E

[

∑

0<s<t

((J̃ i
s − J̃ i

s−)(J̃
j
s − J̃ j

s−))

]

= λtE[Ȳ iȲ j ].

The third equality is due to the fact that a compound Poisson process
∑N(t)

i=1 Zi has quadratic variation
∑N(t)

i=1 Z2
i (Cont and Tankov [8, Example

8.4]). Thus, we need mij = λE[Ȳ iȲ j].

5.2. Strong approximation for the jump-diffusion model. We now use the
strong approximation scheme of order 3/2 to prove Theorem 2.3 and 2.4.
First we write

Xi,N (∆t) = 1 + ζ i1/2,N + ζ i1,N + ζ i3/2,N + riN ,

where ζ i.,N are defined as follows. First,

ζ i1/2,N =

∫ ∆t

0
b⊤i dW +

∫ ∆t

0
dJ̃ i = b⊤i ∆W +∆J̃ i.

(From now on we drop the limits of integration for iterated integrals taken
over [0,∆t]. An integral of the form

∫

g dJ̃ i should be understood as
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∫

g(t−)dJ̃ i(t).) Continuing, we have

ζ i1,N = ai
∫

dt+

∫ ∫

b⊤i dWb⊤i dW +

∫ ∫

b⊤i dWdJ̃ i

+

∫ ∫

dJ̃ ib⊤i dW +

∫ ∫

dJ̃ idJ̃ i(20)

and

ζ i3/2,N = ai
∫ ∫

b⊤i dWdt+ ai
∫ ∫

dtb⊤i dW + ai
∫ ∫

dJ̃ idt+ ai
∫ ∫

dtdJ̃ i

+

∫ ∫ ∫

b⊤i dWb⊤i dWb⊤i dW +

∫ ∫ ∫

b⊤i dWb⊤i dWdJ̃ i

+

∫ ∫ ∫

b⊤i dWdJ̃ ib⊤i dW+

∫ ∫ ∫

dJ̃ ib⊤i dWb⊤i dW+

∫ ∫ ∫

b⊤i dWdJ̃ idJ̃ i

+

∫ ∫ ∫

dJ̃ idJ̃ ib⊤i dW +

∫ ∫ ∫

dJ̃ ib⊤i dWdJ̃ i +

∫ ∫ ∫

dJ̃ idJ̃ idJ̃ i.

(21)

By observing that
∑

wibi = 0 and
∑

wiJ̃
i = 0, we find that

∑

wiζ
i
1/2,N =

0. For the next term, we have

∑

i

wiζ
i
1,N =

∑

i

wi[ǫn,N + b⊤i ∆W∆J̃ i +

∫ ∫

dJ̃ idJ̃ i].

Here, ǫn,N is the corresponding error term in the absence of jumps; the
last two terms are the difference between the continuous and jump-diffusion
cases.

It is now easy to see that ‖∑wiζ
i
1,N‖ = O(∆t), and similarly ‖∑wi×

ζ i3/2,N‖ = O(∆t3/2). Now we need to show that the remainder riN satisfies

‖riN‖ = O(∆t2).

Lemma 5.1. (Modified from Studer[25, Lemma 3.42].) Given an adapted
caglad (left continuous with right limits) process g(t), with

∫ t
0 E[g(s)2]ds =

K < ∞, then

E

[(
∫ t

0
g(s)dMs

)2]

≤







tK, if Mt = t;
K, if Mt = W i

t ;

miiK, if Mt = J̃ i
t .

(The integrand should be understood as g⊤ when M = W .)
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Proof. The result and proof are the same as in Studer [25].

To bound the error when we truncate a strong approximation, we can
apply a result of Studer [25, Proposition 3.43], or s similar result of Bruti-
Liberati and Platen [6, Theorem 6.1]. Out setting is simpler than theirs
because of the special form of the dynamics in the JD model.

Lemma 5.2. (Modified from Studer [25, Proposition 3.43].) Under our
assumptions (3) and (4) for the JD model, there exist some constants C1

and C2 such that for any i = 1, . . . , d

E[(Xi,N (t)−
∑

β∈Ak

Iβ[fβ(0,Xi,N (0))])2] ≤ C1(C2t)
2k+1.

Proof. Since f(t, x) = x, the conditions in Studer [25, Proposition 3.43]
(and those in Bruti-Liberati and Platen [6, Theorem 6.1]) are satisfied. Thus,
for any α ∈ B(Ak), we can find some constant C3

sup
0≤t≤T

E[(fα(t,Xi,N (t)))2] ≤ C3.

