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On General Notions of Depth for Regression
Yijun Zuo

Abstract. Depth notions in location have generated tremendous attention
in the literature. In fact, data depth and its applications remain as one of
the most active research topics in statistics over the last three decades. Most
favored notions of depth in location include Tukey (In Proceedings of the
International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2
(1975) 523–531) half-space depth (HD), Liu (Ann. Statist. 18 (1990) 405–
414) simplicial depth and projection depth (PD) (Stahel (1981) and Donoho
(1982), Liu (In L1-Statistical Analysis and Related Methods (Neuchâtel,
1992) (1992) 279–294 North-Holland), Zuo and Serfling (Ann. Statist. 28
(2000) 461–482) and (ZS00) and Zuo (Ann. Statist. 31 (2003) 1460–1490)),
among others.

Depth notions in regression have also been proposed sporadically, nev-
ertheless. The regression depth (RD) of Rousseeuw and Hubert (J. Amer.
Statist. Assoc. 94 (1999) 388–433) (RH99), the most famous, exemplifies a
direct extension of Tukey HD to regression. Other notions include Carrizosa
(J. Multivariate Anal. 58 (1996) 21–26) and the ones proposed in this article
via modifying a functional in Maronna and Yohai (Ann. Statist. 21 (1993)
965–990) (MY93). Is there any relationship between Carrizosa depth and the
RD of RH99? Do these depth notions possess desirable properties? What are
the desirable properties? Can existing notions serve well as depth notions in
regression? These questions remain open.

The major objectives of the article include (i) revealing the connection be-
tween Carrizosa depth and RD of RH99; (ii) expanding location depth eval-
uating criteria in ZS00 for regression depth notions; (iii) examining the ex-
isting regression notions with respect to the gauges; and (iv) proposing the
regression counterpart of the eminent location projection depth.

Key words and phrases: Depth, unfitness, linear regression, maximum
depth regression estimating functionals, robustness.

1. INTRODUCTION

Notion of depth in location has attracted vast attention
and has been increasingly pursued as a powerful tool for
multidimensional nonparametric data analysis and infer-
ence.

Prevailing location depth notions include Tukey (1975)
half-space depth (HD) (popularized by Donoho and
Gasko, 1992), Liu (1990) simplicial depth, the spatial
depth (Vardi and Zhang, 2000), projection depth (PD)
(Stahel, 1981 and Donoho, 1982, Liu, 1992, Zuo and Ser-
fling, 2000 and Zuo, 2003), and zonoid depth (Koshevoy
and Mosler, 1997, Mosler, 2002). Applications of data
depth in multivariate statistics include:
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(i) construction of multivariate inference procedures,
such as depth-based tests, rank tests, multivariate quan-
tiles, control charts, and confidence regions (Liu, 1992,
Liu, 1995, Liu and Singh, 1993, Liu, Parelius and Singh,
1999, Li and Liu, 2004, Hallin, Paindaveine and Šiman,
2010, Chakraborty and Chaudhuri, 2014, Chernozhukov,
Galichon, Hallin and Henry, 2017, Yeh and Singh, 1997,
Zuo, 2009, 2010);

(ii) multivariate exploratory data analysis, such as
in geophysical, hydrological and physio meteorological
research (Liu, Parelius and Singh, 1999, Chebana and
Ouarda, 2008, 2011);

(iii) outlier detection, such as in environmental studies
(Dang and Serfling, 2010, Serfling and Wang, 2014, Wang
and Serfling, 2015, 2018, Febrero, Galeano and González-
Manteiga, 2008);

(iv) clustering and classification, especially in mi-
croarray gene expression data analysis, discriminant anal-

142

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/20-STS767
https://www.imstat.org
mailto:zuo@msu.edu


DEPTH NOTIONS IN REGRESSION 143

ysis, and supervised learning (Hoberg, 2000, Jörnsten,
2004, Ghosh and Chaudhuri, 2005, Mosler and Hoberg,
2006, Cui, Lin and Yang, 2008, Li, Cuesta-Albertos and
Liu, 2012, Lange, Mosler and Mozharovskyi, 2014, Pain-
daveine and Van Bever, 2015);

(v) multivariate risk measurement in financial engi-
neering (Cascos and Molchanov, 2007);

(vi) remote sensing and signal processing (Velasco-
Forero and Angulo, 2011, 2012); robust linear program-
ming (Mosler and Bazovkin, 2014), and

(vii) econometric and social studies (Caplin and Nale-
buff, 1988, 1991a, 1991b),

among others. In fact, data depth and its applications re-
main as one of the most active research topics in statistics
over the last three decades.

The notion of location depth has been extended to lo-
cal depth (Agostinelli and Romanazzi, 2011, Paindaveine
and Van Bever, 2013); to depth for concentration, scat-
ter and shape matrices (Chen et al., 2018, Paindaveine
and van Bever, 2018); and to depth for functional data
(e.g., López-Pintado and Romo, 2009, Claeskens, Hubert,
Slaets and Vakili, 2014, Hubert, Rousseeuw and Segaert,
2015, Nieto-Reyes and Battey, 2016, Gijbels and Nagy,
2017, among others).

Mizera (2002) introduced a scheme as a calculus tech-
nique/tool to derive depth functions for different statisti-
cal models, and Mizera and Müller (2004) extended the
tangent depth for location and regression to the location-
scale setting. Data depth has also been employed as penal-
ties in penalized regression (Majumdar and Chatterjee,
2018).

