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TWO COUPLED LÉVY QUEUES WITH INDEPENDENT

INPUT

By Onno Boxma∗ and Jevgenijs Ivanovs†

We consider a pair of coupled queues driven by independent
spectrally-positive Lévy processes. With respect to the bi-variate
workload process this framework includes both the coupled proces-
sor model and the two-server fluid network with independent Lévy
inputs. We identify the joint transform of the stationary workload
distribution in terms of Wiener-Hopf factors corresponding to two
auxiliary Lévy processes with explicit Laplace exponents. We rein-
terpret and extend the ideas of Cohen and Boxma (1983) to provide
a general and uniform result with a neat transform expression.

1. Introduction. In the queueing literature, several studies have been
devoted to a queueing model of two servers, each with their own customer
arrival process, with the special feature that the speed of one server changes
when the other server becomes idle. This has become known as the coupled
processor model. A possibly even more popular model of two servers is a
fluid network with independent arrival processes, where fixed fractions of
fluid exiting one queue are routed into the same and the other queue, as
well as out of the system. These models are intimately related and in the
case of Lévy input both can be put in our framework below; see Section 1.1
and Section 1.3 for possible interpretations of our model and for related
literature respectively.

More specifically, we assume that our queues are driven by two indepen-
dent Lévy processes X1(t) and X2(t) without negative jumps. We model a
pair of workload processes (W1(t),W2(t)) as a 2-dimensional reflected pro-
cess, see e.g. Harrison and Reiman (1981); Kella (2006),

W1(t) = W1(0) +X1(t)− r1L2(t) + L1(t),
(1)

W2(t) = W2(0) +X2(t)− r2L1(t) + L2(t),

where Wi(t) are nonnegative, Li(t) are nonnegative and nondecreasing with
Li(0) = 0, and, in addition, it is required that if t is a point of increase
of Li(t) then Wi(t) = 0. Sometimes the latter condition is replaced by an
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equivalent integral condition or minimality requirement. We assume that
r1, r2 ≥ 0 and r1r2 < 1, in which case workload processes (W1(t),W2(t))
(with given initial values) and unused capacity processes (L1(t), L2(t)) sat-
isfying the above conditions exist and are unique, see (Kella, 2006, Sec. 5).

1.1. Interpretations. It is the easiest to understand the model given
by (1) in the case of compound Poisson inputs and constant service rates
ci > 0, i.e. when each Xi(t) is a compound Poisson process (CPP) minus cit.
Note that when Wi(t) hits zero it stays at zero until the arrival of the next
customer, which leads to the following four cases. While W1(t),W2(t) > 0
these workload processes evolve according to X1(t) and X2(t). Whereas
while W1(t) = 0 and W2(t) > 0 the process L1(t) evolves as c1t result-
ing in an additional service rate r2c1 in the second queue, i.e. the fraction
r2 of the first server capacity is used to help the second. Similarly, while
W1(t) > 0,W2(t) = 0 the service rate in the first queue is c1 + r1c2. Fi-
nally, when both queues are empty, the processes Li(t) evolve as certain
linear drifts canceling the negative drifts of Xi(t) and each other’s influence,
which is possible if and only if r1r2 < 1. It is noted that compound Poisson
input allows for a formulation of the coupled processor model, which goes
beyond our assumption of r1r2 < 1. One simply replaces (1) by an explicit
description of the workload processes in the above four cases, see Cohen and
Boxma (1983).

As mentioned above, our model includes two-dimensional fluid networks
with independent Lévy input, where the column vector of workloads is a
reflected process of the form:

W (t) = W (0) + X̃(t)− (I − P ′)ct+ (I − P ′)L̃(t),

see e.g. Kella (1996). Here X̃(t) is a column vector of external non-decreasing
input processes into each queue, P is a routing matrix (a substochastic
matrix) with Pn → 0 for n → ∞, P ′ is its transpose, I is the identity
matrix, and c is a column vector of (maximal) service rates. One usually
interprets ct − L̃(t) as a vector of cumulative outflows from the queues,
which are routed according to P . We can write

Wi(t) = Wi(0) +Xi(t) + (1− pii)L̃i(t)− pjiL̃j(t),

where Xi(t) = X̃i(t)− cit+ piicit+ pjicjt and (i, j) is (1, 2) or (2, 1). Letting
Li(t) = (1 − pii)L̃i(t) and ri =

pji
1−pjj

we obtain (1) and guarantee the

above conditions. We remark that commonly X̃i(t) is a non-decreasing Lévy
process and hence Xi(t) is a Lévy process without negative jumps having
bounded variation (on finite intervals). We allow Xi(t) to be general Lévy
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processes without negative jumps, which may lead to a certain debate about
an appropriate model for the fluid network, because cumulative outflows
(if defined at all) are not necessarily non-decreasing in this general setup.
Nevertheless, such models have appeared in the literature, see e.g. Kella
and Ramasubramanian (2012). Finally, one can go the other way around
and produce a network from the model (1), which is immediate if r1, r2 ≤ 1.
If r1 > 1 (and similarly for r2 > 1) then consider (W1(t), r1W2(t)) and
note that it corresponds to a pair of workload processes in a network with
routing matrix given by p11 = p22 = 0, p12 = r1r2, p21 = 1 and driving
processes X1(t), r1X2(t), see also (Kella, 1996, Lem. 4.1).