Denote ni(α) be the number of components for J̃ i in α. By induction and the
previous lemma, we have for any α ∈ B(Ak), we can find some constant C4

E[Iα[fα(.,Xi,N (.))]2t ] ≤ tn(α)(mii)
ni(α)C3t

l(α)

≤ C3C
2k+1
4 tl(α)+n(α);

and |B(Ak)| ≤ (3d + 3)k+1, therefore,

E

[(

Xt −
∑

β∈Ak

Iβ[fβ(0,X0)]

)2]

≤
(

∑

α∈B(Ak)

(E[Iα[fα(.,X)]])1/2

)2

≤
(

∑

α∈B(Ak)

(C3C
2k+1
4 tl(α)+n(α))1/2

)2

≤ C1(C2t)
2k+1.

As a consequence, for our setting we get

Lemma 5.3. ‖riN‖ = ‖Xi,N − 1− ζ i1/2,N − ζ i1,N − ζ i3/2,N‖ = O(∆t2).
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5.3. Correlation between ζ i1 and ζ i3/2 . In this section, we show that the

terms
∑

wiζ
i
1,N and

∑

wiζ
i
3/2,N are uncorrelated. Before specializing to our

setting, we derive some general properties used extensively in this subsection.
To calculate the covariance between iterated integrals, from Cont and

Tankov [8, Proposition 8.11] we have (using the notation of Lemma 5.1)

E[Iα1
Iα2

] = E

[
∫

Iα1−dM1

∫

Iα2−dM2

]

= E

[
∫

Iα1−Iα2
dM1 +

∫

Iα2−Iα1
dM2 +

∫

Iα1−Iα2−d[M1,M2]

]

= E

[
∫

Iα1−Iα2
dM1 +

∫

Iα2−Iα1
dM2 +

∫

Iα1−Iα2−d < M1,M2 >

]

,(22)

where

Mi(t) =







t if r(αi) = 0;
Wt if r(αi) = 1;

J̃k
t if r(αi) = k < 0,

with r(αi) the rightmost element of αi. As before, when Mi = J̃k for some i
and k, we use the left-continuous version of the integrand. WhenMi = W , we
take its transpose in the integrand. Here we use the square bracket and sharp
bracket to denote quadratic variation and predictable quadratic variation as
introduced towards the end of Section 5.1.

When r(αi) 6= 0 for both i = 1 and 2, Mr(αi) is a martingale, so af-
ter taking expectations, the first two terms in (22) vanish. Assumption (4)
implies square integrability of these iterated integrals, which contain jump
terms. Otherwise, when they consist of only dt or dW , their integrability is
immediate. Thus, we have the following possible combinations:

When r(α1) > 0 and r(α2) = −j < 0, M1 and M2 are uncorrelated
martingales, so the expectation of their product is 0. Thus, we have:

E

[
∫

I⊤α1−dW

∫

Iα2−dJ̃
j

]

= 0.(23)

When r(α1) = r(α2) = 1,

E

[
∫

I⊤α1−dW

∫

I⊤α2−dW

]

=

∫

E[I⊤α1−Iα2−]dt

and when r(α1) = −i, r(α2) = −j,

E

[
∫

Iα1−dJ̃
i

∫

Iα2−dJ̃
j

]

=

∫

E[Iα1−Iα2−]mijdt.(24)
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When r(α1) = 0 and r(α2) 6= 0,the second and the third term in (22) vanish,
leaving

E

[
∫

Iα1−dt

∫

Iα2−dM2

]

=

∫

E[Iα1−Iα2
]dt.

Now we apply these results to analyze the correlation between ζ1 and
ζ3/2. Let Bl,n = {γ|l(γ) = l, n(γ) = n}. All strings in Bl,n are of the same
length l and have the same number of zeros n. We observe from (20) and
(21) that ζ i1,N is a linear combination of elements in B(A1) and ζ i3/2,N is a

linear combination of elements of B(A3/2). From here until the end of this
subsection, we let α and β be strings with l(α) = 1 and l(β) = 3/2, and we
treat all possible combinations of values of n(α) and n(β):

(a) If n(α) = 0 and n(β) = 0 — that is, neither contains dt integrals —
then (23)–(24) show that E[IαIβ] equals to an integral against dt with its
integrand either zero or E[Iα−Iβ−]. Applying the same argument again, so
we can say that E[Iα−Iβ−] is again an integral against dt with its integrand
either zero or E[Iα−−Iβ−−], which is zero, since l(α) = 1. So E[IαIβ] = 0 for
any α ∈ B1,0 and β ∈ B3/2,0. Hence any linear combination of elements of
{Iα : α ∈ B1,0} and any linear combination of elements of {Iβ : α ∈ B3/2,0}
are uncorrelated.

