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acronyms is provided.
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1. Introduction

Autoregressive moving-average (ARMA) models are fundamental stationary
time series models (stationary here refers to covariance or second order station-
ary and not strict stationarity). The ARMA class is dense in all short memory
stationary series; moreover, the class is parsimonious in that it flexibly generates
a variety of different stationary autocovariance shapes from a few parameters.
Many extensions and variants of ARMA models have been developed to describe
departures from short memory stationary characteristics, such as long memory
autocovariances, periodicities, stochastic volatility (changing variances), mul-
tivariate series and discrete counts. In this paper, we enumerate many of the
ARMA variants, discussing what they intend to achieve, and compare and con-
trast their probabilistic and statistical structures.

The time series literature is by now extensive and many general and spe-
cialized texts exist. For example, Brockwell and Davis (2002), Chatfield (2003),
Shumway and Stoffer (2006), Box, Jenkins and Reinsel (2008) and Cryer and
Chan (2008) are comprehensive course texts for introductory material, empha-
sizing mainly the univariate case. Brockwell and Davis (1991) and Fuller (1996)
are more advanced treatments, the former walking the reader through many
theoretical and conceptual details and the latter focusing on statistical issues.
Texts considering the multivariate case are more limited but include Hannan
(1970), Reinsel (1997) and Liitkepohl (2005). Hamilton (1994) casts the material
from an econometric standpoint.
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As we proceed, citations to detailed references are presented and avenues for
future research are discussed. The last section provides a list of ARMA variant
acronyms — the proverbial alphabet soup. Since the area is so voluminous, this
paper is necessarily incomplete; however, it does study a large portion of the
subject. Some elements of this paper, such as Sections 2 and 3, are well known
but are included for completeness; other aspects, such as Sections 4.2 and 6.2,
are relatively new.

2. ARMA background

We begin with a univariate covariance stationary time series {X;}. Station-
arity requires that F[X;] does not depend on ¢ and that Cov(X,, X¢1p) is
finite and only depends on the “lag” h. For simplicity, we consider the case
where E[X;] = 0; if the series does not have a zero mean, one simply exam-
ines {X; — E[X:]}. Estimation and removal of a general non-zero first moment
via regression methods is typically straightforward; Fuller (1996) is an excel-
lent reference for this endeavor in time series settings. The autocovariance and
autocorrelation of {X;} at lag h are denoted by v(h) = Cov(X¢, Xi4n) and
p(h) = ~v(h)/~(0) respectively.

The series { X;} is said to be an ARMA series with autoregressive order p > 0
and moving-average order ¢ > 0 if it is stationary and a solution to the difference
equation

Xe— 1 Xe 1 — = p Xy p=Ze+ 00 Zs 1+ 40,74 (2.1)

Here, {Z;} is zero mean white noise; specifically, Z; and Z; are uncorrelated
whenever t # s and Var(Z;) = 0. Equation (2.1) is a stochastic linear recursion
driven by white noise. In most cases, the solution to (2.1) is unique (in mean
square) and can be expressed as

Xi= Y vZi s (2:2)

k=—o0

where the ;s are functions of ¢1,...,¢, and 61, ...,6,. The Wold Decomposi-
tion (Wold, 1954); states that all infinite stationary series can be written as (2.2)
plus a so-called deterministic component (the deterministic component, as it is
perfectly predictable from past observations, can be estimated and removed).

When ¢ = 0 in (2.1), {X;} is called an autoregression of order p (AR(p));
when p = 0, {X;} is referred to as a moving-average of order ¢ (MA(q)). Note
that one does not need a ¢ coeflicient multiplying X; or a 8y coefficient mul-
tiplying Z; in (2.1). Introduction of such coefficients would make parameters
non-identifiable as constant multiples of stationary series/white noise are again
stationary series/white noise. Authors are inconsistent about the plus/minus
signs on the ARMA coefficients. For example, Brockwell and Davis (1991) use
(2.1) verbatim, while Box, Jenkins and Reinsel (2008) place a minus sign on
their moving-average coefficients.
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Two ubiquitous ARMA quantities are the autoregressive and moving-average
polynomials ¢ and 6 defined respectively by

d(z)=1—¢rz—-—@pz’ and 6(z) =1+6012+ -+ @27

for a complex-valued z (as roots of the polynomials will arise later, it is necessary
to view polynomials as functions of a complex argument). The ARMA equation
(2.1) is frequently written in the compact form

¢(B)X; = 6(B)Z,, (2.3)

where the backshift operator B applied to X; is defined as X;_;. Extending this
logic to higher powers, we set B¥ X, = X,_;, for k > 0.

The autoregressive and moving-average polynomials play critical roles in the
structure of ARMA solutions. To proceed, two assumptions are necessary. First,
we assume that ¢ and 6 have no common roots. Solutions to (2.1) may not be
unique if ¢ and 6 have a common root. Second, we assume that ¢(z) # 0
when |z] = 1. When ¢(z) is non-zero on the complex unit circle, the ARMA
equation has a unique stationary solution. The s in (2.2) can be determined
by expanding 6(z)/¢(z) into a power series over some annulus containing the
unit circle and equating coefficients — say

P(z) =Y st = : (2.4)

When ¢(z) # 0 for all z with |z| = 1, one has absolute summability of the tys;

ie.,
o0

> Jukl < o0 (2.5)
k=—0o0
(e.g., Shumway and Stoffer, 2006, Chapter 3).

An ARMA model is said to be causal if X; can be written explicitly as a
function of Z;, Z;_4,...; i.e., X; cannot depend on Z;y; for any £ > 1 and
Y = 0 for all £ < 0. A fundamental result is that ARMA models are causal
if and only if ¢(z) # 0 for all z with |z| < 1. For example, causality of the
first-order autoregression (AR(1)) model

X, =0X, 1+ 2, (2.6)

takes place when |¢| < 1 (parameter subscripts are omitted for first order mod-
els). Stationary solutions to the AR(1) equation do exist when |¢| > 1; for

example
X, = Zivk
-yl
k=1

satisfies (2.6). As X; depends on future Z;s here, this solution is non-causal
and is frequently discarded (see Breidt, Davis and Trindade (2001) for an ex-
ception). Stationarity and causality are frequently confused (Hamilton (1994)
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is a prominent example). When ¢ = +1, no stationary solution to the AR(1)
equation exists.

It is possible for two distinct sets of ARMA parameters to give the same
autocovariance function (at all lags). A necessary and sufficient condition for
an ARMA model to be identifiable through its autocovariance function (that
is, to a second order) is the so-called invertibility condition that 6(z) # 0 for
all z with |z| < 1. ARMA model causality and invertibility is typically assumed
in statistical practice. If the model is not causal and/or invertible, one can
change the ARMA parameters to those of a causal and invertible model without
altering any autocovariances (Chapter 4 of Brockwell and Davis (1991) provides
the construction).

Zero mean time series models are frequently compared via their second mo-
ment structures. An expression for the ARMA autocovariances can be obtained
from (2.2):

y(h) =0 Y Urtisn: (2.7)

k=—o0

Further, (2.5) and (2.7) give

oo

doohm<a® Y >

h=—o00 h=—o00 k=—o0

VeVt n

—02< i |¢k|>2 < oo.

k=—o0

Such summability is typically referred to as short memory in the literature.
Observe that any ARMA series where ¢(z) is non-zero on the complex unit
circle has short memory. It is known that when ¢ has a root on the complex
unit circle, no stationary solution to the ARMA equation exists (Problem 4.28
in Brockwell and Davis (1991) states this — the accompanying solution is non-
trivial). In short, ARMA models are good stationary short memory time series
models. Some of the variants below are designed to induce long memory (also
known as long-range dependence) into the model. It is important to note that,
in practice, checking assumptions is an essential aspect of model development.

For a causal ARMA model, a difference equation for v(h) can be obtained
by multiplying both sides of (2.1) by X;_j for h > 0 and taking expectations.
Invoking causality, one gets

v(h) = dry(h = 1) + -+ dpy(h = p), (2.8)

for h > ¢. Hence, v(-) obeys a pth order linear difference equation. Solutions
to (2.8), in the case where ¢(z) has no repeated roots, are linear combinations
of geometric sequences. In fact, autocovariances of causal ARMA models decay
geometrically in that |y(h)| < kr~" for some k < oo and 7 > 1 (one might say
that a causal ARMA model has “very short memory”). The largest possible r
can be taken as the magnitude of the largest root of ¢. The initial conditions in
(2.8) needed to identify all autocovariances are

y(h) = dry(h— 1)+ —p) +0> S Ok, h<q (29

k<j<q
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Example ARMA Autocorrelations

10

Autocorrelation
04

= Il

Fic 1. Autocorrelations of the causal and invertible ARMA(3,2) series when ¢1 = 1/2, ¢p2 =
1/3, ¢p3 = —1/3, 01 =1/2, 62 = —1/3, and 0% = 1.

Here, the convention 6y = 1 is made. Simple explicit expressions for ARMA
autocovariances are available for all moving-averages, autoregressions of first
and second order, and ARMA(1,1) models. Explicit expressions for ARMA au-
tocovariances for higher order models are not available in general; for these
reasons, ARMA autocovariance evaluation is typically a numerical task (see
Tunnicliffe-Wilson (1979) for an efficient algorithm). Figure 1 plots the auto-
correlations of the causal and invertible ARMA(3,2) series when ¢; = 1/2,
o =1/3, ¢p3 =—1/3,0; =1/2,0, = —1/3, and o2 = 1. Notice how quickly the
autocorrelations decay to zero with increasing lag.