1.2. Stationary distribution. Let us note that (I − P ′)−1
EX(1) < 0,

whereX(t) is a multidimensional driving process, is a sufficient stability con-
dition for a general Lévy network, i.e. under this condition the joint workload
process has a limiting distribution (independent of initial conditions), which
is also a unique stationary distribution, see (Kella and Ramasubramanian,
2012, Thm. 2.4). Furthermore, if none of Xi(t) is a zero process then this
condition is also necessary. Stronger limiting results are available in Kella
(1996) for the case when both Xi(t) have bounded variation. Stability of (1)
can be easily related to the stability of the corresponding network yielding
the following condition

d1 + r1d2 > 0, d2 + r2d1 > 0,(2)

where di = −EXi(1). Assuming that (2) holds we let a pair of random vari-
ables (W1,W2) refer to the joint stationary distribution of (W1(t),W2(t)).
Our main result is an expression for the transform Ee−α1W1−α2W2 in terms of
Wiener-Hopf factors corresponding to two auxiliary processes with explicit
Laplace exponents, see Theorem 1. We reinterpret and extend the ideas
from Chapter III.3 of Cohen and Boxma (1983) to provide a general and
uniform result. Its derivation is rather compact, and is based on a number
of identities and observations from the fluctuation theory for Lévy processes.

Let us shortly discuss a special case, when X1(t) is a subordinator, i.e.
a non-decreasing Lévy process. In this case L1(t) can increase only when
L2(t) increases, hence both queues should be empty. This feature allows for
a rather simple analysis of the joint transform similarly to Kella and Whitt
(1992a). So we can assume in the following that each Xi(t) is a spectrally-

positive Lévy process, i.e. it is a Lévy process which is not a subordinator,
and which can have only positive jumps.

1.3. Related literature and motivation. The main application/motivation
of the coupled processor model is provided by the fact that, in a network
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of work stations, a user may use other machines than its own when those
machines are idle; this is often referred to as cycle stealing. Another appli-
cation occurs in integrated-service communication networks. Differentiated
quality-of-service among different traffic flows is achieved in such networks
via scheduling algorithms such as Weighted Fair Queueing. Mathematically,
such scheduling algorithms may often be represented by a form of General-

ized Processor Sharing, where traffic flow i gets a weight factor wi ∈ (0, 1),
with

∑

wi = 1. If all traffic flows are backlogged, then flow i is served at
rate wi. If some of the flows are not backlogged, then the excess capacity
is redistributed among the backlogged flows proportionally to their weights.
Again, this may be viewed as a form of cycle stealing. A pioneering paper
on the mathematical analysis of coupled processors is Fayolle and Iasno-
gorodski (1979). They consider two M/M/1 queues with service speeds c1
and c2, respectively, unless the other queue is empty; then the speeds are c∗1
and c∗2, respectively. They study the two-dimensional queue length process,
and show how the generating function of the joint steady-state queue length
distribution can be obtained via the solution of a Riemann-Hilbert boundary
value problem. Konheim, Meilijson and Melkman (1981) provide an elegant
solution of the special, slightly easier, case of two symmetric M/M/1 queues
in which a server doubles its speed when the other server is idle (one might
say that the idle server helps the other one). Cohen and Boxma (1983) have
generalized the model of Fayolle and Iasnogorodski (1979) to the case of gen-
eral service time distributions. They consider the two-dimensional workload
process. See Cohen (1992) for a further extension to the case that arrivals
may also simultaneously occur at both queues.

The analytic approach of Fayolle and Iasnogorodski (1979); Cohen and
Boxma (1983), exploiting a relation to boundary value problems in complex
function theory, seems to be limited to two dimensions. This has led to work
in the following directions. (i) Application of a numerical-analytic method,
the Power Series Algorithm, gives numerical results for more than two cou-
pled processors Blanc (1987); Hooghiemstra, Keane and van de Ree (1988).
(ii) Osogami, Harchol-Balter and Scheller-Wolf (2003) have developed an
approximation method which yields mean response times; the approxima-
tion can be made as accurate as desired. (iii) Several studies (see, e.g., Borst,
Boxma and Jelenkovic (2000, 2003)) consider tail asymptotics of workloads
for coupled processors and multi-queue systems with some form of General-
ized Processor Sharing.