(b) If l(α) = n(α) = 1, but n(β) = 0, then Iα is actually deterministic. So
E[IαIβ] = IαE[Iβ ] = 0, since Iβ is a martingale. Hence any linear combina-
tion of elements of {Iα : α ∈ B1,1} and any linear combination of elements
of {Iβ : α ∈ B3/2,0} are uncorrelated.

(c) For the case n(α) = 0 and n(β) = 1, we observe that in our particular
setting, for any i 6= 0, I(i,0) and I(0,i) always appear in pairs in ζ i and have
the same coefficients. Using integration by parts we can consider them in
pairs, for i 6= 0, to get

I(i,0) + I(0,i) =

∫

d(tMi) = ∆t∆Mi,

so
E[Iα(I(i,0) + I(0,i))] = ∆tE[Iα∆Mi] = 0,

the last equality following from the same argument as (a). Hence, any linear
combination of elements of {Iα : α ∈ B1,0} and any linear combination of
elements of {Iβ : α ∈ B3/2,1} are uncorrelated.

(d) If n(α) = 1, and n(β) = 1, then Iα = ∆t, which is deterministic,
and I(i,0) + I(0,i) = ∆t∆Mi has zero mean. Hence any linear combination
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of elements of {Iα : α ∈ B1,1} and any linear combination of elements of
{Iβ : α ∈ B3/2,1} are uncorrelated.

To summarize, we have proved

Lemma 5.4.
∑

wiζ
i
1,N and

∑

wiζ
i
3/2,N are uncorrelated.

5.4. Convergence Proofs. Using our analysis of the strong approximation
for the jump-diffusion case, we can now prove Theorems 2.3 and 2.4.

Proof. (Theorem 2.3): We have

R̂n,N

Rn,N
= 1 +

∑

i

wiζ
i
1,N +

∑

i

wiζ
i
3/2,N +

∑

i

wir
i
N .

We have shown that ‖∑wiζ
i
1,N‖ = O(∆t), ‖∑wiζ

i
3/2,N‖ = O(∆t3/2),

‖∑wir
i
N‖ = O(∆t2), that E[

∑

wiζ
i
1,N ] = 0 and E[

∑

wiζ
i
3/2,N ] = 0, and

that
∑

wiζ
i
1,N and

∑

wiζ
i
3/2,N are uncorrelated. We can now follow the ar-

gument used in Glasserman [12, Proposition 1] to prove (8).
Next we calculate the variance of the relative error. To condense (9),

let A =
∑

wi[b
⊤
i ∆W∆J̃ i], and B =

∑

wi[
∫ ∫

dJ̃ idJ̃ i]. By following steps
similar to those used to prove Lemma 5.4, we can show that the pairwise
correlations between ǫn,N , A, and B are all zero. Thus,

V ar[ǫ̃n,N ] = V ar[ǫn,N ] + V ar[A] + V ar[B].

We need to calculate the last two terms on the right. For A, we have

V ar[A] = E[A2] = E
[(

∑

wib
⊤
i ∆W∆J̃ i

)2]

= E[(∆W⊤bΩ∆J̃)2]

= E

[(

∑

i

∆W 2
i

)

∆J̃⊤(Ωb⊤bΩ)∆J̃

]

= ∆t2(w⊤(b⊤b ◦M)w).

For B, we have

V ar[B] = E[B2] = E

[(

∑

wi

∫ ∫

dJ̃ idJ̃ i

)2]

=
∑

i,j

wiwj

∫

E[< J̃ i, J̃ j >s]mijds

=
∆t2

2
w⊤M ◦Mw.
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Proof. (Theorem 2.4): First, from the expression of the asymptotics of
the relative error in (9), the contribution of the compensation terms in the
jump terms are of lower order, so we can replace J̃ i

n and J̃ i with J i
n and J i

respectively throughout (9) and (8) still holds. That is,

E

[(

V̂ (T )− V (T )

V (T )
−

N
∑

n=1

ǭn,N

)2]

= O(∆t2)

where ǭn,N = ǫn,N +

d
∑

i=1

wi[b
⊤
i ∆Wn∆J i

n +

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t
dJ i(r)dJ i(s)].