Depth notions in regression have been inevitably pro-
posed, yet sporadically. Regression depth (RD) by Rous-
seeuw and Hubert (1999) (RH99), the most famous, ex-
emplifies a direct extension of Tukey location depth in
regression. Others include pioneer Carrizosa depth (Carri-
zosa, 1996) and the ones proposed here which are induced
from Maronna and Yohai (1993) (MY93). Attention paid
to regression depth has been disproportionally light, com-
pared with its location counterpart. One of the reasons for
this might be that there exist no clear fundamental prin-
ciples to evaluate or measure proposed regression depth
notions. Lack of the evaluation criteria not only prohibits
any further advance and theoretical development of the
depth notions in regression but also impedes their appli-
cations in practice. One major objective of the current ar-
ticle is to extend the set of criteria (or desired axiomatic
properties) for depth notions in location in ZS00 to re-
gression and to examine the existing regression notions of
depth with respect to the proposed criteria.

There exist a variety of robust methods including M-
estimate approach and ad hoc ones (see Rousseeuw and
Leroy, 1987 (RL87); Maronna, Martin and Yohai, 2006

(MMY06)) for estimating the parameters in a linear re-
gression model. In this article, regression depth is utilized
to introduce the median-type deepest estimating func-
tionals for regression parameters, manifesting one of the
prominent advantages of notions of depth. The function-
als are the minimizers of the maximum of unfitness of re-
gression parameters and recover in the empirical case the
classical least squares, least absolute deviations and other
existing leading estimators. Under a general framework,
depth notions induced from projection-pursuit approach
include the RDRH and projection regression depth (PRD)
(induced from MY93) as special cases. The latter is an
extension of the eminent PD in location to regression.

The rest of this article is organized as follows. Sec-
tion 2 presents a general definition for notions of unfitness
and depth in regression and puts forward four general ap-
proaches for introducing the notions of unfitness or depth
and the maximum (deepest) depth functionals while ex-
amining three special examples. It is found that Carrizosa
(1996) depth, DC , known of recovering the HD in loca-
tion, is not identical but closed related to RDRH in regres-
sion. Section 3 provides a rigorous definition of depth (or
unfitness) notion in regression based on four axiomatic
properties which then are employed for the evaluation of
four types of special depth notions. Section 4 ends the arti-
cle with brief concluding remarks. The Appendix collects
some major proofs and derivations and auxiliary lemmas.

2. DEFINITIONS, APPROACHES AND EXAMPLES

2.1 Regression Model

Consider a general linear regression model:

(1) y = x′β + e,

where ′ denotes the transpose of a vector; random variable
y and e are in R

1; and random vector x = (x1, . . . , xp)′
and parameter vector β are in R

p . Note that this general
model includes the special case with an intercept term.
For example, if β = (β1,β

′
2)

′ and x1 = 1, then one has
y = β1 +x′

2β2 +e, where x2 = (x2, . . . , xp)′ ∈R
p−1. De-

note w = (1,x′
2)

′, then y = w′β + e. We use this model or
(1) interchangeably, depending on the context. Denote by
F(y,x) the joint probability distribution of y and x under
the model (1).

In the following sections, we discuss the notions of un-
fitness or depth and general approaches to introduce re-
gression depth and induced deepest estimating function-
als.

2.2 Notions of Unfitness and Depth in Regression

Unfitness of a candidate parameter β: UF(β), is a func-
tion of the residual r(β) := (y − x′β). Namely, UF(β) =
f (r(β)). Examples of f (x) include, x2 and |x|. Gener-
ally speaking, an even, monotonic in |x|, and convex f (·)
with its minimum value 0 at 0 will serve the purpose.
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Depth of β then can be defined as a bounded recip-
rocal (reverse) function of φ(FR) (e.g., 1/(1 + x)), say
on [0,1], where φ is a functional on the distribution of
R := UF(β). A typical example of φ is the expectation or
quantile functional, φ(FR) could also just be R. Likewise,
given its depth, one can define the unfitness of β to be a
reciprocal function of the depth.

A minimizer β∗ of unfitness function of β over all β ∈
R

p can serve as a regression estimating functional for β .
Similarly, a maximizer of depth function plays the same
role.

2.3 Four Approaches for Notions of Unfitness and
Depth

2.3.1 Classical objective function approach. Directly
employing the scheme above, one can recover many clas-
sical regression estimators in the empirical distribution
case (i.e., ri(β) = yi −x′

iβ , i = 1, . . . , n). Here, the classi-
cal objective function in regression serves as the unfitness
function, that is, UF(β) = fObj(r(β)). Maximizing depth
of β is equivalent to the minimization of φ(FR) and then
the minimizer denoted by β∗ could serve as an estimator
for β ∈ R

p . In the sequel, consider examples of φ: (i) the
expectation functional μ, and (ii) quantile functional qτ ,
τ ∈ (0,1).

EXAMPLE 2.1.

(I) If φ = μ and f (x) = x2, then β∗(F(y,x)) =
arg minβ∈Rp

∫
(t − s′β)2 dF(y,x)(t, s), which induces the

least squares (LS) estimator when F(y,x) is the empirical
distribution.