Stationary series can be equivalently described in the spectral (Fourier) do-
main. This is because every stationary autocovariance v(-) admits the spectral
representation

v(h) = /[_ )eih’\dF()\), (2.10)

where F' is a symmetric distribution function on [—7,7): F(\) is nondecreasing
in A\, F(—m) = 0, F(mr) = ~(0), and dF(\) = dF(—\) for A € [0,7]. Here,
i=+/—1.
In the case where 7(-) has short memory, a spectral density exists in the sense
that (2.10) becomes
A= [ e pan

—T
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and the spectral density takes the form

1 —
FO) = 5= D0 e ().
Note that f(\) is real, symmetric in A, and non-negative.
The ARMA spectral density is known to be
0_2 |9(67’L>\)|2
N=———— = -1 <A
MW= rjoemp TTEAST

which is a rational function of A (the ratio of two polynomials). Since AR and/or
MA spectral densities can each approximate any spectral density uniformly over
A € [—m,m) and the spectral density determines the autocovariances, AR and
MA series are dense in the class of stationary series.

Akin to moment generating functions in probability, spectral methods provide
a convenient isomorphism in stationary time series analysis. Some results are
easily proven in the spectral domain, but are considerably more difficult to
establish in the time domain (the reverse is also true, so it is wise to be proficient
in both domains). Consider, for example, a proof of the fact that the sum of two
independent ARMA series is again ARMA. A spectral argument is merely that
the sum of two rational functions is again rational; a time-domain argument is
considerably more involved. Also, until the work of Ansley (1979), spectral-based
approximations to the Gaussian ARMA likelihood dominated the literature.
Today, Gaussian ARMA likelihoods can be rapidly evaluated with established
time-domain algorithms (which also provide the exact likelihood).

Parameter estimation in ARMA models can be performed via moment, least
squares, and Gaussian maximum likelihood methods. All methods work well for
AR(p) models and give asymptotically equivalent estimators. Here and in what
follows, we assume that the ARMA orders p and ¢ are known. If this is not the
case, optimizing a likelihood penalized by some selection criterion such as the
AIC or BIC frequently gives consistent estimates of the AR and/or MA orders
(Brockwell and Davis (1991) discuss this issue in detail).

We will not elaborate on least squares methods here. Moment estimation
techniques for AR(p) models simply plug the sample autocovariances

Y(h) =

S|

n—h
S (X~ X)(Xiin - X) (2.11)
t=1

into (2.9) and solve for the resulting parameter estimators. Here, X = 31" | X;/n
and X7,..., X, is the data sample. The denominator n is used in (2.11) instead
of n — h for technical reasons rooted in non-negative definiteness of the sample
autocovariance function. The moment estimators for causal AR(p) models are
asymptotically normal and \/n-consistent; these aspects are quantified in Fuller
(1996).
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Likelihood methods are preferred when the ARMA model has a moving-
average component as solutions to moment equations based on sample autoco-
variances may not exist. Optimization of the likelihood function is a numerical
task, easily accomplished with gradient step and search methods. No simple
explicit closed forms for the likelihood estimators exist, even in the simplest
cases (for example, the AR(1) likelihood estimator of ¢ requires solving a cubic
equation). Hence, the major statistical issue entails rapidly evaluating the like-
lihood. Let & = (¢1,...,Pp;01,...,04;0°%) be the p + g + 1-dimensional vector
of ARMA parameters and let L(a) denote the Gaussian likelihood of a causal
and invertible ARMA model. An orthogonal decomposition known as the Inno-
vations Algorithm provides

~

(X — X,)?
Ut ’

n n

—2log(L(e)) = nlog(2m) + ZlOg(’Ut) + Z

t=1 t=1

(2.12)

where )A(t = P[X|X;_1,...,X1] is the best one-step-ahead prediction of X; from
linear combinations of Xy, ..., X;_1 and v; = E[(X} —)A(t)2] is the unconditional
mean squared error. Because of (2.12), likelihood optimization boils down to
rapid computation of {X,} and {v}.

For AR(p) models and ¢ > p,

)?t :¢1Xt71+"'+¢pxt7p and V¢ :0'2.

This forecasting relation makes the autoregressive class extremely attractive
to practitioners. Computing X; and v; for ¢ < p is also straightforward (see
Chapter 5 of Brockwell and Davis (1991)). As there is no asymptotic loss of
precision in studying a conditional likelihood of X,11,..., X, given X1,..., X,
“edge-effects” from the first p observations can be ignored; this tactic will be
used below.

Forecasting recursions are more complicated for ARMA models with a moving-
average component. A classic result of Ansley (1979) provides, for ¢ > max(p, q),

p q
X = Z¢’kXt7k +Zet,j(Xt7j - Xi—j), (2.13)
k=1 j=1

along with simple recursions for v; and the coefficients 60, ; for 1 < j < gq.
Notice the similarities between (2.13) and (2.1). For causal and invertible ARMA
models, it can be shown that 6, ; converges at a geometric rate to 6, for each
j with 1 < j < ¢ and that v, converges monotonically downwards to o? at
a geometric rate. Because of this, there is no asymptotic loss of precision in
examining a likelihood of Xax(p,q)41; - - - Xn conditional on Xi,..., X
using the asymptotic relations

max(p,q)

p q
Xt = Z (katfk + Z oj(thj - thj) and Vg = 0’2 (214)
k=1 J=1
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for t > max(p,q). This said, the reader is warned that asymptotic proofs for
ARMA models with moving-average components are usually much harder than
those for autoregressive series. Shumway and Stoffer (2006, Chapter 3) and
Fuller (1996) are comprehensive ARMA estimation references that elaborate
on much of the above.

ARMA models can be also cast in a state-space (dynamic linear models)
framework. Observe that (2.1) can be written as

T r—1
X = Z¢th—j + 2+ ZHth—j t=>m,

Jj=1 Jj=1

where r = max{p, ¢ + 1} and some of the ¢;s and/or 6;s are taken as zero. Let
W; =(1,0,0,...,0) and

Xy
P Xo 1+ 0 X1 02+ 012
o= | Xt + 0 Xirp2+ 022+ 40012y

¢rXt—l + 97‘—1Zt

Then for t > r,

Xy = Wy,
a1 = Toy + R,
with
¢1 1 -+ 0 1
: A 61
T = : : - |; R= . 5= Zita,
¢r—1 0 - 1 :
¢ 0 - 0 0, .

defines one convenient ARMA state-space representation (see Durbin and Koop-
man (2001, Pages 38-47) and Harvey (1989)). State-space representations have
aided Bayesian approaches to ARMA parameter estimation. For more here, see
Marriott et al. (1996), West and Harrison (1997), and Prado and West (2010).

Two generalizations of ARMA models that will not be extensively dealt with
later are worth mentioning here: models that accommodate covariates and non-
zero means and heavy tailed models. A model that allows X; to have the non-
zero mean F[X;] = u; simply examines the difference equation

p q
Xp— = Z G Xk — pe—r) + Ze + Z@th,k.
k=1 k=1

When p; is posited to be of the form pu; = H'u;, where H is a known r x 1
regression design vector and u; is an r-dimensional vector of covariates at time
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t, the model is frequently referred to as an ARMAX model, with X standing for
exogenous. Hannan (1976), Chan (2002, Page 138), and Shumway and Stoffer
(2006) discuss ARMAX issues further. Because the analysis of ARMAX models
is similar to that for ARMA models, we work with the zero mean case in what
follows.

In some fields (especially finance, internet traffic, and telecommunications),
the innovations {Z;} may not have finite polynomial moments of all orders
(or even second moments). Kokoszka and Taqqu (1995), for example, consider
ARMA models when {Z;} is a stable infinite variance sequence. Davis and
Resnick (1996) rigorously quantify notions of (2.2) when {Z;} has an infi-
nite second moment and go on to analyze one such nonlinear stationary se-
ries that is termed a bilinear process and is related to first order autoregres-
sive models. A literature on extreme values of ARMA models (Rootzén, 1986;
Chernick, Hsing and McCormick, 1991; Scotto, 2007, among others) is tangen-
tial here and relates the tail distribution properties of Z; to those of X;.

3. ARIMA models

Some time series exhibit behavior that is not adequately described by ARMA
models. Nonstationary series with random-walk type characteristics can often be
transformed to stationary series by differencing. This section discusses the class
of autoregressive integrated moving-average (ARIMA) models. ARIMA models
have the property that the dth order difference of {X;} is an ARMA series.
Specifically, if d is a non-negative integer, { X;} is said to be an ARIMA(p, d, q)
series if {Y;}, defined for a fixed t > d by Y; = (1—B)?X,, is a causal ARMA (p, q)
series. Hence, {X;} satisfies a difference equation analogous to (2.3):

¢(B)(1 — B)*X, = 0(B)Z,

where {Z;} is zero mean white noise with Var(Z;) = o2. As before, ¢(z) and
0(z) are polynomials of degree p and ¢ respectively, with no common roots, and
é(2) # 0 on |z| = 1. Since ¢(2)(1 — 2)? has a zero of order d at z = 1, it follows
that {X;} is stationary if and only if d = 0. The I in the ARIMA acronym
stands for integration (or summation in discrete time). When d = 1, one has
the random walk type representation

t
Xe=Xo+) Vi,
k=1

where {Y;} is ARMA.