(25)

The last term in (25) is nonzero only when there are at least two jumps in
the period [(n−1)∆t, n∆t], which has probability O(∆t2). Since the number
of jumps in different periods are i.i.d., the probability that none of the time
intervals has more than one jump is of order 1−O(∆t), so

√
N

N
∑

n=1

d
∑

i=1

wi

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t
dJ i(r)dJ i(s) ⇒ 0.

For the same reason, we can ignore multiple jumps in each ∆t interval in
(25). More precisely,

√
N

N(T )
∑

j=1

(

d
∑

i=1

wib
⊤
i ∆Wn(j)Ȳ

i
n(j) −

d
∑

i=1

wib
⊤
i ∆Wn(j)∆J i

n(j)

)

⇒ 0,(26)

where n(j) is the index of the interval when jth jump takes place.
To analyze the limit of (26), we rewrite it as

√
N

∑

n 6=n(j)
j=1,...,N(T )

ǫn,N +
√
N

∑

n=n(j)
j=1,...,N(T )

ǫn,N +
√
N

N(T )
∑

j=1

d
∑

i=1

wib
⊤
i ∆Wn(j)Ȳ

i
n(j).

(27)

Let N → ∞, noting that N(T ) remains fixed. In (27), the first term is
independent of the other two terms, and it converges to X ∼ N(0, σ2

LT ), as
shown in Theorem 2.1. The second term in (27) converges to zero in L2 and
thus in probability. Thus (27) converges in distribution to

X +

N(T )
∑

j=1

d
∑

i=1

wib
⊤
i ξjȲ

i
j ,
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where ξj are i.i.d. standard normal random variables independent of every-
thing else. The limit does not hold in L2, since the L2-norm of the third
term in (25) has order O(∆t2), as shown in the proof of Theorem 2.3.

6. Strong approximation for the mean-reverting case. In this
section, we prove Theorem 2.1. We build on the strong approximation tech-
nique introduced in Section 5.2, but the argument will be somewhat simpler
because we no longer have jump terms.

Proof. (Theorem 2.1). The value of the discretely rebalanced portfolio
at ∆t is given by

V̂ (∆t) =
∑

i

wi exp

{(

µi −
1

2
‖σi‖2

)

∆t+ σi

∫ ∆t

0
e−β(∆t−s)dWs

+ (1− e−β∆t)θi

}

,

and the ratio of the discrete portfolio value to the continuous portfolio value
is given by

R̂N

RN

=

∑

iwi exp{(µi − 1
2σ

2
i )∆t+ σ⊤

i

∫ ∆t
0 eβ(s−∆t)dWs + (1− e−β∆t)θi}

exp{(µw − 1
2σ

2
w)∆t+ σ̄

∫∆t
0 eβ(s−∆t)dWs + (1− e−β∆t)θ̄}

=
∑

i

wi exp

{(

µi−µw−
1

2
(‖σi‖2−σ2

w)

)

∆t+(σi−σ̄)⊤
∫ ∆t

0
eβ(s−∆t)dWs

+ (1− e−β∆t)(θi − θ̄)

}

=:
∑

i

wiCi(∆t),

where each Ci satisfies

dCi = Ci[(µi − µw − 1

2
(‖σi‖2 − σ2

w − ‖σi − σ̄‖2))dt+ dŪi]

dŪi = β(θi − θ̄ − Ūi)dt+ (σi − σ̄)⊤dW.

Using strong approximation as introduced in Section 5.2, we get (with all
iterated integrals taken from 0 to ∆t):

Ci(∆t) = 1 +

(

µi − µw − 1

2
(‖σi‖2 − σ2

w − ‖σi − σ̄‖2)
)

(∆t+

∫ ∫

dŪidt

+

∫ ∫

dtdŪi) + ∆Ūi +

∫ ∫

dŪidŪi +

∫ ∫ ∫

dŪidŪidŪi +O(∆t2),
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where

∆Ūi = (σi − σ̄)⊤e−β∆t

∫ ∆t

0
eβsdWs + (1− e−β∆t)(θi − θ̄)

= (σi − σ̄)⊤
(

∆W − β

∫ ∆t

0
Wsds

)

+ β(θi − θ̄)∆t+O(∆t2).