(II) If φ = μ and f (x) = |x|, then the approach above
leads to the least absolute deviations (LAD) estimator;

(III) If φ = μ and fτ (x) = x(τ − I(x < 0)), τ ∈ (0,1),
where I is the indicator function, then the approach above
results in the quantile regression estimator (Koenker and
Bassett, 1978). When τ = 1/2, it recovers the L1 regres-
sion estimator, for related discussions on quantile regres-
sion; see Portnoy (2003, 2012);

(IV) If φ = q0.5 and f (x) = x2, then the approach
above yields the least median squares (LMS) estimator
(Rousseeuw, 1984); and

(V) If φ = μ, coupled with an appropriately chosen
function f (x), one can actually recover the M-estimators
(Huber, 1973 (including the famous (a) Huber’s pro-
posal 2 (Huber, 1964), (b) Hampel’s three-parts (Hampel,
1974), and (c) Tukey bisquare (Beaton and Tukey, 1974)
ones), the L-estimators (Ruppert and Carroll, 1980) and
the R-estimators (Koul, 1970, 1971); Jurečková, 1971,
and Jaeckel, 1972).

2.3.2 Facility location approach. In addition to the
general approach mentioned in the Section 2.3.1, there
exist other approaches for the introduction of notions of

depth or unfitness. The classical one is the facility loca-
tion approach, prevailing in location analysis and opera-
tions research.

Let F1 ∈ R
2 be a candidate for a facility location, and P

be the probability distribution of a random vector X ∈ R
2

(or of consumers’ locations), and d(F1,X) (defined in Re-
marks 2.1 below) measures in some sense the closeness
of F1 to the distribution P of X (or the coverage of con-
sumers). Let F2 be a candidate for the facility location of
another competitive company. Similarly, d(F2,X) mea-
sures the coverage of the consumers in the vicinity of
the facility at F2. With respect to the F1, the maximum
market share which can be captured by any other facility
is supF2∈R2 P(ω : d(F2,X(ω)) < d(F1,X(ω))). Also, the
F1 should be chosen to maximize its market share:

F∗
1 = arg max

F1∈R2

(
1 − sup

F2∈R2
P

(
ω : d(

F2,X(ω)
)

< d
(
F1,X(ω)

)))
= arg max

F1∈R2
inf

F2∈R2
P

(
ω : d(

F1,X(ω)
)

≤ d
(
F2,X(ω)

))
.

(2)

Carrizosa (1996) extended R
2 above to R

p (p ≥ 2) and
introduced a depth notion (normalized depth, see Def-
inition 2.1 below). Let us use a generic term, Carri-
zosa depth, hereafter. The Carrizosa depth of x w.r.t. P :
DC(x;P) (P and FX are used interchangeably), is defined
as

(3) DC(x;P) = inf
y∈Rp

P
(
ω : d(

x,X(ω)
) ≤ d

(
y,X(ω)

))
.

Then F∗
1 in (2) is the maximum depth solution (functional)

for the facility location problem.

REMARKS 2.1.

(I) Note that the distance measure d above includes a
class of possible choices. For example, d could be an Lp

norm or weighted Lp norm (see Zuo, 2004) (p ≥ 1).
(II) When d(x, y) = ‖x − y‖, where “‖ · ‖” stands for

the Euclidean (or L2) norm, (3) recovers the normalized
depth ND(x;P) of Carrizosa (1996) that is quoted below:

DEFINITION 2.1 (Carrizosa, 1996). The normalized
depth of ND(x;P) of a point x ∈ R

p in P is defined as

(4) ND(x;P) = inf
y∈Rp

P
({

a : ‖y − a‖ ≥ ‖x − a‖})
.

Henceforth, we focus on L2 norm for distance measure d ,
unless stated otherwise.

In the location setting, Donoho and Gasko (1992) first
addressed the notion of depth proposed in Tukey (1975),
their empirical depth is some integer among {1, . . . , n}.
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In the following, we invoke a slightly different charac-
terization for Tukey’s depth given in Zuo (1998) (called
half-space depth (HD)):

(5)
HD(x;P) = inf

H

{
P(H) : H is a closed half-space

and x ∈ H
}
, x ∈ R

p.

It turns out that DC(x;P) can actually recover HD(x;
P) as shown in Carrizosa (1996).

PROPOSITION 2.1. If d in (3) is the L2 norm, then
DC(x;P), equivalently ND(x;P) in (4), is identical to
HD(x;P) in (5).

PROOF. See the proof of Proposition 1 of Carrizosa
(1996). �

Although the depth DC(x;P) above is introduced ini-
tially for the location problem, it can be extended for the
regression problem, as done in Carrizosa (1996) with the
L1 norm.

Indeed, given a probability measure P (or equivalently
F(y,x)) in R

p , one could define the DC(β;P) of β =
(β1,β

′
2)

′ ∈R
p as follows: for |β1| < ∞,

DC(β;P) = inf
α∈Rp

P
(
d
(
y,

(
1,x′)′β) ≤ d

(
y,

(
1,x′)′α))

,

x ∈R
p−1 (p ≥ 2),

(6)

where α = (α1,α
′
2)

′ and α2,β2 ∈ R
p−1; if |β1| → ∞,

then define DC(β;P) → 0. When d(x, y) = |x − y|, (6)
recovers the depth in regression in Carrizosa (1996). The
latter seems to be the pioneer notion of depth in regres-
sion in the literature. Does it have anything to do with the
RDRH of RH99? Let us first quote the original definition
of RH99.

DEFINITION 2.2 (RH99). The regression depth of β
is the minimum probability mass that needs to be passed
when tilting β in any way until it is vertical.

Since DC recovers HD in location and RDRH is an
extension of HD in regression, naturally, one wonders
whether DC can recover RDRH in regression. The two are
closely connected but not identical as revealed in Propo-
sition 2.2 below.

