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Université de Sherbrooke

We study the dynamics of a large number, N , of investors which
have meetings by groups of m. We obtain an explicit formula for the
solution of the associated non-linear system of differential equations.
This formula is tractable and it enables us to show the asymptotic sta-
bility of a large class of models. One of those models can be thought
of as an interacting portfolio market.

1. Introduction. Motivated by the study of dark markets, Duffie [2]
introduces, in his research monograph, several models of Over-The-Counter
(‘OTC’) markets. Chapter 3 (see also Duffie and Sun [8] and Duffie and
Sun [9]) presents a mathematical foundation for the independent random
matching of a large population. Here, we develop an approach inspired by
Kac [13]. To do so, we start with a sequence of dynamical sets of interacting
investors, one for each integer N .

We consider interactions involving m investors, for a fixed m ≥ 2, and we
suppose that the intensities of these dynamics have an adequate dependence
on N . Our techniques enable us to obtain an explicit formula for the asso-
ciated non-linear system of differential equations. We thereby extend the
results first obtained in Duffie and Manso [7] and pursued in Duffie, Giroux
and Manso [4] (see also chapter 5 of Duffie [2]). We note that our formula
is valid for any interaction kernel (for perfect and imperfect transmission of
information) and it is more explicit than the one obtained for the particular
kernel considered in these articles.

Our article is structured as follows. In section 2, we describe our dynamics,
and then proceed to the statement and proof of our result. In section 3,
we illustrate the tractability of our formula for a large class of models. In
particular, we describe in some details one of the models of that class since
it resolves a difficulty raised in Gârleanu [12], p. 547.

Received February 2012.
AMS 2000 subject classifications: 34A34, 82C31, 60G55.
Keywords and phrases: Large interacting sets, market equilibrium, Ordinary Differen-

tial Equations, continuous-time Markov chains.

1

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/12-SSY066


2 A. BÉLANGER AND G. GIROUX

2. The dynamics. In order to build our model, we first need an integer,
N , which represents the number of investors in the market. Secondly, we need
another integer, m, with 2 ≤ m ≤ N , which represents the fixed number of
investors in each meeting. Thirdly, we need a symmetric probability kernel
Q on the product space (Em, E⊗m) where (E, E) is a measurable space. That
is a function

Q : Em × E⊗m → [0, 1] such that:
(i) For each (C1 × · · · × Cm) ∈ E⊗m, the function Q(x1, x2, . . . xm;C1 ×

· · · ×Cm) is measurable in (x1, x2, . . . xm); and for each (x1, x2, . . . xm) it is
a probability measure in (C1 × · · · ×Cm); and

(ii) For any permutation σ of {1, 2, . . . ,m}

Q(x1, x2, . . . xm;C1 × · · · × Cm)

= Q(xσ(1), xσ(2), . . . xσ(m);Cσ(1) × Cσ(2) × · · · × Cσ(m)).

Lastly, we need a positive number, λ, representing the intensity of investor
meetings. The higher λ is, the lower the search frictions in the market.

With these objects we build a jump Markov process with values in EN .
Its state at time t is denoted (XN

1 (t),XN
2 (t), . . . XN

N (t)) and is thought of as
the state of the market at time t. At each jump of a Poisson process with
intensity λN

m
, a set ofm investors interacts according to the kernel Q. Groups

are undistinguishable so each group has a probability of
(
N
m

)−1
of being

involved in a given interaction. In doing so, we obtain a sequence of processes,
one for each N . For simplicity, we now assume that (E, E) = (Rd,B

(
R
d
)
). In

such a setting, we can deduce, from this sequence of processes, an associated
system of ODE’s using the same techniques as in Ferland and Giroux [11]
(see also Bezandry et al. [1]). This implies that, for each time t, the laws
of the sequence (XN

1 (t))N≥m converge to the probability law µt where µt is
the solution of the Cauchy problem for the associated system of ODE’s:

dµt

dt
= λ(µ◦m

t − µt); µ0 = µ

with

µ◦m
t (C) =

∫

(Rd)m

µt(dx1)µt(dx2) . . . µt(dxm)Q(x1, x2, . . . xm;C)

and
Q(x1, x2, . . . xm;C) = Q(x1, x2, . . . xm;C × (Rd)m−1)

for C ∈ B
(
R
d
)
.
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Fig 1. Simple interaction tree with only two meetings and m = 3.