The body of literature concerning fluid networks with Lévy input is huge.
The joint transform of the stationary workload in such networks is not known
apart from a few special cases. The transform can be obtained for tandem
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and feed-forward networks with decreasing service rates (in the direction
of flow), see e.g. Kella and Whitt (1992a) and Debicki, Dieker and Rolski
(2007). In such networks, if one queue is empty then all the queues preceding
it are empty as well. This is the main feature facilitating the computation,
which can be also guaranteed in some other models, see Badila et al. (2012).
Otherwise, the only tractable examples concern networks of two queues,
which are closely related to the coupled processor model discussed above.
The main result of the present paper yields an exact expression for the
transform in a two-node network with independent Lévy input. This model
generalizes, e.g., a tandem queue of Miyazawa and Rolski (2009), for which
the authors study tail asymptotics.

1.4. Organization of the paper. Section 2 summarizes basic facts about
spectrally-positive Lévy processes and about Wiener-Hopf factorization of
Lévy processes. In Section 3 we relate a spectrally-positive Lévy process to a
certain pure-jump subordinator which plays a fundamental role in our main
result, Theorem 1, formulated in Section 4. Section 5 contains the proof of
Theorem 1. It basically consists of three steps. In Subsection 5.1 we derive
a functional equation for the joint workload transform; in Subsection 5.2
the kernel of that functional equation is studied, and the functional equa-
tion is solved via Wiener-Hopf factorization assuming certain bounds; these
bounds are established in Subsection 5.3. Some special cases are considered
in Section 6, where we also discuss the result of Cohen and Boxma (1983)
in the case of CPP inputs.

2. Basic facts. For ease of reference let us recall the Lévy-Khintchine
formula for a spectrally-positive Lévy process X(t) (cf. Kyprianou (2006)):

(3) φ(α) = logEe−αX(1) = aα+
1

2
σ2α2−

∫ ∞

0
(1−e−αx−αx1{x<1})ν(dx),

where ν(dx) is a Lévy measure on (0,∞) satisfying
∫∞
0 (1 ∧ x2)ν(dx) < ∞.

The process X(t) has bounded variation (on finite intervals) if and only if
σ = 0 and

∫ 1
0 xν(dx) < ∞, in which case we have an alternative representa-

tion

(4) φ(α) = µα−

∫ ∞

0
(1− e−αx)ν(dx)

and µ can be interpreted as a linear drift. The case of µ = 0 corresponds to
a pure-jump subordinator. This subordinator is either a CPP or an infinite
activity subordinator according to ν(0,∞) being finite or infinite.
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Differentiating under the integral sign in (3), which can be justified, we
get

φ′(α) = a+ σ2α+

∫ 1

0
x(1− e−αx)ν(dx)−

∫ ∞

1
xe−αxν(dx)

for α > 0. This shows that X(t) has bounded variation if and only if
limα→∞ φ′(α) is finite.

Finally, let us recall the celebrated Wiener-Hopf factorization for a gen-
eral (two-sided) Lévy process X(t) and some positive constant p > 0, see
e.g. (Kyprianou, 2006, Thm. 6.16 and comments on p. 167 about the CPP
case). Letting ℜ(α) be the real part of α ∈ C, consider the Laplace trans-
forms

Ψ+(α) = Ee−αX(ep), ℜ(α) ≥ 0, Ψ−(α) = Ee−αX(ep), ℜ(α) ≤ 0,(5)

where ep is an independent exponentially distributed r.v. with rate p and
X(t),X(t) denote supremum and infimum processes respectively. Note that
Ψ±(α) are analytic in the corresponding half-planes and continuous on the
imaginary axis. They satisfy the following factorization for w ∈ iR:

(6)
p

p− φ(w)
= Ψ+(w)Ψ−(w).

Let us finally note that identification of the Wiener-Hopf factors is a dif-
ficult but well-studied problem with some numerical evaluation techniques
available, see e.g. Den Iseger, Gruntjes and Mandjes (2013).

3. Fundamental subordinators. Consider a spectrally-positive Lévy
process X(t), which will serve as a driving process in our model. The goal of
this section is to associate to X(t) a certain pure-jump subordinator Y (t),
which will play a fundamental role in our main result. Recall that φ(α)
denotes the Laplace exponent ofX(t), and d = −EX(1) = φ′(0) ∈ (−∞,∞).
Note that we have excluded only d = −∞, which is allowed because of the
stability condition (2).