The same idea of Carrizosa (1996) was proposed
again in Adrover, Maronna and Yohai (2002) (AMY02).
AMY02 first flawlessly defined RDRH above to be

(7) RDRH(β,P ) = inf
λ 
=0

P

(
r(β)

λ′x
< 0,λ′x 
= 0

)
,

under assumptions (a) and (b) below, where λ ∈ R
p ,

r(β) = y − x′β . They then proposed the depth:

(8) D(β,P ) = inf
γ∈Rp

P
(∣∣r(β)

∣∣ ≤ ∣∣r(γ )
∣∣).

If the first coordinate x1 of x in (8) is 1 and d(x, y) =
|x − y| in (6), then (8) and (6) coincides.

Under the assumptions (a) P(x′v = 0) = 0 for all v 
=
0 ∈ R

p and (b) P(r(β) = 0) = 0 for all β ∈ R
p , AMY02

showed that (8) is equivalent to (7) (the last step of the
proof is debatable though). (a) and (b) exclude any dis-
crete distribution cases of (y,x), nevertheless. The fol-
lowing result characterizes DC(β;P) and reveals its con-
nection with RDRH(β;P).

Write w = (1,x′)′ and r(β) = y − w′β . If d(x, y) =
|x − y|, then (6) is equivalent to

(9) DC(β,P ) = inf
α∈Rp

P
(∣∣r(β)

∣∣ ≤ ∣∣r(α)
∣∣).

For a given β ∈ R
p with ‖β‖ < ∞, denote by Hβ the

unique hyperplane determined by y = w′β . Likewise, a
given nonvertical hyperplane H uniquely identifies an
α ∈ R

p through y = w′α. Define S(β) := {α ∈ R
p :

Hα intersects with Hβ} for the given β .

PROPOSITION 2.2. If d(x, y) = |x − y| in (6), then
(i) DC(β;P) = P(r(β) = 0), and (ii) RDRH(β;P) =
infα∈S(β) P (|r(β)| ≤ |r(α)|).

PROOF. See the Appendix. �
DC(β;P) in (9) is not identical to original RDRH of

RH99, but is closely related to the latter. In fact, if the
infimum in RHS of (9) performs over S(β), then they
are identical. This is another characterization of RDRH.
DC(β;P) is no greater than RDRH(β;P).

Based on the depth functional in (6), we can introduce
the maximum regression depth estimating functional for
β , which is defined, for d(x, y) = |x − y|, as

(10) β∗(P ) = arg max
β∈Rp

DC(β;P),

β∗(P ) above is well defined. That is, the maximum on
the RHS of (10) is attained at a bounded β . The latter is
safeguarded by the result below under the assumption:

(A) : P(Hv) = 0 for any vertical hyperplane Hv.

PROPOSITION 2.3. Under (A), (i) lim‖β‖→∞ DC(β;
P) = 0, and (ii) the maximum on the RHS of (10) exists
and is attained at a bounded β .

PROOF. See the Appendix. �
2.3.3 Projection-pursuit approach. There is another

approach based on the projection-pursuit (PP) scheme to
induce the regression estimating functional for parame-
ter β . One starts with a univariate regression estimating
functional w.r.t. the univariate variable u′x ∈ R and r(β)

along each direction u ∈ S
p−1 := {v,‖v‖ = 1,v ∈ R

p}
and calculates the UFu(β) (the unfitness along u) (see
Section 2.2 for the definition of unfitness). Then one ob-
tains UF(β), the supremum of UFu(β) over all u ∈ S

p−1.
Finally, one minimizes UF(β) over all β ∈ R

p to obtain
a regression estimating functional β∗ for β via the min–
max scheme.
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REMARKS 2.2.

(I) The approach above actually can recover the max-
imum regression depth functional in RH99 and induce a
maximum projection depth functional that is closely re-
lated to P1-estimate in MY93. We elaborate the two spe-
cial cases in the following:

(II) A related PP approach was discussed in RL87
(page 144). In the empirical case, to obtain the esti-
mator β∗, it minimizes an objective dispersion function
s(r1(β), . . . , rn(β)), where ri(β) = yi − x′

iβ , s is just
scale equivariant (not translation invariant), and ri(β)

are regarded as a projection of the point (yi,x′
i )

′ onto
(1,−β)′. By varying s, this approach covers a very large
family of estimators (LS, LAD, LTS, LMS and S, etc.).

EXAMPLE 2.2 (Regression depth and maximum re-
gression depth functional). Consider the linear model:
y = β1 + x′β2 + e, where x,β2 ∈ R

p−1. Denote w =
(1,x′)′, β = (β1,β

′
2)

′. Then the model is y = w′β + e.
That is, w here corresponds to x in general model (1) and
vice versa.

When p = 2, we define F(β) = E(I((y − w′β) ∗ v′w ≥
0)), where F(β) stands for “fitness” of β , I for the indi-
cator function, and v = (−v1, v2), v1 ∈ R, |v2| = 1. When
v2 = 1, it represents the total probability mass touched
(covered) by tilting the line y = β1 + β2x counter-
clockwise around the point (v1, β1 + β2v1) to the verti-
cal position (note that the point is the intersection point
of the line with the vertical line x = v1). By considering
the clockwise tilting (v2 = −1), it is seen that the closer
to 1/2 the total mass is, the better (more balanced) the
candidate parameter β is.

When p > 2, with the same F(β) as defined above, it
can be shown that in the empirical case, minimizing F(β)

over all v1 ∈ R and v2 with ‖v2‖ = 1 (v = (−v1,v′
2)

′)
leads essentially to the regression depth RDRH of β in
RH99 (see the derivations in the Appendix for the general
case where it is shown that the approach here is equivalent
to (12) below). That is,

(11)
inf

v1∈R,‖v2‖=1
E

(
I
((

y − w′β
) ∗ v′w ≥ 0

))
= RDRH(β;P).