Expanding the iterated integrals of Ūi and substituting, we get

Ci(∆t) = 1 + (σi − σ̄)⊤∆W +

[(

µi − µw − 1

2
(‖σi‖2 − σ2

w)

)

∆t

+
1

2
∆W⊤B̄i∆W

]

+

[

1

6
∆W⊤B̄i∆W (σi − σ̄)⊤∆W

+ (µi − µw − 1

2
(‖σi‖2 − σ2

w))(σi − σ̄)⊤∆W∆t

− (σi − σ̄)⊤
(

β

∫ ∆t

0
Wsds

)]

+ β(θi − θ̄)∆t+ β(θi − θ̄)(σi − σ̄)⊤∆W∆t+O(∆t2),

where we drop the term ∆W⊤Bi

∫ ∆t
0 sdWs because its L2-norm is O(∆t2).

Now taking the weighted sum of the Ci, we get

∑

i

wiCi(∆t) = 1 + 0 +

[

−1

2

(

∑

i

wi‖σi‖2 − σ2
w

)

∆t+
1

2
∆W⊤B̄∆W

]

+
∑

i

wi

[

1

6
∆W⊤B̄i∆W (σi − σ̄)⊤∆W

+

(

µi − µw − β(θi − θ̄)− 1

2
(‖σi‖2 − σ2

w)

)

(σi − σ̄)⊤∆W∆t

]

+O(∆t2)

=: 1 + ζN1 + ζN3/2 + r

where B̄ =
∑

iwiB̄i and ‖r‖ = O(∆t2).
Following essentially the same arguments used in the jump-diffusion case,

it is now easy to show that ‖ζN1 ‖ = O(∆t) and ‖ζN3/2‖ = O(∆t3/2), and also

that ζN1 and ζN3/2 are uncorrelated, leading to

∥

∥

∥

∥

V̂ (T )

V (T )
− 1−

N
∑

n=1

ζN1,n

∥

∥

∥

∥

= O(∆t).
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At the same time,

ζN1,n =
1

2
(∆W⊤B̄∆W − Tr(B̄)∆t) = ǫn,N ,

coincides with the ǫn,N in the case of multivariate geometric Brownian
motion considered in Glasserman [12]. The same limit therefore applies
here.

Given the representation in Theorem 2.1, the proof of Theorem 2.2 is the
same as that of Theorem 1 in Glasserman [12].

7. Analysis of the volatility adjustments.

7.1. The jump-diffusion case.

Proof. (Proposition 3.2) With

XN =
√
N

N−1
∑

n=0

(

V̂ ((n + 1)∆t)

V ((n + 1)∆t)
− V̂ (n∆t)

V (n∆t)

)

we can write Cov[log V (T ),XN ] as

Cov[log V (T ),XN ]

=
√
N

N
∑

k=1

N−1
∑

n=0

E

[(

σ̄⊤∆Wk

+

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

))

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)

]

where, as before, µJ = E[log
∑

i wiY
i
j ]. If we interchange the order of sum-

mation and fix a value of n, we need to evaluate

E

[(

σ̄⊤∆Wk+

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j −µJ

))

(

V̂ ((n+1)∆t)

V ((n+1)∆t)
− V̂ (n∆t)

V (n∆t)

)

]

,

(28)

for which we have three cases:
(1) k ≥ n+ 2. In this case, we have

E

[(

σ̄⊤∆Wk +

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

))

×
(

V̂ ((n + 1)∆t)

V ((n + 1)∆t)
− V̂ (n∆t)

V (n∆t)

)

]

= 0,
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because W (k) and
∑N(k+1)

j=N(k)+1(log
∑

iwiY
i
j ) are both independent of

(V̂ (n∆t), V (n∆t), V̂ ((n+ 1)∆t), V ((n+ 1)∆t)).
(2) k = n+ 1. (28) becomes

E

[

V̂ (n∆t)

V (n∆t)

]

E





(

σ̄⊤∆Wn+1 +

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

))

R̂n+1

Rn+1



 .