Consider the first passage (downwards) process τ−x , x ≥ 0, where τ−x =
inf{t ≥ 0 : X(t) < −x}, which is a (possibly killed) Lévy subordinator with
the Laplace exponent −Φ(α) defined via

(7) Ee−ατ−x = e−Φ(α)x

for all α with ℜ(α) ≥ 0. For real positive α the function Φ(α) is positive
and is uniquely identified by φ(Φ(α)) = α. Moreover, limα→∞Φ(α) = ∞,
and also Φ(0) = 0 if and only if d ≥ 0.
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It is known that −α/Φ(α) is the Laplace exponent of a certain exponen-
tially killed subordinator (ascending ladder time process, see e.g. (Kypri-
anou, 2006, p. 170)). Note that if d ≥ 0 then limα↓0

−α
Φ(α) =

−1
Φ′(0) = −φ′(0) =

−d. If, however, d < 0 then this limit is 0. Hence d+ = d ∨ 0 is the rate of
killing, which we remove to obtain a non-killed subordinator Y (t) with the
Laplace exponent

(8) φY (α) = d+ −
α

Φ(α)
.

This is a pure-jump subordinator, which follows from limα→∞ φY (α)/α = 0
and representation (4). Note also that (8) holds for all α 6= 0 with ℜ(α) ≥ 0
by analyticity and continuity of Laplace exponents, see Section 5.2.

Let us consider the dichotomy of bounded and unbounded variation for
the process X(t):

1. X(t) is of bounded variation: Y (t) is a CPP,
2. X(t) is of unbounded variation: Y (t) is an infinite activity subordina-

tor.

This can be seen by considering limα→∞ φY (α) = d+ − limα→∞
1

Φ′(α) =

d+ − limα→∞ φ′(α), which is finite in the first case and is −∞ in the second
as was discussed in Section 2. So in the first case we have P(Y (1) = 0) > 0
and in the second P(Y (1) = 0) = 0, which correspond to a CPP and an
infinite activity subordinator respectively.

4. Transform of the stationary workload. Consider the model spec-
ified by (1), where ri ≥ 0 and r1r2 < 1. Recall that X1(t) and X2(t) are
two independent spectrally-positive Lévy processes with Laplace exponents
φi(α), di = −EXi(1) ∈ (−∞,∞), and assume that stability condition (2)
holds. Let Yi(t) be a pure-jump subordinator associated to Xi(t), whose
Laplace exponent φY

i (α) is given in (8). Define two Lévy processes and two
positive constants:

XL(t) = Y1(r2t)− Y2(t), XR(t) = Y1(t)− Y2(r1t),
(9)

pL = d+2 + r2d
+
1 , pR = d+1 + r1d

+
2 .

Their corresponding Laplace exponents for w ∈ iR, w 6= 0 are given by

φL(w) = pL − r2
w

Φ1(w)
+

w

Φ2(−w)
, φR(w) = pR −

w

Φ1(w)
+ r1

w

Φ2(−w)
.

(10)
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Finally, we let Ψ±
L (α) be the Wiener-Hopf factors corresponding to XL(t)

and rate parameter pL. Similarly, Ψ±
R(α) are the Wiener-Hopf factors corre-

sponding to XR(t) and pR.

Theorem 1. The joint transform of the stationary workloads is given

by

Ee−α1W1−α2W2 =
1

(1− r1r2)(φ1(α1) + φ2(α2))
(11)

×

(

p0R(α1 − r2α2)
Ψ−

L (−φ2(α2))

Ψ−
R(−φ2(α2))

+ p0L(α2 − r1α1)
Ψ+

R(φ1(α1))

Ψ+
L (φ1(α1))

)

,

where α1 > Φ1(0), α2 > Φ2(0), and

p0L = d2 + d+1 r2 + d−1 /r1, p0R = d1 + d+2 r1 + d−2 /r2.(12)

It is noted that if d1, d2 ≥ 0 then p0L = pL and p0R = pR. Moreover, if
ri = 0 then di > 0 according to (2) implying d−i = 0. In this case 0/0 in the
definition of p0R, p

0
L is interpreted as 0.

Consider the above systems of queues for r1 = r2 = 0. ThenXR(t) = Y1(t)
and XR(t) = 0 for all t, and pR = d1. From the definition of the W-H
factors we have Ψ−

R(α) = 1 and Ψ+
R(α) = Ee−αY1(ed1 ) = d1

d1−φY
1 (α)

. Plugging

in α = φ1(α1) we obtain Ψ+
R(φ1(α1)) = d1α1

φ1(α1)
, and similarly we obtain

expressions for the other terms. Putting things together we see that (11)
becomes

1

(φ1(α1) + φ2(α2))

(

d1α1
d2α2

φ2(α2)
+ d2α2

d1α1

φ1(α1)

)

=
d1α1

φ1(α1)

d2α2

φ2(α2)
,

which is indeed the transform of the workload in two independent queues.
Another verification of Theorem 1 is given in Section 6.1, where we assume
that X2(t) = −d2t for d2 > 0. For such a (degenerate) system we first
provide a quick alternative derivation of the joint transform and then check
it against Theorem 1.