We can think of µ◦m
t as the law at the root of the m-ary tree with only

one interaction.
Here, we establish an explicit formula for the solution of the associated

system of ODE’s. In order to obtain the formula, we need to look at all the
trees representing the interaction history of an investor up to time t. So for a
tree, A, with at least one interaction, we divide the tree in m subtrees at the
node nearest to the root and continue recursively up to the leaves to define
µ◦mA. Figure 1 below gives a simple example of this operation. Let An be
the set of all trees with n interactions (a.k.a. nodes), each node producing
m branches. If An ∈ An, then µ◦mAn denotes the law obtained by iteration
of µ◦m through the successive nodes of the tree when we place the law µ on
each leaf of An.

Hereafter the probability law defined as follows,

(ν1 ◦ ν2 ◦ · · · ◦ νm) (C)

,

∫

Em

ν1(dx1)ν2(dx2) . . . νm(dxm)Q(x1, x2, . . . xm;C × Em−1)

will denote the law of an investor after the interaction of m independent
investors with law ν1, ν2, . . . , νm respectively.
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Now we will show that our Cauchy problem has a unique solution which
can be expressed, by conditioning on the number of interactions up to time
t, and then by the investor’s history. Such conditioning give us

(1) µt =
∑

n≥0

pn(t)
1

#m(n)

∑

An∈An

µ◦mAn

where #m(n) =
∏n−1

k=1((m − 1)k + 1) is the number of trees with n nodes,

taking into account their branching orders; and pn(t) = #m(n)
(m−1)nn!e

−λt(1 −

e−(m−1)λt)n is the probability of having n branchings up to time t. The
uniqueness of the solution follows from a standard application of Grönwall’s
lemma (see Ferland and Giroux [11]).

Our main result is:

Theorem 1. The convex combination,

µt =
∑

n≥0

pn(t)
1

#m(n)

∑

An∈An

µ◦mAn

is the solution of the Cauchy problem

dµt

dt
= λ(µ◦m

t − µt); µ0 = µ.

Proof. Since the countable convex sum (1) is uniformly summable, we
can differentiate µt term by term to obtain:

−λµt + λe−mλt
∑

n≥1

(1− e−(m−1)λt)n−1 1

(m− 1)n−1(n− 1)!

∑

An∈An

µ◦mAn

Thus we need to show that:

(2) µ◦m
t (C) = e−mλt

∑

n≥0

(1− e−(m−1)λt)n
1

(m− 1)nn!

∑

An+1∈An+1

µ◦mAn+1(C)

Starting with the definition (on page 2), we have that the LHS of (2) is
equal to

∫

Em


∑

i1≥0

e−λt(1− e−(m−1)λt)i1
1

(m− 1)i1i1!

∑

Ai1
∈Ai1

µ◦mAi1 (dx1)


 . . .

. . .


∑

im≥0

e−λt(1− e−(m−1)λt)im
1

(m− 1)im im!

∑

Aim∈Aim

µ◦mAim (dxm)


 . . .

. . . Q(x1, . . . , xm;C × Em−1)
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which is equal to

∫

Em

e−mλt




∑

n≥0

(1− e−(m−1)λt)n
∑

i1+···+im=n

1

(m− 1)ni1! . . . im!
. . .


 ∑

Ai1
∈Ai1

µ◦mAi1 (dx1)


. . .


 ∑

Aim∈Aim

µ◦mAim (dxm)





Q(x1, . . . , xm;C ×Em−1)

which in turn is equal to

e−mλt
∑

n≥0

(1− e−(m−1)λt)n
1

(m− 1)nn!
F (i1, . . . , im, n, µ,Ai1 , . . . , Aim,Q,C)

where

F (i1, . . . , im, n, µ,Ai1 , . . . , Aim,Q,C)

= . . .

∫

Em

∑

i1+···+im=n

(
n

i1

)(
n− i1
i2

)
. . .

(
im−1 + im

im−1

)
 ∑

Ai1
∈Ai1

µ◦mAi1 (dx1)


. . .

. . .


 ∑

Aim∈Aim

µ◦mAim (dxm)


Q(x1, . . . , xm;C × Em−1)

And this last expression is a decomposition of the trees An+1 ∈ An+1 ap-
pearing in the RHS of (2) in m subtrees after the first node (taking the
branching order into account). The two expressions are therefore equal and
this proves the theorem.

Remark 2. Our result brings a simplification to the special case studied
in section 3 of Duffie, Giroux and Manso [4] where the term a(m−1)(n−1)+1

can now be given explicitly as 1
(m−1)n−1(n−1)! . It also suggests that some of

the results of Duffie, Malamud and Manso [6] can be extended to the case
where information exchanges involve m agents (with possibly m random as
they consider) even though the equation in their model does not belong to
the class studied in the present paper and the techniques of tree expansions
are not directly applicable. But a functional law of large numbers might be
provable for their set of ODE’s (4) and (5) in theorem 3.2 on page 1581.