(29)

Multiplying the factors inside the last expectation produces two terms. For
the first, we have

E

[

σ̄⊤∆Wn+1
R̂n+1

Rn+1

]

=
∑

i

wiE

[

σ̄⊤∆Wn+1 exp

{(

µi − µw − 1

2
‖σi‖2 +

1

2
σ2
w

)

∆t

+ (σi − σ̄)⊤∆Wn+1

} N(n+2)
∏

j=N(n+1)+1

Y i
j

∑

wlY
l
j

]

=
∑

i

wi(σ̄
⊤σi − σ2

w)∆t exp{(µi − µw + σ2
w − σ⊤

i σ̄)∆t+ λ∆t(µy
i )}

= γL∆t2 +
∑

i

wiσ̄
⊤σiλµ

y
i∆t2 +O(∆t3).(30)

For the other term, from (29) we have

E

[ N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

)

R̂n+1

Rn+1

]

=
∑

i

wi exp{(µi − µw + σ2
w − σ⊤

i σ̄)∆t}

× E

[( N(k+1)
∏

r=N(k)+1

(Ȳ i + 1)

)( N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

))]

,(31)

where

E

[( N(k+1)
∏

r=N(k)+1

(Ȳ i
r + 1)

)( N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

))]
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=

∞
∑

n=1

e−λ∆t (λ∆t)n

n!

n
∑

j=1

E

[

n
∏

k=1

(

Ȳ i + 1
)

(

log
∑

l

wlY
l
j − µJ

)]

= exp{λ∆tµy
i }∆tλE[(Ȳ i + 1)(log

∑

l

wlY
l − µJ)].(32)

Substituting (32) into (31), we get

E

[ N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j − µJ

)

(

R̂n+1

Rn+1

)

]

=
∑

i

wi exp{(µi − µw + σ2
w − σ⊤

i σ̄)∆t} exp{λ∆tµy
i }

×∆tλE

[

(Ȳ i + 1)

(

log
∑

l

wlY
l − µJ

)]

.(33)

Applying a Taylor expansion to the exponential part under assumptions (4)
and (5), (33) becomes

∑

i

wiλ(µi − σ⊤
i σ̄ + λµy

i )E

[

Ȳ i

(

log
∑

l

wlY
l − µJ

)]

∆t2 +O(∆t3).(34)

Using (30) and (34) we have for (29)

E

[(

σ̄⊤∆Wn+1+

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j−E

))

(

R̂n+1

Rn+1

)

]

= γ̃L∆t2+O(∆t3).

(3) k < n+ 1. The same argument applies in this case, and we have

E

[(

σ̄⊤∆Wn+1+

N(k+1)
∑

j=N(k)+1

(

log
∑

i

wiY
i
j −µJ

))

(

V̂ ((n+1)∆t)

V ((n+1)∆t)
− V̂ (n∆t)

V (n∆t)

)

]

= O(∆t4).

Hence we have

N−1/2Cov[log T (T ),XN ] =
γ̃LT

2

N
+O(N−2).

(ii) For the second part of the proposition, we need to show that

E[(V̄ (T )− V̂ (T ))2] = O(N−2).

By following the steps of a similar proof in Glasserman [12], it suffices to
show E[V (T )2X2

N ] < ∞.
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We can write

V 2(T ) = exp{2µwT + σ2
wT} exp{2σ̄⊤W (T )− 2σ2

wT} exp{−(λ− λ̃)T}

× exp{(λ− λ̃)T}
N(t)
∏

j=1

(

∑

i

wiY
i
j

)2

,

and now we would like to use the following as a Radon-Nikodym derivative:

exp{2σ̄⊤W (T )− 2σ2
wT} exp{(λ− λ̃)T}

N(t)
∏

j=1

(

∑

i

wiY
i
j

)2

.(35)

The first exponential term is itself a Radon-Nikodym derivative for the diffu-
sion process. From assumption (4), we have E[(Y i)2] < ∞, so we can choose
an appropriate λ̃ such that f̃(y) = λy2f(y)/λ̃ is a well-defined density func-
tion, where f(.) and f̃(.) are the density functions for

∑

iwiY
i under the

original probability and the new probability measure, respectively. There-
fore, (35) is indeed a Radon-Nikodym derivative, and, under the probability
measure it defines, each asset’s drift is changed from µi to µi + 2σ⊤

i σ̄, and
the

∑

iwiY
i now have density f̃ .