5. Proof. In this section we prove Theorem 1. The proof consists of
three steps. In Subsection 5.1 we derive a functional equation for the joint
workload transform; in Subsection 5.2 the kernel of that functional equation
is studied, and the functional equation is solved via Wiener-Hopf factor-
ization assuming certain bounds; these bounds are established in Subsec-
tion 5.3.
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Remark 1. Our proof of Theorem 1 is mainly analytic. The result is
however formulated in terms of Wiener-Hopf factors corresponding to pro-
cesses constructed from Yi(t), the ascending ladder time processes. This hints
that there may be a direct probabilistic proof based on fluctuation theory of
Lévy processes, which may provide better insight into the problem and help
in solving other important problems concerning coupled queues and risk pro-
cesses. This type of proof is given in Debicki, Dieker and Rolski (2007) for a
feed-forward network, and remains an open challenge for a general network
as considered in the present paper.

5.1. The functional equation. In this section we derive an equation for
the two-dimensional joint workload transform, which involves two unknown
functions. Identification of these functions is the main problem, which will
be addressed in Subsections 5.2 and 5.3. The following result is based on a
by now standard argument using the Kella-Whitt martingale, see Kella and
Whitt (1992b).

Proposition 1. It holds that

(φ1(α1) + φ2(α2))Ee
−α1W1−α2W2 = (α1 − r2α2)F1(α2) + (α2 − r1α1)F2(α1),

(13)

where α1, α2 ≥ 0 and

F1(α) = E
∗

∫ 1

0
e−αW2(t)dL1(t), F2(α) = E

∗

∫ 1

0
e−αW1(t)dL2(t)(14)

and E
∗ is the expectation in stationarity, i.e. we assume that (W1(0),W2(0))

is distributed as (W1,W2).

Proof. Fix α1, α2 > 0 and define a spectrally-positive Lévy process
X(t) = α1X1(t) + α2X2(t) and a process of bounded variation Y (t) =
(α1 − r2α2)L1(t) + (α2 − r1α1)L2(t), so that Z(t) := α1W1(t) + α2W2(t) =
X(t) + Y (t). Let us first show that ELi(t) < ∞ and hence the expected
variation of Y (t) on finite intervals is finite. Start by noting that

L1(t) ≤ −X1(t) + r1L2(t), L2(t) ≤ −X2(t) + r2L1(t),

see also Kella (2006). Hence (1 − r1r2)L1(t) ≤ −X1(t) − r1X2(t), but it is
known that E|Xi(t)| < ∞. In conclusion,

Mt = (φ1(α1) + φ2(α2))

∫ t

0
e−Z(s)ds+ e−Z(0) − e−Z(t) −

∫ t

0
e−Z(s)dY (s)
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is a martingale for any initial distribution, see (Kella and Whitt, 1992b,
Thm. 2). Considering E

∗M1 = 0 we obtain

(φ1(α1) + φ2(α2))Ee
−α1W1−α2W2

= (α1 − r2α2)E
∗

∫ 1

0
e−Z(s)dL1(s) + (α2 − r1α1)E

∗

∫ 1

0
e−Z(s)dL2(s).

Use the properties of Li(t) to conclude.

Remark 2. The functional equation (13) can be used to derive the
following identity for the means:

(15) r2(d1 + r1d2)EW1 + r1(d2 + r2d1)EW2 =
1

2
(r2φ

′′
1(0) + r1φ

′′
2(0)).

One way is to put α1 = r2α,α2 = α, express F2(r2α), differentiate it at
α = 0, and then to do the same for α1 = α,α2 = 0. Then the above
identity follows by expressing F ′

2(0) from these equations. Note also that if
d1, d2 > 0 then the right side of (15) is r2d1EV1+r1d2EV2, where Vi refers to
the stationary workload in queue i considered alone. It may be an interesting
exercise to prove this relation probabilistically from first principles, at least
for Poisson inputs.