A common modeling strategy successively differences the series until a differ-
ence order d (assumed minimal) is found where {(1 — B)?X;} has the rapidly
decaying sample autocovariances indicative of an ARMA series whose AR poly-
nomial is root free inside and near the unit circle. As was the case with ARMA
series, checking model assumptions is essential. Figure 2 shows sample autocor-
relations of an ARIMA(3,1,2) series of length 1000 whose ARMA coefficients are
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Example ARIMA Sample
Autocorrelations

100
|

095
|

085
|

075
|

T
o 10 20 30 a0

Lag h

Fic 2. Sample autocorrelations of the causal and invertible ARIMA(83,1,2) series with d =1,
61 =1/2, ¢ =1/3, d3 = —1/3, 01 = 1/2, 02 = —1/3, and o = 1.

taken as those used in Figure 1. The autocorrelations decay to zero much slower
than those of the ARMA(3,2) series. Here, true stationary autocorrelations do
not exist as the ARIMA model is not stationary. Rather, the theme is that if
an ARIMA series were to be misspecified as stationary, sample autocorrelations
with such a structure would arise.

Differencing also removes some trends in the mean of the series. Because
a polynomial trend of degree d — 1 can be added to the series without alter-
ing dth order differences, ARIMA methods are often uses to eliminate poly-
nomial trends in the series. This said, ARIMA models still adequately de-
scribe many trend-free series. Comprehensive discussions of ARIMA models
can be found in Brockwell and Davis (1991), Shumway and Stoffer (2006) and
Box, Jenkins and Reinsel (2008).

Parameters in ARIMA models are easily estimated: simply apply the ARMA
estimation methods above to {(1—B)?X;}. While such a scheme shortens the se-
ries length by d observations (one cannot define (1—B)?X; for ¢ < d), no asymp-
totic loss of precision is incurred. For a comprehensive discussion of ARIMA
estimation, see Chapter 7 of Box, Jenkins and Reinsel (2008).

4. Periodic and seasonal ARMA models

Many observed series display periodicities in their autocovariance structure. For
example, day-to-day precipitations on the Pacific Coast of the United States are
strongly correlated during the summer where rain is infrequent and less corre-
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lated during the winter when fronts pass through the region in rapid succession.
Temperature variances in Miami, FL. are some three times greater during winter
months than they are during summer months. The ARMA models of Section 2
are stationary and do not describe periodic features. This section considers two
ARMA variants devised to describe periodic behavior: seasonal autoregressive
moving-average (SARMA) models and periodic autoregressive moving-average
(PARMA) models. The PARMA class has yet to be popularized by any main-
stream textbook but deserves more attention in our opinion.

4.1. SARMA models

For a known period 7', the SARMA idea is to drive an ARMA equation at data
taken at multiples of T'. The difference equation governing the model is

Xe—01 Xy 77— =Xy pr =2y + 01 Zy 1+ -+ 0427y, (4.15)

or in compact form, ¢(BT)X; = §(BT)Z,. The autocovariances of solutions to
(4.15) have the property that v(h) = 0 unless h is a multiple of T', which is not
a feature commonly exhibited by series in practice. Remedies to this typically
allow {Z;} to be another ARMA series instead of white noise, say

¢"(B)Zy = 0" (B)et, (4.16)

where {e;} is zero mean white noise with variance o2 and the superscript *
indicates that the AR and MA polynomials in (4.15) and (4.16) are in general
different. Combining (4.15) and (4.16) gives

¢(BT)¢" (B)X; = 0(BT)0"(B)e;. (4.17)

The autocovariances of this “two-layered” SARMA model tend to be relatively
larger at lags that are multiples of 7', but they will not be zero at other lags
in general. Figure 3 plots the autocorrelations of a SARMA model with T' = 4.
Here, the model in (4.15) is taken as that which produced Figure 1 and the
component in Equation (4.16) is taken as AR(1) with ¢ = 1/2. Note that the
autocorrelations at lags 4 and 8 are larger than their preceding neighbors, i.e.,
autocorrelations at lags 3 and 7.

The SARMA acronym is perhaps a misnomer as solutions to (4.17) do not
have periodic features in a strict sense. In fact, (4.17) is an ARMA model with
autoregressive order pT + p* and moving-average order ¢T" + ¢* (most of the
coefficients in this representation are zero, however); here, p* and ¢* are the
autoregressive and moving-average orders in (4.16). It follows that SARMA
series are actually stationary.

One method of SARMA parameter estimation is done in layers. First, a good
model is fitted to the autocovariances ¥(0),5(T),~5(2T),.... A second layer is
then chosen to describe 7(1),...,5(T — 1). A better scheme maximizes the
ARMA (pT + p*, T + q*) Gaussian likelihood of the two-layered model (that
is, jointly) imposing constraints on the parameters that entail that the AR
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Example SARMA Autocorrelations
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Fic 3. Autocorrelations of the SARMA series with T = 4, Layer One Parameters ¢1 = 1/2,
¢2 = 1/3, ¢p3 = —1/3, 61 = 1/2, 02 = —1/3, and Layer Two Parameters ¢1 = 1/2 and

O =

and MA polynomials factor as in (4.17). See Brockwell and Davis (1991) and
Box, Jenkins and Reinsel (2008) for more on estimation of SARMA parameters.

SARMA methods have proven useful in modeling economic processes. This
is because the dependence structure of such series is most prominent at lags
that are multiples of T'. January housing starts, for example, are more heavily
correlated with housing starts of the previous January than with housing starts
of last month (December). SARMA methods are not very useful in describing
periodic series whose autocovariances decay monotonically in lag. For example,
in describing daily temperature anomalies about a periodic mean (take T =
365), the SAR(1) difference equation X; = ¢X; 1 + Z; is not useful as it
attempts to explain today’s temperature fluctuations from anomalies 365 days
ago, a dubious task considering the poor quality of weather forecasts even a week
in advance. In many settings, one needs a model that has periodic features and
where the most recent observations are included in the autoregressive component
of the difference equation. This brings us to PARMA series.

4.2. PARMA models

PARMA methods allow the ARMA coefficients to vary periodically with time.
The difference equation governing the PARMA model is

Xi—n()Xio1— - —0p(O)Xi—p = Z1 + 1 (1) Zp—1 + - -+ 04(t) Zi—y  (4.18)
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and the coefficients satisfy ¢;(t +T) = ¢;(t) for 1 <i <pand 8;(t+T) = 6;(t)
for 1 < j < g. In this setting, {Z;} is zero mean periodic white noise: Z; and Z;
are uncorrelated when t # s and Var(Z;) = o2(t) > 0 with o?(t +T) = ().
One can allow p and ¢ to vary periodically if needed (Lund and Basawa, 2000;
Vecchia, 1985b); we will not do this here.

A notation that emphasizes seasonality uses X,,7y, as the data point during
the vth season of the nth cycle of data. Here, v is a seasonal suffix that satisfies
1 < v <T; we allow a Oth cycle of data so that X; denotes the first observation
(season 1 of cycle 0). The PARMA model in (4.18) is equivalently written as

p q
XnT+u - Z (bk(V)XnT—i-V—k = Z’ﬂT-‘rV + Z 9]‘ (V)ZnT—i-V—ja (419)
k=1

j=1

where {Z,;} is zero mean periodic white noise with Var(Z,r4,) = o?(v).

PARMA models were first used in Hannan (1955); Jones and Brelsford (1967),
Pagano (1978) and Troutman (1979) popularized the idea further. Most promi-
nent introductory time series texts discuss SARMA models but omit PARMA
models (Brockwell and Davis, 1991; Box, Jenkins and Reinsel, 2008; Shumway
and Stoffer, 2006; Cryer and Chan, 2008). This omission is unfortunate as
PARMA models, unlike SARMA models, are actually periodic. Specifically,
PARMA autocovariances satisfy

COV(Xt+T, X5+T) = C‘OV(AX}7 XS) (420)

for each integer ¢ and s. In other words, each season v has its own station-
ary covariance function. Let v, (v) = Cov(X,r4v, Xnr4v—n) for b > 0 and
v € {1,...,T}. Shao and Lund (2004) present an algorithm that rapidly com-
putes the ~y,(v)s. Figure 4 shows the seasonal autocovariance function of a
PARMA(2,1) model with T" = 4. Here, the model coefficients used are listed
in Table 1. This model is causal and invertible (as defined below). Observe that
the autocovariances decay to zero quickly in each season and that there are
differences in the seasonal autocovariance functions.

PARMA series can be viewed as T-variate stationary series. To see this, block
{ X140} into T X 1 vectors via

Xn = (XnT+1, A 7XnT+T)/-

Gladyshev (1961) proved the intuitive result that {X,,} is T-variate stationary
if and only if (4.20) holds. While this result is convenient in proofs, periodic
series have additional structure beyond general multivariate stationarity: for a
fixed n, the components of X, are time-ordered. Hence, PARMA series are
T-variate stationary series where the T' components within each X, are also
time ordered. This aspect has practical ramifications. For example, consider
forecasting a July temperature from past monthly temperatures (7" = 12). A
suboptimal forecast (the naive multivariate forecast) is obtained by extracting
the 7th component of the 12-dimensional forecast from data that contains all
monthly temperatures occurring in the previous years. This forecast does not
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Fic 4. Autocovariances of the PARMA model whose coefficients are listed in Table 1.

TABLE 1
PARMA(2,1) coefficients
Semon v 0] 6200 B0) 0
1 0.8 0.1 0.5 1.0
2 0.2 0.7 0.3 9.0
3 -0.2 0.7 -0.3 9.0
4 -0.8 0.1 -0.5 1.0

contain January-June temperatures of the current year, arguably some of the
most important regressands. A better forecast is obtained by using the PARMA

model setup above.