Remark 3. We call the law

µt =
∑

n≥0

e−λt(1− e−(m−1)λt)n
1

(m− 1)nn!

∑

An∈An

µ◦mAn
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an extended Wild sum, Wild [16], and note that the convex combination we
obtain for the case m = 2 is indeed the Wild sum,

µt =
∑

n≥0

e−λt(1− e−λt)n
1

n!

∑

An∈An

µ◦mAn ,

well-known in the statistical physics of gases since the work of Kac [13].

3. Tractability. In Ferland and Giroux [10] the authors study a class
of kinetic equations of Kac’s type and they show, for binary collisions, a
convergence to the steady state at an exponential rate. The convergence in
Ferland and Giroux [10] is obtained along a set of convenient test functions
with a telescoping technique due to Trotter [15] and with the use of a version
of Wild sums obtained from judicious conditioning. We extend the results
of Ferland and Giroux [10] for any m ≥ 2.

Let µ denote a probability law on R and let Sm(µ) denote the law of
H1X1 + H2X2 + · · · + HmXm where the random variables {Xi} are in-
dependent and of law µ and the variables {Hi} are independent of each
other and of the X variables. In terms of interaction kernels, we have
Q(x1, x2, . . . xm;C) = P [H1x1 +H2x2 + · · ·+Hmxm ∈ C]. Under very gen-
eral conditions, Rösler [14] has shown that the transformation Sm has a
fixed point. In particular, if we suppose that the H-variables have values in
[0, 1], that their mean is 1

m
we then have E[H1 +H2 + · · · + Hm] = 1 and

Sm(µ) has the same first moment as µ. Moreover, if the H-variables are not
Bernoulli we have that E[H2

1 + H2
2 + · · · + H2

m] < 1 and then Rösler [14]
gives us the existence of a fixed point, denoted γ, which is a steady state for
the associated system of ODE’s.This fixed point has a second moment as
soon as µ does. Our goal is to establish the following result for the particular
kernel Q just introduced.

Theorem 4. If we suppose that µ has a finite second moment then we

have that the law

µt =
∑

n≥0

e−λt(1− e−(m−1)λt)n
1

(m− 1)nn!

∑

An∈An

µ◦mAn

converges to γ at the exponential rate η = 1− E[H2
1 +H2

2 + · · ·+H2
m].

Our proof is an extension of the one in Ferland and Giroux [10] which
treats the case m = 2.

Proof. Let us first consider the tree with m leaves, denoted A1. On each
one of its leaves put independent random variables of law µ. Assume that
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these variables interact at a node to give H1X1 + H2X2 + · · · + HmXm.
Let us call µ◦mA1 , or more simply µ◦m , the law of this variable. In a similar
fashion, we can consider γ◦m(which is γ since it is a fixed point). We will first
consider the differences | < µ◦m , f > − < γ◦m , f > | for each f ∈ C2

b . One
way to bound this difference is to use the telescoping technique of Trotter
[15] where we replace one by one (from the left say) the variables with law
µ by variables with law γ. We then obtain a sum of m terms of the form

| < γ◦k ◦ µ◦m−k , f > − < γ◦k+1 ◦ µ◦m−k−1 , f > |

which we will bound. In our particular models we can write down these
expressions explicitly as

|E [f(H1Y1 +H2Y2 + · · ·+HkYk +Hk+1Xk+1 + · · ·+HmXm)]

− E[f(H1Y1 +H2Y2 + · · ·+HkYk +Hk+1Yk+1 +Hk+2Xk+2 + . . .

+HmXm)]|

where Yi : i = 1, . . . k + 1 have law γ and Xj , with j = k + 1, . . . ,m, have
law µ. Let Rk = H1Y1 + H2Y2 + · · · + HkYk + Hk+2Xk+2 + · · · + HmXm.
Then we have

f(Rk +Hk+1Xk+1) = f(Rk) + f ′(Rk)Hk+1Xk+1 +
1

2
f ′′(R∗

k) (Hk+1Xk+1)
2

and f(Rk+Hk+1Yk+1) = f(Rk)+f ′(Rk)Hk+1Yk+1+
1
2f

′′(R∗∗
k ) (Hk+1Yk+1)

2.
Which in turn give us

| < µ◦m , f > − < γ◦m , f > | ≤ cE

[
m∑

i=1

H2
i

]
.

We now need to iterate the process according to the different trees. Let
Ân denote the set of leaves of the tree An. Then the contribution of a leaf
u ∈ Ân through its interactions down to the bottom of the tree is a product
of the variables Hi with i = 1, . . . ,m. Let us denote this product by Cu.
For the tree An, the result of its interactions through the bottom of the tree
will therefore go from

∑
u∈Ân

CuXu, when all the variables put on leaves
have law µ, to

∑
u∈Ân

CuYu when all the variables have law γ. Applying the
same techniques as above, namely a (longer) telescoping and a Taylor series
expansion, we get

| < µ◦mAn , f > − < γ◦m , f > | ≤ cE


 ∑

u∈Ân

C2
u



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Now let

en =
1

(m− 1)nn!