From Theorem 2.3, the convergence of the second moment of XN holds
as long as the drifts and Poisson rate are constant, and assumption (3) and
the first inequality of (4) hold under the new measure. Because of absolute
continuity, (3) will still hold. For (4)

Ẽ[|Ȳ k + 1|3] = exp{(λ− λ̃T )}E[|Y k|2|Ȳ k + 1|]
≤ exp{(λ− λ̃T )}‖Ȳ k + 1‖3‖Y k‖23 < ∞.

Hence we have proved the second part of the proposition.

7.2. The mean-reverting case.

Proof. (Proposition 3.1): (i) With

XN =
√
N

N−1
∑

n=0

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)

,

we have

Cov[log V (T ),XN ]

=
√
N

N
∑

k=1

N−1
∑

n=0

E

[

σ̄⊤e−β

∫ k∆t

(k−1)∆t
eβsdWs

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)]

.

(36)
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For k ≥ n+ 2,

E

[

σ̄⊤e−β

∫ k∆t

(k−1)∆t
eβsdWs

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)]

= 0,

For k = n+ 1, we have

E

[

σ̄⊤e−β

∫ (n+2)∆t

(n+1)∆t
eβsdWs

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)]

= E

[

V̂ (n∆t)

V (n∆t)

]

E[σ̄⊤e−β

∫ (n+2)∆t

(n+1)∆t
eβsdWs

R̂n+1

Rn+1

].

E

[

σ̄⊤e−β

∫ (n+2)∆t

(n+1)∆t
eβsdWs

R̂n+1

Rn+1

]

=
∑

i

wiσ̄
⊤(σi − σ̄)e−β(1+∆t)

×
∫ ∆t

0
eβsds exp

{(

µi − µw − 1

2
(‖σi‖2 − σ2

w)

)

∆t

+
1

2
‖σi − σ̄‖2e−2β∆t

∫ ∆t

0
e2βsds+ (1− e−β∆t)(θi − θ̄))

}

.(37)

We only need its coefficient on ∆t2, which is

∑

i

wi(σ̄
⊤σi)e

−β(µi − µw − 1

2
(‖σi‖2 − σ2

w) +
1

2
‖σi − σ̄‖2 + β(θi − θ̄))

=
∑

i

wi(σ̄
⊤σi)e

−β(µi − µw + σ2
w − σ⊤

i σ̄ + β(θi − θ̄))

= e−β

(

γL +
∑

i

wi(σ̄
⊤σi)β(θi − θ̄)

)

.

For the first factor in (37), we have

E

[

V̂ (n∆t)

V (n∆t)

]

=
n
∏

k=1

E

[

R̂n+1

Rn+1

]

=
n
∏

k=1

(1 +O(∆t2)) = 1 +O(∆t).

So, we have

E

[

σ̄⊤e−β

∫ (n+2)∆t

(n+1)∆t
eβsdWs

(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)

)]

= γ
L
∆t2+O(∆t3).
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For the case k ≤ n, following the same argument as in the proof of
Glasserman[12, Prop. 4], we get

E

[

σ̄⊤e−β

∫ (k+1)∆t

k∆t
eβsdWs

(

V̂ ((n + 1)∆t)

V ((n + 1)∆t)
− V̂ (n∆t)

V (n∆t)

)]

= O(∆t4),

and then (36) becomes

N−1/2Cov(log V (T ),XN ) =
γ
L
T 2

N
+O(N−2).

The proof for part (ii) follows the same line as the one in Glasserman
[12]. The only modification needed is that now the Girsanov transformation
is a little more general, the change of measure now changing the standard
Brownian motion W (T ) to a Gaussian process

∫ T
0 eβsW (s).

8. Dealing with defaults. As explained in Section 2, jumps in asset
values can produce negative portfolio values, even under continuous rebal-
ancing. Here we address this issue in greater detail.

Assume that once a portfolio defaults (i.e., drops to zero or below), it is
absorbed at zero forever. It follows from (2) that such a default occurs in a
continuously rebalanced portfolio if and only if there is a jump before time
T with

∑

iwiY
i ≤ 0. Under assumption (3), the continuously rebalanced

portfolio will therefore never default.
The discretely rebalanced portfolio will default at time t in the nth time

interval if and only if t is the first time that t ∈ [(n − 1)∆t, n∆t] with
t̃ = t−∆t⌊ t

∆t⌋ and

R̂n,N(t) =

(

V̂ (t)

V̂ ((n − 1)∆t)

)

=
d
∑

i=1

wi exp

{(

µi −
1

2

d
∑

j=1

σ2
ij

)

t̃+ σ⊤
i W (t̃)

}N(t̃)
∏

j=1

Y i
j ≤ 0.(38)

Let Ind denote the indicator of default for the discrete portfolio, where Ind =
1 means that the portfolio defaults in nth time interval, while Ind = 0 if not.