The PARMA model in (4.19) can be written in the multivariate ARMA form

*

*

p q
X, — Z X =002, + Z ©;iZnj;

k=1

J=1
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where Z,, = (Znr41, -+, Znrer)' is multivariate white noise with a diagonal
covariance matrix. Construction of the coefficients ®,, 0 < { < p*, Oy, 0 </ <
q*, the model orders p* and ¢* in terms of the model coefficients in (4.19) and p
and ¢ is detailed in Vecchia (1985b). From this, one can extract conditions for
when a causal and invertible solution to the PARMA difference equation exists.
For example, unless det(®(z)) = 0 for some z on the complex unit circle, where

B(2) =B — Pz — - — B, 2P,

the PARMA equation will have a unique (in mean square) solution that may be
written as

XnTJrv: Z wk(V)ZnTJrufkv

k=—0o0

with Y72 [tk (v)] < oo for each season v. Causality conditions for PARMA
series are simply that det(®(z)) # 0 for all z with |z| < 1. Expressing this condi-
tion in terms of the PARMA model coefficients is a difficult unresolved problem,
though it is known that a PAR(1) model is causal if and only if | Hle (V)| < 1.
Explicit conditions for causality of a PAR(2) model are unknown (explicit con-
ditions for AR(2) causality are |¢p2| < 1, ¢1 + ¢2 < 1, and ¢o — ¢1 < 1).
Estimation of PARMA model coefficients parallels that for ARMA models.
Specifically, moment methods work well in PAR settings (see Pagano (1978)).
Maximum likelihood methods are considered in Vecchia (1985a) and Basawa
and Lund (2001) and are better for models with a moving-average component.
The Innovations likelihood equation (2.12) still holds but (2.14) is modified to

P q

Xurro = Y okW0)Xnru—k + D 050 Xnrss—j = Xarv—j)
k=1 j=1

and v,r4, = 02(v) for nT + v > max(p, q).

A practical issue with PARMA models lies with parsimony. For example, a
PAR(1) model for daily temperatures (ignoring leap years and taking 7' = 365)
has 365 autoregressive parameters and 365 white noise parameters. Jones and
Brelsford (1967) suggest constraining PARMA parameters to be a Fourier series
with a few harmonics. This tactic works well with meteorological data, where
seasonal changes in the coefficients are relatively “smooth”. Wavelet expansions
can be considered if season to season changes are more abrupt (e.g. Vidakovic,
1999). Lund, Shao and Basawa (2006) and Anderson, Tesfaye and Meerschaert
(2007) develop an asymptotic theory of parameter estimation for PARMA mod-
els having general parameter constraints.

5. The ARCH/GARCH paradigm

The models considered so far have been built from homoscedastic (constant
variance) errors or periodic homoscedastic errors. Yet, many series, particularly
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those in financial settings, display periods of large local variabilities followed
by relative sojourns of tranquil behavior. The autoregressive conditional het-
eroscedastic (ARCH) model of Engle (1982) and the generalized autoregressive
conditional heteroscedastic (GARCH) model of Bollerslev (1986) were intro-
duced to describe such behavior. ARCH/GARCH models permit the conditional
variance of the next observation to depend on the last few observations, thus
allowing the conditional variance to change over time while leaving the uncondi-
tional variance constant. These models are well suited for financial series where
highly variable observations cluster in time. As risk is a key component in many
financial decisions, ARCH/GARCH models have become staples for forecasting
volatility changes in the financial markets.

It is common to examine the log price ratios in finance. Specifically, let P; be
the price of an asset at time ¢ and let X; = log(P;/P;—1). An ARCH(p) model
for {X;} obeys

Xt = O'tZt
0F = do+nXP+ o+ o X, (5.21)
where ¢o, ¢1,...,¢p > 0 and {Z,} is zero mean unit variance independent and

identically distributed (iid) noise, independent of {X;}. Thus, an ARCH(p) se-
ries models log price ratios as noise with a time-varying conditional variance
depending on the squares of the p previous log price ratios. From the upper
equation in (5.21), it is easily seen that {X;} is uncorrelated (assuming that
moments exist). However, the squares of an ARCH process will be dependent,
implying that ARCH series cannot be iid or have marginal Gaussian distribu-
tions. Combining the two equations in (5.21) gives

XP=Z8(po+ 0 X7+ + X7 ),

from which one can show that {X?} is stationary when all roots of 1 —¢y2—---—
¢pzP lie outside the complex unit circle. This solution is causal in the sense that
X; does not depend on Z;41, Z¢42, . . .. In the causal case where {Z,} is iid, {X;}
is strictly stationary (i.e., (X1,...,Xg) and (Xi4p,..., Xk1n) have the same
joint distribution for all positive integers k and integers h). From the assumed
nonnegativity of the ¢;s, all roots of 1 — @12 —- - - — ¢, 2? lie outside the complex
unit circle if and only if ¢1 + - -+ + ¢, < 1. When this inequality holds, {X,} is
zero mean strictly stationary noise with Var(X;) = (1 —¢1 — -+ — ¢,) "¢ and

Var(Xe|Xi—1,..., Xep) = o+ 01 X7 1 4+ 0 X7, (5.22)

Several properties of an ARCH(1) process deserve mention. If ¢; € [0, 1),
then E[X?] < co and {X,} is strictly stationary noise that can be expressed in
the causal form

1/2
Xi=| %o Z¢{Zt22t2—1 e ZE
j=0
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While the marginal distribution of X; is symmetric about zero, it is also lep-
tokurtic in that its kurtosis is high (the fourth central moment is greater than
three times the second central moment). If ¢; € (0,371/2), fourth moments of X;
are finite and {X?} has the AR(1) autocorrelation form Corr(X7?, X2, ) = ‘1h|.
When ¢; € [371/2,1), {X?} is strictly stationary but has an infinite variance.

Moving-average components were introduced in the ARCH model for par-
simony (a large p would otherwise frequently be needed), giving the GARCH
(generalized ARCH) model. In a GARCH(p, ¢) model, the second equation in
(5.21) is modified to

p q
of =0+ Y X+ Y 0501 (5.23)
k=1 j=1

A GARCH(p, q) series is strictly stationary noise whenever ¢1 + -+ + ¢, < L.
However, as with ARCH series, squares of a GARCH series may be correlated.
A GARCH series is causal and has the finite variance

bo
l—gr——p—0—--— 0,

if and only if ¢1 + -+ ¢p + 61 + --- + 60, < 1. GARCH expressions for
Var(X:|X¢—1,...,Xt—¢) are not as simplistic as those in the ARCH case of
(5.22), but recursions that resemble (2.13) can be derived (Aknouche and Guer-
byenne, 2006). Figure 5 shows autocorrelations of the square of a GARCH(1,1)

Var(X,;) =

Example Autocorrelations of the Square of a GARCH Process
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F1c 5. Autocorrelations of the square of a GARCH(1,1) series with ¢o = 0.01, 1 = 0.5, and
01 =0.2.



S.H. Holan et al./The ARMA alphabet soup 250

series with parameters ¢9 = 0.01,¢1 = 0.5, and 61 = 0.2 (of course, autocorre-
lations of the non-squared series are zero).

Estimation of parameters in a causal and invertible GARCH model can be
done via maximum likelihood. Suppose for instance that {Z;} is Gaussian. In
this case, the marginal distribution of X; cannot be Gaussian (otherwise {X;}
would be iid); however, the conditional distribution of X; given X; 1, X; o, ...,
(the infinite past) is Gaussian. Hence, an approximate conditional likelihood L

of all model parameters «, conditioned on X7, ..., X,,, where m = max(p, q),
is
L) = [] foaXilXia,. .. Xim). (5.24)
t=m-+1

In (5.24), fo(X¢|Xt—1,..., Xt—m) is the conditional density of X; given X; 1,
ooy Xt—m. When {Z;} is Gaussian, fo can be taken as a Gaussian density
with zero mean. For an ARCH model with ¢ > p, the conditional variance
Var(X¢|X;—1,..., Xi—m) coincides with the right hand side of (5.22). For gen-
eral GARCH processes, Var(X;|X;—1, ..., X¢{—m) can be approximated, without
asymptotic loss of precision in the resulting likelihood estimators, by 1?, which
is recursively defined by

P q
M=o+ Y ok X7 i+ >0,
k=1 j=1

with the understanding that 7, = X; = 0 for ¢ < 0. In some financial appli-
cations, a non-normal and/or heavy-tailed fq distribution is preferred. Non-
normal parametric choices for fo include the ¢, double exponential, and gener-
alized double exponential distributions.

GARCH models have been generalized to allow positive and negative re-
turns to impart different volatility effects. For example, the exponential GARCH
(EGARCH) (Nelson, 1991) model allows for asymmetric return dynamics. This
model is governed by

p q
* *X* + Xt *
=g+ > o R Xk S,
k=1

Ot—
- t—k =

where h; = log(c?), the ~; are nonnegative, and the superscript * is placed on
the ARMA coefficients to signify that they possibly differ from those in (5.23)
because of the logarithm. In this setup, when X, j is positive (i.e., there is
“good news”), one can regard the total effect of X;_j as (1 + 7%)|X;—x|; when
X:—k is negative (i.e., there is “bad news”), one can regard the total effect of
Xtk as (1 —9%)| X¢—k|. See Zivot and Wang (2006) for further discussion.
Another GARCH variant is the IGARCH model of Engle and Bollerslev (1986).