Equivalent definitions (or characterizations) of RDRH
in Definition 2.2 exist in the literature (see Remarks A.1).
The one given in Rousseeuw and Struyf (2004) (RS04) is

(12)
RDRH(β;P) = inf

D∈D
{
P

((
r(β) ≥ 0

) ∩ D
)

+ P
((

r(β) ≤ 0
) ∩ Dc)},

where D is the set of all vertical closed half-spaces D.
Now, we can define UF(β) as a simple reciprocal func-

tion of F(β) (e.g., f (x) = a(1 − x)/x, a > 0) such that it
equals ∞ if the latter equals zero and equals zero if the

latter is 1. Maximizing UF(β) leads to the RDRH of β .
Furthermore, minimizing the maximum of UF(β) over all
β ∈ R

p leads to the maximum regression depth functional
β∗.

EXAMPLE 2.3 (Projection regression depth and max-
imum depth functional). Hereafter, assume that R is a
univariate regression estimating functional which satis-
fies

(A1) regression, scale and affine equivariant, that is,

R(F(y+xb,x)) = R(F(y,x)) + b, ∀b ∈ R;
R(F(sy,x)) = sR(F(y,x)), ∀s ∈ R; and
R(F(y,ax)) = a−1R(F(y,x)), ∀a ∈ R and a 
= 0,

respectively, where x, y ∈R are random variables.
(A2) sup‖v‖=1 |R(F(y,x′v)| ≤ ∞.
(A3) R(F(y−x′β,x′v)) is quasi-convex and continuous in

β ∈ R
p for any fixed v ∈ S

p−1.

Assume that S is a positive scale estimating functional
such that S(Fsz+b) = |s|S(Fz) for random variable z ∈
R and scalar b, s ∈ R; that is, S is scale equivariant and
location invariant.

REMARKS 2.3.

(I) Note that, the R above applies for the regression
models that do not contain an intercept term (regression
through the origin). The latter situation is required in cer-
tain applications (see page 62 in RL87) or is generally ap-
plicable by some simple treatments of original data (see
Eisenhauer, 2003).

(II) In the sequel, R will be restricted to the form
R(F(y−x′β,x′v)) = T (F(y−x′β)/x′v), x′v 
= 0. T could be
a univariate location functional that is location, scale
and affine equivariant (see pages 158–159 of RL87 for
definitions). Examples of T include mean and quan-
tile functionals, among others. An example of R is
R(F(y−x′β,x′v)) = Med((y −x′β)/x′v), where Med stands
for the median functional and Med(Z) for Med(FZ).

(III) (A2) holds trivially if T is a quantile-type func-
tional (such as median functional) or mean-type func-
tional if the moments of the underlying distribution exist.
(A3) holds for those T as long as integrands involved are
quasi-convex and continuous.

Pairs of T and S induce a class of projection regression
estimating functionals. Define

(13) UFv(β;F(y,x), T ) := ∣∣T (F(y−x′β)/x′v)
∣∣/S(Fy),

which represents unfitness of β at F(y,x) w.r.t. T along the
direction v ∈ S

p−1. Note that if T is a Fisher consistent
estimating functional, then T (F(y−x′β)/x′v) = 0 under the
assumption E(e|x) = 0 in model (1) for some β0 (the true
parameter of the model) and the classical model assump-
tion that 0 is some kind of center of the error distribution,
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and x and e are independent. Note that S(Fy) does not
depend on v and β .

That is, overall one expects |T | to be small and close
to zero for a candidate β , independent of the choice of v
and x′v. The magnitude of |T | measures the unfitness of β
along the v. Dividing here by S(Fy) is simply to guaran-
tee the scale invariance of UFv(β;F(y,x), T ). Taking the
supremum over all v ∈ S

p−1 and suppressing T , yields

(14) UF(β;F(y,x)) = sup
‖v‖=1

UFv(β;F(y,x), T ),

the unfitness of β at F(y,x) w.r.t. T . Now applying the
min–max scheme, we obtain the projection regression es-
timating functional

(15) β∗(F(y,x)) = arg min
β∈Rp

UF(β;F(y,x)).

REMARKS 2.4.

(I) UF(β;F(y,x)) corresponds to the outlyingness
O(x,FX), and β∗(F(y,x)) corresponds to the projection
median functional PM(FX) in the location setting (see
Zuo, 2003). In (13), (14) and (15), we have suppressed S

since it does not involve v and is nominal (besides achiev-
ing the scale invariance). T in (14) and (15) is also sup-
pressed for convenience.

(II) A similar β∗ was first studied in MY93, where it
was called P1-estimate (denote it by TP 1, see (16)). How-
ever, they are different. First, MY93 did not talk about
the “unfitness” (or “depth”). Second, the definition of β∗
here is different from TP 1 of MY93, the latter multiplies
by S(Fv′x) instead of dividing by S(Fy) in (13). They in-
stead defined the following:

A(β,v) = ∣∣R(F(y−β ′x,v′x))
∣∣S(Fv′x),

where v,β ∈ R
p . Their P1-estimate is defined as

(16) TP 1 = arg min
β∈Rp

sup
‖v‖=1

A(β,v).

Later we will revisit TP 1 and explain why we divide by
S(Fy) in (13) instead of multiplying S(Fv′x). Note that
S(Fy) here could also be replaced by S(Fy−β ′x).