5.2. Wiener-Hopf factorization. Start by noting that the Laplace expo-
nent φi(α) of a spectrally-positive Lévy process is analytic in the right half
of the complex plane and is continuous on the imaginary axis, which can be
shown from (3). Hence the same is true for Φi(α), which is minus a Laplace
exponent according to (7). This equation also implies that ℜ(Φi(α)) > 0 if
and only if ℜ(α) > 0, which is seen by sending x to ∞, and that Φi(α) 6= 0
for α 6= 0. Hence the identity φi(Φi(α)) = α extends from α > 0 to all α with
ℜ(α) ≥ 0. Note also that the functions Fi(α) are analytic on {α : ℜ(α) > 0}
and continuous on the imaginary axis, which follows from their definition
and E

∗Li(1) < ∞. In conclusion, Equation (13) holds for all α1, α2 with
ℜ(α1),ℜ(α2) ≥ 0.

We use a similar uniformization approach as in Cohen and Boxma (1983)
for the special case of compound Poisson input: we consider (13) for α1 =
Φ1(w) and α2 = Φ2(−w), where w ∈ iR lies on the imaginary axis, and
obtain

(Φ1(w)− r2Φ2(−w))F1(Φ2(−w)) + (Φ2(−w)− r1Φ1(w))F2(Φ1(w)) = 0.

Assuming w 6= 0 we multiply this equation by w
Φ1(w)Φ2(−w) to get

(16)
(

−
w

Φ2(−w)
+ r2

w

Φ1(w)

)

F1(Φ2(−w)) =

(

w

Φ1(w)
− r1

w

Φ2(−w)

)

F2(Φ1(w)),
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which immediately translates into

(pL − φL(w))F1(Φ2(−w)) = (pR − φR(w))F2(Φ1(w))

according to (10). Finally, from the Wiener-Hopf factorization (6) we have

(17) pL
Ψ−

R(w)

Ψ−
L (w)

F1(Φ2(−w)) = pR
Ψ+

L(w)

Ψ+
R(w)

F2(Φ1(w)),

which also holds for w = 0 by continuity.
The left side of (17) is analytic in the left-half plane and the right side

is analytic in the right-half plane, and both are continuous and coincide on
the boundary. So one is an analytic continuation of the other, see (Lang,
1999, Thm IX.1.1). Assume for a moment that the so-obtained entire func-
tion is bounded; this will be proven in Subsection 5.3. Then by Liouville’s
theorem (Lang, 1999, Thm III.7.5) it is a constant, call it C.

Let us determine the constant C, by plugging w = 0 in (17). According
to the stability condition (2) at least one of di is positive. If d1 > 0 then
Φ1(0) = 0 and hence C = pRE

∗L2(1), whereas C = pLE
∗L1(1) if d2 > 0.

Note also that for a stationary system

0 = −d1 − r1E
∗L2(1) + E

∗L1(1) and 0 = −d2 − r2E
∗L1(1) + E

∗L2(1),

which yields

E
∗L1(1) =

d1 + r1d2
1− r1r2

, E
∗L2(1) =

d2 + r2d1
1− r1r2

,

and provides the expression for C. Furthermore,

F1(Φ2(−w)) =
p0R

1− r1r2

Ψ−
L(w)

Ψ−
R(w)

, ℜ(w) ≤ 0,

F2(Φ1(w)) =
p0L

1− r1r2

Ψ+
R(w)

Ψ+
L (w)

, ℜ(w) ≥ 0,

where p0L, p
0
R are given in (12). This can be checked by considering three

scenarios di ≥ 0, d2 < 0, d1 < 0 separately.
Considering the first equation we let w = −φ2(α) for α ≥ Φ2(0), so

that Φ2(−w) = α; for the second we let w = φ1(α) with α ≥ Φ1(0). This
immediately yields the functions Fi(α):

F1(α) =
p0R

1− r1r2

Ψ−
L (−φ2(α))

Ψ−
R(−φ2(α))

, F2(α) =
p0L

1− r1r2

Ψ+
R(φ1(α))

Ψ+
L (φ1(α))

.

This together with (13) completes the proof of Theorem 1 under the as-
sumption that the entire function defined by (17) is a constant.
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5.3. Bounds on the entire function. In this section we show that the
entire function defined by (17) is a constant. Consider (14) and observe that
F1(α) and F2(α) are bounded for ℜ(α) ≥ 0. Let X̃L(t) and X̃R(t) be the
processes XL(t) and XR(t), see (9), in the model defined by (1) but with
interchanged indices. That is, we consider the same system with reversed
indexing. Observe that XR(t) = −X̃L(t),XL(t) = −X̃R(t), pR = p̃L, pL =
p̃R and hence

Ψ−
R(−w) = Ψ̃+

L (w), Ψ−
L (−w) = Ψ̃+

R(w).(18)

Therefore, it is sufficient to analyze Ψ+
L(w)/Ψ

+
R(w),ℜ(w) ≥ 0.