Analogous to ARIMA series, a unit root is placed in the model by requiring
that ¢1 + -+ ¢p + 601+ --- + 6, = 1. IGARCH models are not stationary, but
produce sample paths that have relatively longer sojourns of high variability
in comparison to causal GARCH series. Mikosch and Starica (2004) is a good
recent reference about this process.



S.H. Holan et al./The ARMA alphabet soup 251
5.1. Comments and open problems

Similar to models built from homoscedastic errors, checking assumptions is vital.
Much current research examines multivariate GARCH (MGARCH) models (see
Section 7.2). Several open problems, as detailed by Bauwens, Laurent and Rom-
bouts (2006) and Silvennoinen and Terasvirta (2009), exist in this area. These
include: developing more flexible specifications of the MGARCH conditional cor-
relation structure, developing two and higher step-ahead forecasting techniques,
quantifying asymptotic properties of maximum likelihood estimates, and devel-
oping multivariate diagnostic tests. Also, estimation for multivariate GARCH
series with a large dimension and intricate conditional correlations merits further
consideration (Chib, Nardari and Shephard, 2006; Engle, 2002). Several other
variants of the ARCH (GARCH) model have been proposed; Bollerslev (2008)
provides a comprehensive glossary that introduces many of these models.

6. Long memory models

As Section 2 shows, ARMA models have short memory autocovariances in that
|v(h)| decays to zero at a geometric rate in h. Situations where autocovariances
decay more slowly arise in econometrics, hydrology, and other scientific disci-
plines. This section considers ARMA type models that allow for longer mem-
ory autocovariances, including autoregressive fractionally integrated moving-
average (ARFIMA) models and ARFIMA variants that describe seasonal char-
acteristics or changing variances. Although multivariate and continuous-time
long memory ARMA models exist, for example the vector ARFIMA (VARFIMA)
model of Ravishanker and Ray (2002) and the continuous-time autoregressive
fractionally integrated moving-average (CARFIMA) model (Tsai and Chan, 2005;
Brockwell and Marquardt, 2005; T'sai, 2009), we restrict our discussion to discrete-
time univariate processes.

Several definitions of long memory (also termed long-range dependence) have
been proposed and studied (see Palma, 2007, Chapter 3). For us, long memory
has the Section 2 meaning that Y_,;~ , [y(h)| = oo

6.1. ARFIMA models

The series {X;} is called an ARFIMA(p, d, q) process if it satisfies
¢(B)X; = 6(B)(1 — B)~"Z, (6.25)

where —1/2 < d < 1/2. As before, we assume that ¢ and 6 have no common roots
and that {Z;} is zero mean white noise with variance ¢2. The quantity (1—B)~¢
is the fractional differencing operator defined by the binomial expansion

oo

F]—l—l ’

Jj=
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where T'(+) is the usual gamma function with the convention that I'(z) =
I'(1+ x)/z for x € (—=1,0). The ARFIMA process was originally proposed by
Granger and Joyeux (1980) and Hosking (1981).

If the zeros of ¢(-) lie outside the complex unit circle and d € (—-1/2,1/2),
(6.25) has the unique zero mean stationary solution

Xi= > vZik (6.26)

k=—o00

where the ;s are determined by expanding the ratio
U(z):= Z Pzt =

into a power series and equating coefficients (it is instructive to compare this to
(2.4)). Further, if ¢(-) has no roots inside the complex unit circle, then (6.26) is
causal in that ¢, = 0 for £ < 0 in (6.26). Theorem 13.2.2 of Brockwell and Davis
(1991) establishes these and other ARFIMA facts. Bondon and Palma (2007)
extend these results to d € (—1,1/2).

The spectral density of a causal ARFIMA series is

o2 |1 _ e—i>\|—2d|9(e—z‘>\)|2

= e ge™E

A€ [—m,m),

and the lag h autocovariance decays to zero asymptotically at the power law
rate with exponent 2d — 1. Thus, the key ARFIMA feature is that ARFIMA
series have long memory when d € (0,1/2). When d = 0, the process reduces
to an ARMA(p, q) series. The long memory case where d € (0,1/2) is our focus
here; however, ARFIMA series with d € (—1/2,0) are sometimes referred to as
having intermediate memory. Notice that limy o f(A) = oo when d € (0,1/2),
implying that frequency zero aspects (i.e., long period structures) are prominent
in ARFIMA series.

The autocovariance and autocorrelation functions of the ARFIMA(0,d,0)
model are known, for h > 0, as

,T(1—2d
70) = “ﬁ’
_ LG+dr(—d)  yprk-1+d
Corr(X¢, Xpvn) = r(h—d—i—l)F(d)_kl;[l h—d

The autocovariances for general ARFIMA(p,d, q) process are more tedious to
quantify. Exact expressions are given in Palma (2007) and were first established
by Sowell (1992). Figure 6 shows the autocorrelations of an ARFIMA(3,d,2)
model with d = 0.3 and ARMA coefficients taken as those used in the ARMA(3,2)
model of Section 2. Notice how slowly p(h) decays to zero.



S.H. Holan et al./The ARMA alphabet soup 253

Example ARFIMA Autocorrelations
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Fic 6. Autocorrelation function of the ARFIMA(3,d,2) model with d = 0.3 and ¢1 = 1/2,
¢2 =1/3, ¢p3 = —1/3, 61 = 1/2, 02 = —1/3, and 02 = 1 (identical ARMA parameters as in
Figures 1 and 2).

HHHHHHHHHH

Lag h

T T
o o

ARFIMA parameters can be estimated with Gaussian maximum likelihood
methods. As no versions of (2.13) or (2.14) exist, one reverts back to the mul-
tivariate normal density function to evaluate the likelihood. Specifically, with
a denoting all ARFIMA parameters, the Gaussian likelihood function L(ax)
(unconditional) is

—2log L(a) = nlog(27) + log(det Te) + X' T} X, (6.27)

where X = (X7, Xo,...,X,,) and 'y is the covariance matrix of X. Exact eval-
uation of (6.27) for ARFIMA models was first considered by Sowell (1992), who
first calculated the exact autocovariances of the model with parameter o and
then computed the quadratic form X TalX via the Durbin-Levinson algorithm
(see Brockwell and Davis, 1991, Chapter 5). For large sample sizes, evaluating
the exact likelihood function becomes a serious computational issue. A differ-
ent approach for calculating the likelihood proceeds using the so-called splitting
method proposed by Bertelli and Caporin (2002) to calculate the ARFIMA au-
tocovariances. This method was implemented by Chen, Hurvich and Lu (2006)
in conjunction with a preconditioned conjugate gradient method that facilitates
fast accurate evaluation of the likelihood function (6.27). For a complete de-
scription of this approach, see Chen, Hurvich and Lu (2006) and the references
therein.

Alternative methods for ARFIMA parameter estimation include state
space techniques (Chan and Palma, 1998; Palma, 2007), Bayesian approaches
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(Pai and Ravishanker, 1998; Ko and Vannucci, 2006), the Haslett-Raftery method
(Haslett and Raftery, 1989), and approximate maximum likelihood based on
the so-called Whittle approximation (e.g., Shumway and Stoffer, 2006; Palma,
2007). These methods are described in Chapters 4 and 8 of Palma (2007). A good
review of ARFIMA likelihood estimation methods is found in Chan and Palma
(2006).

For ARFIMA (p, d, ¢) models, it is difficult to identify p and ¢ from plots of the
sample autocorrelation and partial autocorrelation functions (as is often done
in ARMA(p, ¢) model fitting). One method for estimating p and ¢ proceeds
by first estimating d using the approach of Geweke and Porter-Hudak (1983)
(which does not depend on p and ¢). With this estimated d, one then estimates
the remaining ARMA parameters by exploiting the fact that {(1 — B)4X,} is
an ARMA(p, q) series. For more detail, see Brockwell and Davis (1991).

6.2. Periodic and seasonal long memory models

Long memory models with periodic and seasonal features are possible to con-
struct. For example, a PARFIMA model would combine PARMA and long-
memory dynamics by examining solutions to a periodic difference equation of
the form

&u(B) Xnrv = 6,(B)(1 - B)idV nT+v- (6.28)

In (6.28), {Zn1+, } is zero mean periodic white noise with variance o (v) during
season v, 1 <v < T; ¢,(-) and 6,(-) are the season v AR and MA polynomi-
als, respectively, which are assumed to have no common roots or individual
roots inside or on the unit circle; and d, € [0,1/2) for each season v. Similar
formulations to (6.28) have been proposed, see Ooms and Franses (2001) and
Hui and Li (1995). It is expected that solutions to (6.28) would be periodic in
the sense of (4.20) and that the autocovariance function of the seasonal series
{ X140 122 _ o (which is stationary) would exhibit long memory for each fixed
season v. However, the properties of solutions to PARFIMA difference equa-
tions need to be formalized. In the above formulation, each season is allowed a
distinct long memory parameter (d, for season v).

Long memory variants of SARMA series have been more extensively explored.
In particular, Gegenbauer autoregressive moving-average (GARMA) processes
(Gray, Zhang and Woodward, 1989), k-factor GARMA processes (Woodward,
Cheng and Gray, 1998), and seasonal autoregressive fractionally integrated
moving-average (SARFIMA) processes have been proposed. Below, we briefly
tour these processes.