∑

An∈An

E


 ∑

u∈Ân

C2
u


 .

We have that en ≤ cna−1 where a = 1−η
m−1 and η is such that 1 − η =

E
[∑m

i=1H
2
i

]
by Lemma 5 below. Then proceeding as in Theorem 3 of Fer-

land and Giroux [10] with the extended Wild sum and replacing 1 − η by
1−η
m−1 we have that | < µt, f > − < γ, f > | ≤ ce−ηt for all f ∈ C2

b .

The remaining details of our proof are provided in the proof of the fol-
lowing lemma.

Lemma 5. We have

en =

(
1

n

)(
1− η

m− 1

)
(1 + e1 + · · ·+ en−1).

Thereforem en ≤ cna−1 with a = 1−η
m−1 .

Proof. The decomposition of each tree An in m subtrees
{
Ai

n

}m

i=1
at

the first node enables us to write en as a sum of m similar terms

fi =
1

(m− 1)nn!

∑

An∈An

E


 ∑

u∈̂Ai
n

C2
u




where Âi
n is the set of leaves of the ith subtree. It suffices to treat the case

i = 1. Let us decompose An, the set of trees with n nodes, by the number,
k, of nodes of the subtree A1

n. There are
(
n−1
k

)
(m−1)n−1−k(n−1−k)! such

trees. Indeed, since we need to take into account the order of appearance of
these nodes we have

(
n−1
k

)
choices for the appearances of A1

n’s nodes. Then
we have (m−1)n−1−k ways to divide the remaining nodes in the other m−1
trees and finally, there are (n − 1 − k)! choices for the nodes’ appearances.

Note that this number simplifies to (n−1)!
k! (m−1)n−1−k. If we denote by An,k

the subset of An formed by the trees An for which their subtree A1
n has k

nodes, we can then express fi as

fi =
1

(m− 1)nn!

n−1∑

k=0

∑

An∈An,k

E


 ∑

u∈Âi
n

C2
u



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=
E
[
H2

i

]

(m− 1)n

n−1∑

k=0

1

(m− 1)kk!

∑

Ak∈An,k

E




∑

u∈̂Ai
k

C2
u




=
E
[
H2

i

]

(m− 1)n

n−1∑

k=0

ek , with e0 = 1.

This proves the first assertion. A similar calculation to the proof of Lemma
3 in Ferland and Giroux [10] gives us the second result.

Remark 6. The perfect information transmission kernelQ(x1, x2, . . . xm;
C) = δx1+x2+···+xm(C) has been used as the basic interaction in many vari-
ations by Duffie and Manso [7], Duffie, Giroux and Manso [4], Duffie, Mala-
mud and Manso [5]. One can wonder whether some of their results can be
extended to more general kernels.

Remark 7. One variant of the kernel Q(x1, x2, . . . xm;C) = P [H1x1 +
H2x2+ · · ·+Hmxm ∈ C] solves the difficulty raised in Gârleanu [12] on page
547 of extending his model to the non-linear dynamics of the DGP model,
Duffie, Gârleanu and Pedersen [3]. Our result provides the existence and
the stability of a steady state for such an extension. We only illustrate the
situation where investors interact by pairs as in Gârleanu [12]. An interaction
is the exchange of a random number of shares of a risky asset for cash.
Denoting by (X,Y ) the random wealth (i.e. total cash holding) of a pair
of investors, we suppose that the wealth X becomes, after a transaction
with an investor of wealth Y , B(X + JY ) + (1 − B)(1 − I)X. Where the
random variables B, J and I are independent of each other and independent
of the pair (X,Y ); B is a Bernoulli law of parameter 1/2; I and J have
the same law which is not a Bernoulli and they take their values in [0, 1].
The interpretation of the transaction is the following. With probability 1/2,
the investor with wealth X is a seller of the risky asset and then adds to
his wealth a random fraction J of the wealth Y of the other investor. Also
with probability 1/2, this investor is a buyer who pays a fraction I of his
wealth to the investor with wealth Y . We can also write the wealth X after
interaction as (1− (1−B)I)X +BJY and then easily see that we are in the
class of models we consider since Q(x, y;C) = P [(1− (1−B)I)x+BJy ∈ C]
; E [(1− (1−B)I) +BJ ] = 1; and E

[
1− (1−B)I)2 + (BJ)2

]
< 1.
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