Recall the following Spitzer-type identity for a Lévy process XL(t):

(19) Ψ+
L (w) = exp

(

−

∫ ∞

0

∫ ∞

0
(e−pLt − e−pLt−wx)

1

t
P(XL(t) ∈ dx)dt

)

,

see Thm. 6.16 and comments on p. 168 in Kyprianou (2006). Observe also
that for ℜ(w) ≥ 0 we have

∣

∣

∣

∣

∫ ∞

1

∫ ∞

0
(e−pLt − e−pLt−wx)

1

t
P(XL(t) ∈ dx)dt

∣

∣

∣

∣

≤

∫ ∞

1
2e−pLt

1

t
dt < ∞,

∣

∣

∣

∣

∫ 1

0

∫ ∞

0
e−wx(1− e−pLt)

1

t
P(XL(t) ∈ dx)dt

∣

∣

∣

∣

≤ pL.

Hence Ψ+
L(w)/Ψ

+
R(w) is bounded by C1|e

A(w)|, where

A(w) :=

∫ 1

0

1

t

(
∫ ∞

0
(1− e−wx)P(XR(t) ∈ dx)(20)

−

∫ ∞

0
(1− e−wx)P(XL(t) ∈ dx)

)

dt.

5.3.1. Bounded variation case. If both X1(t) and X2(t) have bounded
variation then XL(t) and XR(t) are CPPs and hence

∫ 1

0

1

t
P(XL(t) > 0)dt < ∞,

∫ 1

0

1

t
P(XR(t) > 0)dt < ∞.

This immediately shows that A(w) and hence Ψ+
L(w)/Ψ

+
R(w) are bounded.

5.3.2. The general case. The proof in the general case is based on the
following proposition.
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Proposition 2. There exists a constant C, such that |Ψ+
L (w)/Ψ

+
R(w)|,

ℜ(w) ≥ 0 is bounded by C|w|4 for large enough |w|. In addition,

Ψ+
L (w)/Ψ

+
R(w) = o(w) as w → ∞ along the real numbers.

Proposition 2 together with (18) implies that the entire function defined
by (17) is bounded by a polynomial and hence it is a polynomial itself,
see (Lang, 1999, Cor. III.7.4). Taking limit along the reals shows that this
polynomial is just a constant. The proof of Proposition 2 relies on the fol-
lowing technical lemma.

Lemma 1. For ℜ(z) ≥ 0 it holds that

∫ 1

0

1

t
|1− e−zt|dt ≤ 2 + 2 ln(|z| ∨ 1).

For positive z the bound can be replaced by 1 + ln(|z| ∨ 1).

Proof. For |z| > 1 we write

∫ 1

0

1

t
|1− e−zt|dt =

∫ |z|

0

1

t
|1− e−tz/|z||dt(21)

≤

∫ 1

0

2|tz/|z||

t
dt+

∫ |z|

1

2

t
dt = 2 + 2 ln |z|.

The result is immediate for |z| < 1 and for positive z.

Proof of Proposition 2. For positive w the function A(w) defined
in (20) is bounded from above by

∫ 1

0

1

t
E(1− e−wY1(t);XR(t) > 0)dt ≤

∫ 1

0

1

t
(1− eφ

Y
1 (w)t)dt,

because XR(t) ≤ Y1(t). Recall that φ
Y
1 (w) ≤ 0, and use Lemma 1, to bound

A(w) by 1 + ln(|φY
1 (w)| ∨ 1). Finally, exponentiate and use (8) to establish

that Ψ+
L (w)/Ψ

+
R(w) = o(w).

For w with |w| > 1,ℜ(w) ≥ 0 we mimic the steps in (21) to show that

∫ 1

0

1

t
E

∣

∣

∣
1− e−wXR(t);XR(t) > 0

∣

∣

∣
dt

≤

∫ 1

0

2|w|EX+
R (t/|w|)

t
dt+

∫ |w|

1

2

t
dt ≤ 2EY1(1) + 2 ln |w|.
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A similar bound (with the constant 2r2EY1(1)) can be obtained for the term
involving XL(t). Assuming that EY1(1) < ∞ we have |A(w)| ≤ C + 4 ln |w|
for |w| > 1 and some constant C, which yields the result. If EY1(1) = ∞
then we can easily reduce our problem to the one, where the large jumps of
Y1(t) are removed and hence EY1(1) < ∞.

Remark 3. Our proof does not imply that Ψ+
L(w)/Ψ

+
R(w) is bounded

(unless both Xi(t) have bounded variation), and hence it leaves the possi-
bility that F2(w) → 0 as w → 0, which is equivalent to

∫ 1

0
1{W1(t)=0}dL2(t) = 0

P
∗-a.s. (and similarly for the reversed indexing).