The SARFIMA model permits long memory autocovariances and persistence
at period T' (loosely meaning that autocovariances at lags which are multiples
of the period T are relatively larger than other autocovariances). In particular,
the SARFIMA model satisfies the difference equation

¢(B")¢*(B)X, = 0(B")6*(B)(1 — B")"""(1 - B)~"Z, (6.29)



S.H. Holan et al./The ARMA alphabet soup 255

where ¢(+), ¢*(-), 0(-), and 0*(-) are polynomials assumed to have no common
roots or roots inside or on the unit circle, d, dr € [0,1/2) and 0 < d+dp < 1/2.
In (6.29), {Z;} is zero mean time-homogeneous white noise with variance o2.
Under these conditions, the SARFIMA model is stationary and has the spectral

density

o2 9% efi)\ 2 efiAT 2
FO) = 16" (e )" [0(e”* )]

T 21 (N g T2 [2{1 — cos(A)}]"[2{1 — cos(TA)}] 7,

for A € [—m, w]. The distinction for the practitioner is that an ARFIMA model
is appropriate for general long memory processes (the pole in the spectral den-
sity is at frequency zero), whereas SARFIMA models have additional poles in
the spectrum at frequencies A\ = £275/T (j = 1,2,...,|T/2]), meaning that
persistence of features with period T are also present in SARFIMA series.

Gray, Zhang and Woodward (1989) introduced a different way of modeling
long memory accompanied with a persistent periodic component. This approach
is known as the Gegenbauer ARMA model (GARMA) and is governed by

#(B)(1 — 2uB + B?)'X; = 0(B)Z, (6.30)

where u € [—1,1] is a parameter that controls the frequency at which the long
memory occurs and d governs the rate of decay of the autocovariance. Such a
model is called a Gegenbauer ARMA (GARMA) series because of the Gegen-

bauer expansion

(1-2uB+B*) =% "C.B",
n=0

where
n/2
o [n/2] ( 1)]@(21 )n72kr(1 k 77)'

rar kl(n — 2k)IT(d)

Note that when v = 1, the GARMA model reduces to an ARFIMA model.

Gray, Zhang and Woodward (1989) show that when |u| < 1and 0 < d < 1/2,
solutions to the GARMA difference equation are zero mean and stationary;
moreover, solutions are causal when all roots of ¢(-) lie outside the unit circle.
In the case where |u| = 1, a stationary causal solution exists when 0 < d < 1/4.
When there is no AR or MA component in the model, autocovariances take the
explicit form

Y(h) =0 > ConConyns (6.31)
m=0
however, this sum is slow to converge and much care is needed when calculat-
ing y(h) via (6.31) (see Woodward, Cheng and Gray (1998) and the references
therein).
The spectral density of a GARMA series is

(cos(\) —u) ™24, X e [-m,7),
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where ¢ = 02/(7229%1) is a constant whose value is not overly important in
what follows. The spectral density at frequency cos™!(u) is unbounded and is
called the Gegenbauer frequency.

The model in (6.30) extends to describe series with k& persistent periodic
components simultaneously. Such a model is called the k-factor GARMA model
(Woodward, Cheng and Gray, 1998) and is governed by

k
¢(B) [[(1 = 2u; B+ B X, = 0(B) Z. (6.32)

j=
The spectral density of a k-factor GARMA process is given by

e—i)\ |2

= CL( ) : cos(A) — u;| =%

where ¢ > 0 is a constant and the u;s are in [-1,1] and are assumed unrepeated.

The spectral density in (6.33) has k poles, one at each frequency cos™*(u;),
j=1,..., k. Suppose all roots of ¢(-) lie outside the unit circle and that the ;s
are distinct. If d; € (0,1/2) whenever |u;| < 1 and d; < 1/4 whenever |u;| = 1,
then {X,;} in (6.32) is stationary and has long memory. The proof is given in
Theorem 2.3 of Woodward, Cheng and Gray (1998).

When the u;s are known and the model is causal and invertible, Gaussian
maximum likelihood estimators can be devised and are consistent, asymptot-
ically normal, and efficient (see Palma and Chan (2005) and Theorem 12.1 in
Palma (2007) for details).

6.3. Heteroscedastic long memory models

Models with conditionally heteroscedastic variances and long memory autoco-
variances are worth briefly mentioning. One such model is the ARFIMA(p, d, q)-
GARCH(r, s), which satisfies the set of equations

¢(B)X; = 6(B)(1-B) %,
Zy = €0y,
op = ¢o+ Z VA Z 007 ;. (6.34)
k=1 j=1

It is instructive to compare to (5.21) and (5.23) to (6.34). In (6.34), 07 =
E(X?|Fi_1), Fi_1 is the sigma algebra generated by the infinite past X; 1,
Xi—9,..., and {Z;} is zero mean unit variance noise assumed to be independent
of {X:}. The GARCH coefficients ¢1,...,¢, and 61, ...,0; are assumed to be
positive (so that variances cannot become negative). When >, _; (;519—1-2;:1 0; <
1 and d € [0,1/2), a zero mean strictly stationary solution {X,} exists that is
white noise; however, { X?} will have a stationary long memory autocovariance
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structure. It is possible to relax the positivity constraints on the GARCH co-
efficients somewhat; Nelson and Cao (1992) and Tsai and Chan (2008) provide
the necessary conditions.

Although it is frequently assumed that {Z;} is Gaussian, t and other heavy-
tailed marginal distributions can better accommodate the marginal features of-
ten encountered with financial data. Chapter 6 in Palma (2007) and Ling and Li
(1997) discuss this and other estimation aspects.

7. Multivariate models

Researchers are frequently interested in modeling interrelationships among mul-
tiple variables. Multivariate time series models should be considered when the
components are correlated. Examples include economic indicators across multi-
ple countries and stock prices of competing companies. Consider K time series,
{Xj,} for k =1,..., K. This collection of series is called K-variate stationary
if for each i # j, {X,.} and {X;,} are stationary in a univariate sense and
the cross-covariance Cov(X; ¢, X, ++n) only depends on h. When stationary, the
cross-covariance function is denoted by v;;(h) = Cov(Xt, X t4n)-

Let X = (X14,... ,XK_,t)/. To begin, we consider the case where E[X}¢] =0
for all k € {1,..., K}. The covariance matrix at lag h is simply

y1(h) ma2(h) - yk(h)
() = B, — ) K-y = |
Y1(h)  yk2(h) - vre(h)

Multivariate stationary time series can be equivalently described in the spec-
tral domain. This is because every stationary autocovariance I'(-) admits the
spectral representation

T
D) = [ e fan
—T
where element j, k of f()), denoted as f; (), can be expressed as

oo

Z vk (h) exp(—ihX)

h=—00

1
fiw(N) = 5~
assuming that Y7 |vk(h)] < co.

An important issue in multivariate time series is that of cointegration. In
particular, a K-variate series {X;} is cointegrated if each component series is
integrated of order one, (i.e., nonstationary with unit root behavior) while some
linear combination of the series, {a’X;}, is stationary for some K-dimensional
nonzero vector a. Hamilton (1994, Chapter 19) provides a comprehensive dis-
cussion.

While long-term changes can arise in the components of {X; }, cointegration
still ties these components together. In this context, the nonzero vector a is
known as the cointegrating vector.
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Suppose that {a’X;} is stationary, then {ba’X;} is stationary for any nonzero
scalar b. This implies that the cointegrating vector a is not unique. In practice,
one typically takes the first element of a to be unity. A complete description of
the properties of cointegrating vectors and their relation to ARMA processes is
provided in Hamilton (1994).

The remainder of this Section focuses on several aspects of multivariate
ARMA models. Specifically, Section 7.1 presents vector autoregressive moving-
average models. Here, we describe conditions for causality and invertibility. Sec-
tion 7.2 then considers multivariate GARCH sequences. Section 7.3 closes with
some brief comments and open problems.

7.1. VARMA models

The multivariate generalization of an ARMA series is the vector autoregressive
moving-average (VARMA or MARMA) series. A K-dimensional series {X;} is
said to be a VARMA series of autoregressive order p and moving-average order
q if it is a solution to

X —®1 X1 — —®, X =21 4+01Zs 1+ +0O,Z,_,, (7.35)

with ©®, # 0,0, # 0, and {Z,}, defined for fixed t by Z;, = (Z1,4,...,ZK1)’, is
zero mean multivariate white noise with covariance matrix E[Z;Z}] = X. The

coefficient matrices ®;,7 =1,...,p, and ©;,5 =1,...,q, are K x K matrices.
The autoregressive and moving-average polynomials ®(-) and ©(-) are
B(z)=1—P1z—-— P,z and O(z) =T+ O1z+ -+ 60,27

for a complex-valued z; here, I is the K x K identity matrix. Using the backshift
operator, (7.35) becomes

&(B)X, = ©(B)Z..

Causality and invertibility of the VARMA model imposes that solutions to
det(®(2)) = 0 and det(®(z)) = 0 lie outside the complex unit circle, respec-
tively. A causal VARMA model has the linear representation

X, =) ¥,Z, (7.36)
j=0
where the ¥ ;s are found by equating coefficients in the relationship
W(z):= Z U2l =®(2)'O(2).
j=0

Causality implies that Z;io |¥;| < co in a component-by-component sense.
Evaluating covariances via (7.36) provides

T(h)=> TV,

=0
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The spectral density matrix of the causal VARMA (p, q) process is
1 , .
FO) = WD (e ).