(III) The projection-pursuit idea here was first em-
ployed in a multivariate location setting by Stahel (1981)
and Donoho (1982) independently.

PROJECTION REGRESSION DEPTH (PRD). One can
also introduce the notion of projection depth in regression
using the UF(β;F(y,x)). For example, to make the depth
between 0 and 1, define a projection regression depth
(PRD) functional of β at F(y,x) w.r.t. a pair (T , S) as

(17) PRD(β;F(y,x)) = (
1 + UF(β;F(y,x))

)−1
.

It is readily seen that the LHS of (15) is also a maximizer
of projection regression depth functional. For the specifi-
cal pair of T and S such as

T (F(y−x′β)/(x′v)) = Medx′v
=0

{
y − x′β

x′v

}
,

S(Fy) = MAD(Fy),

we have

(18)

UF(β;F(y,x))

= sup
‖v‖=1

∣∣∣∣Medx′v
=0

{
y − x′β

x′v

}∣∣∣∣/MAD(Fy),

and

(19)

PRD(β;F(y,x))

= inf‖v‖=1,x′v
=0

MAD(Fy)

MAD(Fy) + |Med{y−x′β
x′v }| .

The empirical case of PRD above is closely related to
the so-called “centrality” in Hubert, Rousseeuw and Van
Aelst (2001) (HRVA01). In the definition of the latter, all
the terms of “MAD(·)” on the RHS of (19) are divided by
Med |x′v|.

2.3.4 Other approaches. Besides the three approaches
above, there are certainly other approaches (including ad
hoc ones). Among them, Mizera (2002) (M02) is a famous
one.

In extending the idea of RDRH of RH99, M02, with a
decision-theoretic flavor and under the vector optimiza-
tion framework (vector differential approach), introduced
the notions of global, local and tangent depth rigorously.
The former two are based on the so-called “critical” func-
tion. The latter (the tangent depth) is based on the vector
differential approach and includes local depth as a special
case. The local depth in turn includes the global depth as
its special case. They are identical under certain condi-
tions.

With mainly Euclidean norm (and/or L1 norm) of X−θ

(in location) and of y − x′β (in regression) as the typi-
cal critical functions, M02 applied the notions of depth
to location and (linear, nonlinear and orthogonal) regres-
sion models and obtained specific depth functions in those
models recovering mainly both the HD of Tukey (1975)
in location and RDRH in linear regression under a single
unified notion of depth (the tangent depth). It is not dif-
ficult to see that the critical function could be regarded
as a form of unfitness measure of the underlying param-
eter (note that the words “unfitness,” “nonfit,” “critical
function,” “objective function” and “loss function” are in-
terrelated in some sense. Different people have different
preferences.) For the linear regression model, the critical
function in M02 can be summarized as follows:

(20) CF(β;F(y,x)) = cp

∥∥y − x′β
∥∥
p,

where ‖ · ‖p is the absolute value or squared value w.r.t.
p = 1 or 2, respectively, and cp = 1/p. The global depth
of this leads to RDRH of RH99.

Based on the definitions of M02, one can introduce no-
tions of depth in regression models with appropriate cho-
sen critical functions. The key issue is how to construct
“reasonable” or “optimal” critical functions besides the
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L1 norm and the L2 norm approaches given in M02. With
the depth functions obtained via M02 approach, one can
introduce the maximum (deepest) regression depth esti-
mating functionals via the min–max scheme.

In addition to the approaches, we have discussed so far,
there are certainly other ones which introduce notions of
unfitness or depth. Can all these notions really serve as
depth notions in regression? Gauging or evaluating those
notions naturally becomes an issue. Namely, all the unfit-
ness or depth notions must satisfy some basic desired ax-
iomatic properties or possess some desirable and intrinsic
features and meet some criteria. What are the criteria?

In the following, we will propose and discuss four ax-
iomatic properties that are deemed necessary for any no-
tion of regression depth or unfitness, thereby providing a
systematic basis for the selection and evaluation of a depth
notion in regression.

3. AXIOMATIC PROPERTIES FOR DEPTH AND
UNFITNESS

3.1 Four Axiomatic Properties

DEFINITION 3.1 (A depth notion in regression). A
nonnegative functional G defined on space R

p × P →
[0,∞) is called a depth functional in regression, where
P is the collection of distribution functions on R

p+1, if it
satisfies the following four properties:

(P1) Invariance (regression, scale, affine invariance)
The functional G is regression, scale and affine invariant
w.r.t. a given F(y,x) iff, respectively,

G(β + b;F(y+x′b,x)) = G(β;F(y,x)) ∀b ∈ R
p,

G(sβ;F(sy,x)) = G(β;F(y,x)) ∀s(
= 0) ∈ R,

G
(
A−1β;F(y,A′x)

) = G(β;F(y,x))

∀ nonsingular p by p matrix A.

(P2) Maximality at center The functional G possesses
its maximum over β ∈ R

p w.r.t. a given F(y,x). That is,
maxβ∈Rp G(β;F(y,x)) exists. Furthermore, it is attained at
β∗ if β∗ is the center of symmetry of F(y,x)) w.r.t. some
notion of symmetry in regression.

(P3) Monotonicity relative to deepest point With re-
spect to a maximum depth point β∗ of the functional G,
for any β ∈R

p and λ ∈ [0,1],
G

(
λβ∗ + (1 − λ)β;F(y,x)

) ≥ G(β;F(y,x)).

(P4) Vanishing at infinity The functional G is vanish-
ing when ‖β‖ → ∞. That is, lim‖β‖→∞ G(β;F(y,x)) =
0.