6. Special cases.

6.1. Deterministic drift in one queue. SupposeX2(t) = −d2t with d2 ≥ 0,
so that φ2(α) = d2α. Then X2(t)− r2L1(t) is a non-increasing process, and
so W2(t) = 0 implying L2(t) = r2L1(t) + d2t, and therefore

W1(t) = X1(t)− r1d2t+ (1− r1r2)L1(t).

But then W1(t) is a one-dimensional reflection of X1(t)− r1d2t, and so the
generalized Pollaczek-Khinchine formula gives

(22) Ee−α1W1−α2W2 = (d1 + r1d2)
α1

φ1(α1) + r1d2α1
.

Let us check if this formula coincides with the result of Theorem 1. Note
that Y2(t) = 0 and hence Ψ−

L (α) = Ψ−
R(α) = 1. Also Ψ+

L (α) = pL
pL−r2φY

1 (α)

and Ψ+
R(α) =

pR
pR−φY

1 (α)
. Therefore, we get

Ee−α1W1−α2W2 =
1

(1− r1r2)(φ1(α1) + d2α2)

×

(

p0R(α1 − r2α2) + p0L(α2 − r1α1)
pR(pL − r2(d

+
1 − φ1(α1)/α1))

(pR − (d+1 − φ1(α1)/α1))pL

)

,

which indeed reduces to (22). Let us only check the case when d1 < 0. We
have d+1 = 0, pR = r1d2, pL = d2, p

0
R = r1d2 + d1, p

0
L = d2 + d1/r1 = p0R/r1,

and so the transform reduces to

r1d2 + d1
(1− r1r2)(φ1(α1) + d2α2)

(

α1 − r2α2 + (α2 − r1α1)
(d2 + r2φ1(α1)/α1)

(r1d2 + φ1(α1)/α1)

)

,

which immediately yields (22).



588 O. BOXMA AND J. IVANOVS

6.2. Queues fed by Brownian motion. Suppose φi(α) = diα + α2/2, i.e.
the driving processes are standard Brownian motions with drifts. Then

Φi(α) = −di +
√

d2i + 2α and so

φY
i (α) = d+i +

α

di −
√

d2i + 2α
=

|di| −
√

d2i + 2α

2
,

which corresponds to an inverse Gaussian subordinator. Hence the processes
XL and XR can be seen as differences of two inverse Gaussian processes.
Their respective Laplace exponents are given by

φL(w)= φY
2 (−w) + r2φ

Y
1 (w)=

1

2

(

|d1|r2 + |d2| −
√

d22 − 2w − r2

√

d21 + 2w

)

,

φR(w)=
1

2

(

|d1|+ r1|d2| − r1

√

d22 − 2w −
√

d21 + 2w

)

.

The final step according to Theorem 1 is to identify the Wiener-Hopf factors
corresponding to these Laplace exponents.

6.3. Compound Poisson input. This subsection briefly examines the re-
lation between the general result given in Theorem 1 and the result of Cohen
and Boxma (1983) for CPP inputs. Assume that customers arrive into queue
i with intensity λi and bring iid amount of work distributed as Bi, and the
server speed is si. Suppressing the index i, the Laplace exponent of the
driving process X(t) is

φ(α) = αs− λ+ λEe−αB .

Therefore,
φ(α)

α
= s− λEB

1− Ee−αB

αEB
= s− ρEe−αR,

where ρ = λEB and R has the stationary residual life distribution associated
to B. This further leads to

α

Φ(α)
= s− ρEe−ατ−

R ,

where R is assumed to be independent of the driving process X(t) and hence
of its first passage time τ−x . Note that τ−R has the interpretation of the length
of the busy period in a queue driven by X(t) and started with workload R.
For simplicity we assume that s − ρ > 0 and hence τ−R is a proper positive
random variable, which we denote by U .
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Consider

(23) −
w

Φ2(−w)
+ r2

w

Φ1(w)
= s2 − ρ2Ee

wU2 + r2s1 − r2ρ1E
−wU1

appearing in (16). Note that this expression can be rewritten as (s2 +

r2s1)(1 − zEe−wŨ), where z = (ρ2 + r2ρ1)/(s2 + r2s1) ∈ (0, 1) and Ũ is
a mixture of U1 and −U2. This allows to apply Wiener-Hopf factorization
for the random walk induced by Ũ to decompose (23) into a product of
functions, which are analytic in different half-planes, see Cohen and Boxma
(1983) for details.

Finally, we mention that a similar technique can be used, when both
Xi(t) are Lévy processes of bounded variation (a subordinator minus lin-
ear drift). In this case R can be interpreted as an asymptotic overshoot of
the corresponding subordinator. This technique fails to generalize further.
In general one can use Wiener-Hopf factorization for Lévy processes as is
demonstrated in the present paper, which furthermore provides a uniform
and neat solution, see Theorem 1.
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