Assumptions beyond causality and invertibility are needed to ensure that
VARMA parameters can be uniquely identified in terms of model autocovari-
ances. It is possible for “seemingly unrelated” VARMA (p, ¢) models to generate
the exact same sample path of data. Such non-identifiability occurs when two
VARMA models — say ®(B)X,; = ©(B)Z, and ®*(B)X, = ©"(B)Z,; — are
related through an invertible “polynomial operator” U (B) via

$*(B)=U(B)®[B) and ©*(B)=U(B)O(B),

with the stipulation that the orders of ®* and ® and ®* and © are the same.
Then (®*(B)/©®*(B))X; = (P(B)/©(B))X}, the two representations have the
same W;s and hence generate the same sample path from a fixed realization of
{Z:} (such VARMA models are called observationally equivalent). An exam-
ple of such a phenomenon occurs in a two dimensional VARMA(1,1) process.
Specifically, take

U(B) = [(1) WIB]; ®(B) = F—gnB —(y +1¢12)B};

oB) - [14—3113 (91217)3}

and observe that the products

1—0¢u1B —¢12B

0 1

U(B)®(B) = [ 0 :

] and U(B)O(B) = {1+9uB 9123]

do not depend on the choice of v (one can verify that the parameter choices
are causal and invertible when |¢11] < 1 and |011| < 1). The VARMA non-
identifiability issue arises only when both p and ¢ are both positive.

Several authors have investigated constraints beyond causality and invertibil-
ity that ensure that VARMA parameters are identifiable (Hannan, 1969, 1970,
1976, 1979; Deistler and Hannan, 1981; Hannan and Deistler, 1987; Liitkepohl,
1991, 2005; Reinsel, 1997; Dufour and Jouini, 2005). Our development here par-
allels Chapter 7.1 of Liitkepohl (2005).

One condition guaranteeing VARMA parameter identifiability is the so-called
echelon form, which restricts where the non-zero coefficients in the VARMA
matrix representation lie. To avoid trite work, we assume that the white noise
covariance matrix X is nonsingular. Let ®; ;(z) and ©; ;(z) be the (7, j)th ele-
ments of the matrix AR and MA polynomials for 1 < i, 5 < K; these quantities
are all finite order polynomials. An echelon form requirement is that the degree
of ®; ;(z) and ©; ;(2) is the same — call it p; — and does not depend on the
column index j. Clarifying, the order of ®; ;(z) and ©; ;(z) are the same for all
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i,j — call this p; — and the order of ®; ;(z) and ©; ;(z) can depend on i but
not on j. The echelon form further imposes that

by

®,;(B) = 1-)Y (®);;B", 1<j<K;
=1
Pi
®,;(B) = - Z (®0)i; B, 1<i#j<K;
l=pi—pi;+1
Dpi
0;(B) = 1+ Z(@Z)Z,Bf, 1<i,j<K,
(=1

where the orders
_ [ min(p; +1,p;), i>7j
pij—{ min(p;, p;) 1< ]
1Py )

In the above equations, (®,); ; denotes the 7, jth element of ®,, for example.
While some of the coefficients in the above representation can be zero (i.e., it
is not necessary that p = ¢ in (7.35)), the echelon form restricts where the
zero coefficients can appear. The mathematics behind the equations above is
formidable and is rooted in McMillan degrees of polynomials and Kronecker in-
dices; see Section 7.1 of Liitkepohl (2005) for this and other identifiable VARMA
forms.

The parameters in a causal, invertible, and uniquely identified VARMA (p, q)
model can be estimated using Gaussian maximum likelihood in a similar manner
to ARMA(p,q) models. In particular, Innovations forms of (2.13) and (2.14)
carry over with matrix quantities replacing their univariate counterparts. The
Gaussian likelihood L(e) of all model parameters e, conditional on the first
max(p, ¢) observations, is

n
—2log(L(er)) = d(n—max(p,q)log(2m)+ > det(V})

t=max(p,q)+1
n

+ Yo X -X)ViNX - X)),
t=max(p,q)+1

The likelihood estimators are asymptotically normal and /n-consistent. Hannan
(1970), Dunsmuir and Hannan (1976), Reinsel (1997) and Liitkepohl (2005) are
good references discussing VARMA estimation issues. When estimating VAR
parameters via maximum likelihood, state-space methods can also be efficiently
used; see Durbin and Koopman (2001) for a comprehensive overview. Bayesian
approaches to VARMA parameter estimation have also been developed; see
Ravishanker and Ray (1997) for a detailed discussion.

7.2. Multivariate GARCH

Multivariate GARCH (MGARCH) models have received much recent attention.
The primary issue involves providing dynamics rich enough to adequately re-
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flect the conditional variance/covariances while keeping the model parsimonious
enough to permit estimation and interpretation. It is essential that any model
specification have a positive definite covariance structure.

Let {r;} be a zero mean stochastic process of dimension K. Further, let F;_
denote the sigma algebra generated by the infinite past up to and including
time ¢t — 1. Assume that r; given F;_1, is conditionally heteroscedastic in that
r, = Hi/ 2771:7 where H; = {h;;;} is the conditional covariance matrix of ry
and {n,} is iid zero mean noise with E[n,n;] = I. This defines the general
MGARCH framework (Silvennoinen and Terédsvirta, 2009), where {r;} exhibits
no linear dependence structure. There are several ways to specify H;, including
various parametric specifications.

One such specification models H; directly and is known as the VEC-GARCH
model of Bollerslev, Engle and Wooldridge (1988). This model generalizes uni-
variate GARCH models and can be written as

q T
vech(H;) = ¢ + Z A jvech(r;jr;_;) + Z B,vech(H,_,),

j=1 j=1

where vech(c) is the usual operator that stacks columns of the lower triangular
part of the matrix ¢ into a K (K + 1)/2 vector, and A; and B; are parameter
matrices of dimension K (K +1)/2 x K(K + 1)/2. Although this model is rather
flexible, conditions need to be imposed to ensure a positive definite conditional
covariance Hy. See Silvennoinen and Terdsvirta (2009) for a comprehensive dis-
cussion.

Several other MGARCH formulations and extensions have been proposed.
Bauwens, Laurent and Rombouts (2006) and Silvennoinen and Terésvirta (2009)
comprehensively review multivariate GARCH models. These reviews discuss
nonparametric/ semiparametric methods in addition to model-based approaches
and goodness-of-fit testing.

7.3. Comments and open problems

A practical issue in VARMA modeling lies with model parsimony. In particular,
the number of VARMA parameters increases rapidly with increasing K (the
curse of dimensionality). Parsimony constraints for VARMA models have been
considered in Tsay (1989) and Liitkepohl (2005). Much current research involves
extending the ARMA variants in this article to multivariate settings. For exam-
ple, Ursu and Duchesne (2009) recently studied vector PARMA models; mul-
tivariate versions of some of the count models in the next section also present
an open area of research. Finally, the development of parsimonious multivari-
ate stationary series models with long memory and intricate cross-correlation
structures is an active area of current research.
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8. Count models

Although the models described thus far form a rich class capable of describing
many types of series, their utility is limited in modeling non-negative integer-
valued time series — the so-called count series. In fact, ARMA models, while
adept at describing second moment features of many series, are clumsy in ac-
counting for marginal distribution structures. Distributional aspects are espe-
cially important when the counts are small, such as the number of claims in-
curred by an insurance company, yearly major hurricanes counts, or incidence
rates of a rare disease.

Significant progress has been made in modeling stationary series of counts
over the last 20 years. MacDonald and Zucchini (1997), Davis, Dunsmuir and
Wang (1999), Davis, Dunsmuir and Streett (2003) and Kedem and Fokianos
(2002) are useful references. In this section, we discuss a popular ARMA variant
used to model count series, the so-called INARMA model.

8.1. INARMA models

INARMA models use a thinning operator o in ARMA-type equations. To define
the thinning operator, suppose that X is a non-negative integer random variable.
Let p € [0, 1] and set

X
poX =>Y,
=1

where {Y;} are iid Bernoulli trials, independent of X, each with success proba-
bility p.

INARMA methods use thinning operators in ARMA-like equations to pro-
duce integer-valued series. For example, an INAR(1) series obeys the branching
process equation (with immigration)

Xt = pPo Xt—l + Zt, (837)

where {Z;} is an iid non-negative integer-valued sequence with mean u and
variance 2. Here, Z, is interpreted as the number of new immigrants joining
the population from time t—1 to time ¢ and po X;_1 is the number of inhabitants
at time ¢t—1 that are still alive at time ¢t. When p € [0, 1) and {X,} is stationary,
one can recurse (8.37) to obtain its unique solution:

Xe=>» poZi ;. (8.38)
§=0
Evaluating moments with (8.38) gives E[X;] = u/(1 — p) and

‘h| + 0’2
COV(Xt, Xt+h) = %ﬁ)
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An important class of INAR(1) processes arises when {Z;} has a Poisson distri-
bution (Poisson INAR(1)). Vector INAR(1) models based on multinomial thin-
ning exist, but we do not discuss them here. Comprehensive discussions of these
aspects can be found in MacDonald and Zucchini (1997), Kedem and Fokianos
(2002) and the references therein.

An extension of the INAR(1) model is the pth order autoregressive INAR(p)
model, which is governed by the difference equation

p
X = Z pio Xi_i + Zy. (839)
=1

Here, p; € [0,1). As in the ARCH section, the model in (8.39) has a stationary
and causal solution when Y7 p; < 1 (see also Alzaid and Al-Osh (1990)).
Integer moving-average process of order ¢ (INMA(q)) obey

Xe=PpooZi+proZi1+ -+ Bg0Zig, (8.40)

Here, 8o = 1, 8; € [0,1) for 1 <14 < ¢, and all thinnings are performed indepen-
dently. Expressions for the mean, variance, and autocovariance of X; in (8.40)
can be found in Section 5.1.6 of Kedem and Fokianos (2002). INARMA (p, q)
models are defined by combining (8.39) and (8.40) in the obvious manner.