Note that due to the reverse relationship, if the depth no-
tion above changes to a unfitness notion, then the above
four properties need obvious changes except the (P1).
Maximum in (P2) becomes the minimum. (P3) changes

maximum to minimum and reverses the direction of the
inequality. (P4) becomes lim‖β‖→∞ UF(β;F(y,x)) = ∞.

The four properties above were first investigated for the
simplicial depth function in Liu (1990) and formulated for
general depth functions in location in ZS00. They have
been adopted and extended for depth notions in other set-
tings, especially for the functional data in Nieto-Reyes
and Battey (2016) (NRB16) from the topological valid-
ity point of view, for general functional data in Gijbels
and Nagy (2017) (GN17), and for the relevance of half-
space depths in scatter, concentration and shape matrices
in Paindaveine and Van Bever (2018).

Sophisticated discussions on the adaptations and the
replacements of the four properties and the appropriate-
ness have been given in Dyckerhoff (2004) and Serfling
(2006, 2019), and in NRB16 and GN17 for functional
data. Here, for the sake of consistency and simplicity, we
keep focusing on the four core axiomatic properties and
make some remarks below.

REMARKS 3.1.

(I) (P1) guarantees that the notion of depth in regres-
sion does not depend on the underlying coordinate sys-
tem or measurement scale. This provides an advantage
in the study of the depth induced functionals (estima-
tors) by just dealing with an easily manageable special
case (e.g., a spherically symmetric distribution) to cover
a large class of cases (e.g., all elliptically symmetric dis-
tributions) without loss of generality (see, e.g., Van Aelst
and Rousseeuw (2000) (VAR00)).

(II) (P2) says that the maximum of G always exists,
and it is attained at the center of symmetry w.r.t. some no-
tion of symmetry in regression, when there is such a cen-
ter. This allows one to discuss the maximum regression
depth estimating functional (or estimator in the empirical
case). Note that the supremum of bounded G always ex-
ists but not necessarily for the maximum. If (P4) holds,
one then can just focus on bounded β , however, since G

is not necessarily continuous in β , the maximum of G is
not guaranteed to exist. In the empirical distribution case,
however, if there are only finitely many hyperplanes that
need to be concerned for a given depth functional, then
the maximum always exists.

(III) (P3) guarantees that G(β;F(y,x)) is monotoni-
cally decreasing in β along any ray stemming from a
deepest point. This is equivalent to the quasi-convexity of
the depth functional under (P2), which further implies that
the set of all β that has depth at least α (≥ 0) is convex
(which will be useful when studying the depth induced
contours in the parameter space of β ∈ R

p), and fewer
ties in depth computations of β (in the strictly decreasing
case) will be yielded.

(IV) (P4) dictates that when the hyperplane Hβ deter-
mined by y = x′β becomes vertical, its depth should be
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vanishing. This makes sense since when the hyperplane
is vertical, it can no longer serve as an estimating func-
tional for a linear regression parameter. It is obviously
no longer useful for the prediction of future responses as
well. Note that ‖β‖ → ∞ could mean (i) |β1| → ∞ and
or (ii) ‖β2‖ → ∞. (ii) just means the hyperplane Hβ turns
out to be vertical. When (i) happens, the intercept of the
hyperplane Hβ becomes unbounded (assume that x1 = 1),
the hyperplane becomes useless and its depth logically
should be vanishing.

3.2 Examining Depth Notions

Now that four axiomatic properties have been pre-
sented, a natural question is: do the regression depth func-
tions induced from the four approaches in Sections 2.3.1
to 2.3.4 satisfy all the desired properties? That is, are they
really notions of depth w.r.t. (P1)–(P4)? First, let us sum-
marize the depth functionals from these sections.

The approach in Section 2.3.1 based on the classical ob-
jective functions induces a class of regression depth func-
tionals, defined by

(21) DObj(β;F(y,x), φ, f ) = (
1 + φ(FR)

)−1
,

where R = f (r(β)/S(Fy)), φ and f (objective function)
are given in Section 2.2 or Example 2.1, and S(·) is a scale
functional that is translation invariant and scale equiva-
lent; dividing by it achieves scale invariance of the depth
functions; it is suppressed in DObj.

Facility location approach in Section 2.3.2 induces
DC(β;F(y,x)) (or DC(β;P)) that is closely related to
RDRH(β;F(y,x)) when the distance d in (6) is the L1
norm. We will only consider DC(β;F(y,x)) with d(x,

y) = |x − y| as the representative for this approach.
Typical depth functionals from Section 2.3.3 (the PP

approach) are RDRH(β;F(y,x)) and PRD(β;F(y,x)).
Mizera’s approach in Section 2.3.4 can recover Tukey

HD in location and RDRH(β;F(y,x)) in regression, and
its critical function (see (20)) could be regarded an ob-
jective function. Its general version of tangent depth
in linear regression (on page 1694) essentially recovers
RDRH(β;F(y,x)). No distinct depth function in linear re-
gression from this approach will be discussed here.

Consequently, in the sequel we will investigate (i)
DObj(β;F(y,x), φ, f ), (ii) DC(β;F(y,x)), (iii) RDRH(β;
F(y,x)) and (iv) PRD(β;F(y,x)).

PROPOSITION 3.1. Regression depth functional (i),
(ii), (iii) and (iv) satisfy (P1).

PROOF. See the Appendix. �
REMARKS 3.2.

(I) Without modifying the original function A(β;v)

of MY93 (see (II) of Remarks 2.4), the induced depth
functional (iv), PRD(β;F(y,x)), can never satisfy (P1).