Lemma 8.1. Given assumption (3), P (Ind = 0) = O(∆t2).

Proof. Under assumption (3), first we focus on the case of only one
jump
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P (Ind = 1) ≤ P (Ind = 1, N(∆t) = 1) + P (N(∆t) > 1)

= P

(

∑

i

wi exp

{(

µi −
1

2

d
∑

j=1

σ2
ij

)

s+ σ⊤
i W (s)

}N(s)
∏

j=1

Y i
j < 0,

for some s ∈ [0,∆t]|N(∆t) = 1

)

P (N(∆t) = 1) +O(∆t2).(39)

The last term O(∆t2) is from the probability of more than one jump within
the time interval. Now we simplify the first term by using the fact of hav-
ing only one jump, and also apply a first-order Taylor expansion to the
exponential:

P

(

∑

i

wi exp

{(

µi −
1

2

d
∑

j=1

σ2
ij

)

s+ σ⊤
i W (s)

}N(s)
∏

j=1

Y i
j < 0,

for some s ∈ [0,∆t]|N(∆t) = 1

)

= P

(

∑

i

wi(1 + σ⊤
i W (s) + r̄i(s))Y

i < 0, for some s ∈ [0,∆t]

)

,

where r̄i is the remainder in the Taylor approximation, with L2−norm
O(∆t). Then

P

(

∑

i

wi(1 + σ⊤
i W (s) + r̄i(s))Y

i < 0, for some s ∈ [0,∆t]

)

≤ P

(

max(|σ⊤
i W (s) + r̄i(s)|)

∑

i

|wiY
i| >

∑

i

wiY
i, for some s ∈ [0,∆t]

)

≤ P

(

∑

i

|σ⊤
i W (s) + r̄i(s)| >

∑

i wiY
i

∑

i |wiY i| , for some s ∈ [0,∆t]

)

.

Conditioning on the Y i and applying Chebyshev’s inequality yields

P

(

∑

i

|σ⊤
i W (s) + r̄i(s)| >

∑

i wiY
i

∑

i |wiY i| , for some s ∈ [0,∆t]

)

≤ E

[

V ar

(

∑

i

|σ⊤
i W (s) + r̄i(s)|

)

( ∑

i wiY
i

∑

i |wiY i|

)2

, for some s ∈ [0,∆t]

]

≤ V ar

(

∑

i

|σ⊤
i W (s) + r̄i(s)|

)

E

[

( ∑

i wiY
i

∑

i |wiY i|

)2
]

= O(∆t).

Substituting these results in (39) concludes the proof.
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Proposition 8.2. Under conditions (3) and (4), we have

∥

∥

∥

∥

V̂ (T )− V (T )

V (T )

∥

∥

∥

∥

−
∥

∥

∥

∥

V̂ (T )− V (T )

V (T )
I{In

d
=0 for all n=1,...,N}

∥

∥

∥

∥

= O(∆t).

Proof. With N fixed, since {R̂n,N : n = 1, . . . , N} are i.i.d., from (38)
and the surrounding discussion, the number of intervals n until Ind = 1 has
a geometric distribution, and

P (Ind = 1 for some n = 1, . . . , N) = O(∆t).

If the discrete portfolio defaults, V̂ (T ) = 0 and V̂ (T )−V (T )
V (T ) = −1, so

∥

∥

∥

∥

V̂ (T )− V (T )

V (T )
I{In

d
=1 for some n=1,...,N}

∥

∥

∥

∥

= O(∆t).

Proposition 8.2 confirms that we can ignore possible defaults in the dis-
cretely rebalanced portfolio, because the limits in Theorem 2.2 and 2.4 are
scaled by

√
N = ∆t−1/2, while the errors introduced by ignoring defaults

are of order O(∆t). In fact, we can even weaken our assumptions to allow
∑

i wiY
i ≤ 0, replacing (3) with the condition

E

[

(

wjY
j

∑

i wiY i

)2 ∣
∣

∣

∣

∑

i

wiY
i < 0

]

< ∞, for all j = 1, . . . , d,

This suffices to show that defaults have a negligible effect on the relative
error using a similar argument.
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