Some comments about INARMA(p, q) series are worth making. First, be-
cause the p;s are all nonnegative, series with negative correlations cannot be
made from this model class. Second, all causal INARMA (p, q) series necessarily
have short memory, though longer memory models could be devised through
fractional differencing schemes. It is also not evident how to make a particu-
lar marginal distribution with the INARMA class. For example, because the
support set of an INARMA(p, ¢) series is unbounded, one cannot construct an
INARMA(p, q) series with a binomial distribution for each fixed ¢.

An alternative to the INARMA class are the discrete autoregressive moving-
average (DARMA) models (Jacobs and Lewis, 1978a,b). This class is capable
of producing any discrete distribution as a marginal distribution for X;. This
class of models takes on a mixture model flavor and thus its’ exposition differs
slightly from the other ARMA model variants. As such, we defer discussion of
this class to the comprehensive treatments in MacDonald and Zucchini (1997)
and Kedem and Fokianos (2002).

8.2. Comments and open problems

Several open problems with count series are apparent. First, models for count
series that have negative correlations need to be devised. Second, count mod-
els with long memory autocovariances need to be developed and studied; here,
Quoreshi (2008) provides a good start. Third, count models with periodic prop-
erties need to be developed. This is especially important in that monthly rare
disease counts, hurricane counts, etc., frequently show periodic behavior with a
definitive season of occurrence.
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We mention that a new method of generating integer count series was recently
proposed in Cui and Lund (2009). Their methods simply use a renewal process
to generate a correlated sequence of Bernoulli trials. Independent versions of
these processes can then be mixed and/or superimposed to generate count se-
ries with any discrete marginal distribution structure. While these methods
sometimes have ARMA-type representations and sometimes do not, they easily
generate count series with negative correlations and/or long memory properties.

9. Concluding remarks

ARMA models and their variants provide a rich class of models capable of de-
scribing and forecasting a broad array of observed time series. The exposition
provided here describes many of the most popular ARMA variants. Since the
area is extremely voluminous, our description is necessarily limited and there re-
main other ARMA model variants worthy of exposition that were not described
here.

Although substantial research has been devoted to ARMA models and their
variants, there are still many avenues for future research. For example, parsi-
monious specifications and goodness-of-fit diagnostics for multivariate GARCH
models provide two such opportunities. Additional open directions lie in the
areas of long memory modeling for periodic processes and count data. The ever-
expanding scope of ARMA models and their variants will continue to provide
future research opportunities beyond what is described here. Also, as computa-
tional abilities advance, many new variants will likely be introduced.

Practical implementation of ARMA models and their variants has seen un-
precedented growth since the conception of the R programming language
(R Development Core Team, 2010). In fact, the CRAN Task Views website
(http://cran.r-project.org/web/views/) provides up to date documenta-
tion under the “TimeSeries” link. This link provides comprehensive details to
every aspect of the R infrastructure, contributed packages and (internal and
contributed) datasets relating to time series. The information is comprehensive
while being organized and succinct. Given this suite of computing resources, and
others, opportunities for time series researchers and practitioners have become
limitless.

10. An ARMA acronym list

This section serves as a simple dictionary of selected ARMA variants. Below we
list the various ARMA acronyms in alphabetical order and provide references
where the processes are discussed further. Some of the variants listed below are
not discussed in the paper but are provided for completeness. The ARMA liter-
ature is vast and thus some acronyms are necessarily redundant (e.g., BARMA
stands for both Bilinear Autoregressive Moving-Average and Binomial Autore-
gressive Moving-Average). Essentially, this section is a modernized version of
Granger (1982).


http://cran.r-project.org/web/views/

S.H. Holan et al./The ARMA alphabet soup 265

ARCH AUTOREGRESSIVE CONDITIONALLY HETEROSCEDASTIC
Engle (1982).

ARFIMA AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING-AVERAGE
Granger and Joyeux (1980); Hosking (1981); Geweke and Porter-Hudak (1983);
Haslett and Raftery (1989); Sowell (1992); Kokoszka and Taqqu (1995, 1996);
Pai and Ravishanker (1998); Chan and Palma (1998, 2006); Bertelli and Caporin
(2002); Chen, Hurvich and Lu (2006); Ko and Vannucei (2006); Bondon and
Palma (2007); Palma (2007).

ARFIMA-GARCH AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING-
AVERAGE - GENERALIZED AUTOREGRESSIVE CONDITIONALLY HETEROSCEDAS-
TIC

Ling and Li (1997); Palma (2007).

ARIMA AUTOREGRESSIVE INTEGRATED MOVING-AVERAGE
Brockwell and Davis (1991, 2002); Shumway and Stoffer (2006); Box, Jenkins
and Reinsel (2008).

ARMA AUTOREGRESSIVE MOVING-AVERAGE
Ansley (1979); Brockwell and Davis (1991, 2002); Box, Jenkins and Reinsel
(2008); Fuller (1996); Shumway and Stoffer (2006).

ARMAX AUTOREGRESSIVE MOVING-AVERAGE X
Hannan (1976); Shumway and Stoffer (2006).

BARMA BILINEAR AUTOREGRESSIVE MOVING-AVERAGE
Granger and Andersen (1978); Subba Rao (1981); Liu and Brockwell (1988).

BARMA BINOMIAL AUTOREGRESSIVE MOVING-AVERAGE
Startz (2008).

CARFIMA CONTINUOUS-TIME AUTOREGRESSIVE FRACTIONALLY INTE-
GRATED MOVING-AVERAGE
Brockwell and Marquardt (2005); Tsai and Chan (2005); Tsai (2009).

CARMA CONTINUOUS AUTOREGRESSIVE MOVING-AVERAGE
Jones (1980); Brockwell (1994); Stramer, Tweedie and Brockwell (1996); Tsai
and Chan (2000); Brockwell (2001); Brockwell and Davis (2002).

DAR DISCRETE AUTOREGRESSIVE
MacDonald and Zucchini (1997); Kedem and Fokianos (2002).

DARMA DISCRETE AUTOREGRESSIVE MOVING-AVERAGE
Jacobs and Lewis (1978a,b, 1983); MacDonald and Zucchini (1997); Kedem and
Fokianos (2002).

EARMA EXPONENTIAL AUTOREGRESSIVE MOVING-AVERAGE
Lawrance and Lewis (1980).
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EGARCH EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONALLY
HETEROSCEDASTIC
Nelson (1991).

FIGARCH FRACTIONALLY INTEGRATED GENERALIZED AUTOREGRESSIVE
CONDITIONALLY HETEROSCEDASTIC
Palma (2007).

FIEGARCH FRACTIONALLY INTEGRATED EXPONENTIAL GENERALIZED AU-
TOREGRESSIVE CONDITIONALLY HETEROSCEDASTIC
Palma (2007).

GARMA GEGENBAUER AUTOREGRESSIVE MOVING-AVERAGE
Gray, Zhang and Woodward (1989); Woodward, Cheng and Gray (1998); Palma
and Chan (2005); Palma (2007).

GARCH GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC
Bollerslev (1986).

IGARCH GENERALIZED INTEGRATED AUTOREGRESSIVE CONDITIONAL HET-
EROSCEDASTIC
Engle and Bollerslev (1986).

INAR INTEGER AUTOREGRESSIVE
Alzaid and Al-Osh (1990); MacDonald and Zucchini (1997); McKenzie (1988);
Kedem and Fokianos (2002).

INARMA INTEGER AUTOREGRESSIVE MOVING-AVERAGE
Kedem and Fokianos (2002).

MA MOVING-AVERAGE
Brockwell and Davis (1991).

PAR PERIODIC AUTOREGRESSION
Troutman (1979).

PARMA PERIODIC AUTOREGRESSIVE MOVING-AVERAGE

Hannan (1955); Gladyshev (1961); Jones and Brelsford (1967); Pagano (1978);
Vecchia (1985a,b); Lund and Basawa (2000); Basawa and Lund (2001); Shao
and Lund (2004); Lund, Shao and Basawa (2006); Anderson, Tesfaye and Meer-
schaert (2007).

RCAR RANDOM COEFFICIENT AUTOREGRESSION
Resnick and Willekens (1991); Bougerol and Picard (1992).

SARFIMA SEASONAL AUTOREGRESSIVE FRACTIONALLY INTEGRATED
MOVING-AVERAGE
Palma (2007).
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SARMA SEASONAL AUTOREGRESSIVE MOVING-AVERAGE
Brockwell and Davis (2002); Shumway and Stoffer (2006); Box, Jenkins and
Reinsel (2008).

STARMA SPACE-TIME AUTOREGRESSIVE MOVING-AVERAGE
Pfeifer and Deutsch (1980).

TAR THRESHOLD AUTOREGRESSION
Tong and Lim (1980); Chan (1990).

VARFIMA VECTOR AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING-
AVERAGE
Ravishanker and Ray (2002).

VARMA VECTOR AUTOREGRESSIVE INTEGRATED MOVING-AVERAGE
Dunsmuir and Hannan (1976); Hannan (1979); Kohn (1979); Hannan and Deistler
(1987); Liitkepohl (2005); Shumway and Stoffer (2006).

VAR VECTOR AUTOREGRESSIVE
Mann and Wald (1943); Liitkepohl (2005).
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