(II) As a by-product of (P1), maximum regression
depth functionals induced from regression depth notions
in Proposition 3.1 are equivariant as declared in Corol-
lary 3.1 below.

(III) Note that in (16), TP 1(F(sy,x)) = s2TP 1(F(y,x)).
That is, by definition below, TP 1 is not scale equivariant,
contrary to the popular belief in the literature.

COROLLARY 3.1. The maximum regression depth
functionals β∗(F(y,x)) induced from (i), (ii), (iii) and (iv)
are regression, scale and affine equivariant. That is, re-
spectively,

β∗(F(y+x′b,x)) = β∗(F(y,x)) + b ∀b ∈ R
p;

β∗(F(sy,x)) = sβ∗(F(y,x)) ∀ scalar s(
= 0) ∈ R;
β∗(F(y,A′x)) = A−1β∗(F(y,x))

∀ nonsingular A ∈ Rp×p.

PROOF. It is trivial. �

If a maximum regression depth estimating functional
β∗(F(y,x)) is equivariant, then it is symmetric w.r.t. (y,x)

in the sense that β∗(F(y,x)) = β∗(F(−y,−x)). By virtue of
the corollary, one can assume (w.l.o.g.) that β∗(F(y,x))

equals 0.
For the joint distribution F(y,x) and the univariate loca-

tion estimating functional T given in Example 2.3, F(y,x)

is said to be T-symmetric about a β0 iff for any v ∈ S
p−1

(22) (C0) : T (F(y−x′β0,x′v)) = 0.

REMARKS 3.3.

(I) T -symmetric F(y,x) includes a wide range of dis-
tributions. For example, if the univariate functional T is
the mean functional, then this becomes the classical as-
sumption in regression when β0 is the true parameter of
the model: the conditional expectation of the error term e

(that is assumed to be independent of x) given x is zero,
that is,

(C1) : T (F(y−x′β0,x′v)) = E(F(y−x′β0,x′v)|x=x0)

= 0 ∀x0 ∈ R
p,

(II) When T is the second most popular choice, the
quantile functional, especially the median (Med) func-
tional, the T -symmetric of F(y,x) about β0 is closely re-
lated to a weaker version (when v = (1,0, . . . ,0)) of the
so-called regression symmetry in RS04. Or precisely,

(C2) : T (F(y−x′β0,x′v)) = Med(Fy−x′β0
|x=x0)

= 0 ∀x0 ∈ R
p.

For a thorough discussion of this type of symmetry, refer
to RS04.
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In the following, for DObj(β;F(y,x), φ, f ), we consider
only the combinations φ = μ, (a) f (x) = x2 (the case (I)
of Example 2.1) and (b) f (x) = |x| (the case (II) of Ex-
ample 2.1).

PROPOSITION 3.2. Regression depth function (i), (ii),
(iii) and (iv) satisfy (P2) in the following sense:

(a) The maximum of regression depth (i) (i.e., DObj(β;
F(y,x), φ, f )) exists and is attained at β0 ∈ R

p if φ = μ,
f (x) = x2 and (C1) holds or if φ = μ, f (x) = |x| and
(C2) holds.

(b) The maximum of regression depth (ii) (i.e., DC(β;
F(y,x))) exists if (A) holds and is attained at a bounded
β0 ∈ R

p .
(c) The maximum of regression depth (iii) (i.e.,

RDRH(β;F(y,x))) exists if (A) holds and is attained at
β0 ∈ R

p if (C2) holds.
(d) The maximum of regression depth (iii) (i.e., PRD(β;

F(y,x), T )) exists and is attained at β0 ∈R
p if (C0) holds.

PROOF. See the Appendix. �

REMARKS 3.4.

(I) Part (a) of the proposition could be extended to
cover more cases. If functional φ has the “monotonicity”
property (φ(FR1) ≤ φ(FR2) if R1 ≤ R2) and f (x) has
the unique minimum value, then existence is guaranteed.
When φ is the expectation or quantile functional, then it
has monotonicity, and if f (x) is even, monotonic in |x|
and convex, then f (x) has a unique minimum value. This
covers a large class of combinations of φ and f .

(II) Existence of maximum for DC and RDRH in the
proposition is established under (A). The latter sufficient
condition excludes the discrete distributions. In the em-
pirical case, existence always holds true for both, never-
theless.

PROPOSITION 3.3. Regression depth function (i),
(iii) and (iv) satisfy (P3) in the following sense.

(a) The regression depth (i) (i.e., DObj(β;F(y,x), φ, f ))
monotonically decreases along any ray stemming from
a deepest point if φ has the monotonicity property (i.e.,
φ(FR1) ≤ φ(FR2) if R1 ≤ R2), and f is quasi-convex
and has a unique minimum.

(b) The regression depth (iii) (i.e., RDRH(β;P)) mono-
tonically decreases along any ray stemming from a deep-
est point if (A) holds.

(c) The regression depth (iv) (i.e., PRD(β;F(y,x)))
monotonically decreases along any ray stemming from
a deepest point.

(d) The regression depth (ii) (i.e., DC(β;P)) violates
(P3) generally.

PROOF. See the Appendix. �

REMARKS 3.5.

(I) When φ is the expectation or quantile functional in
(a) of the Proposition, then it has the monotonicity prop-
erty, and when f is x2 or |x| or even the check function
in (III) of Example 2.1, then it again meets all the require-
ments in (a) of the proposition.

(II) For RDRH to meet (P3) (or (P2)), we have to ask
for (A) to hold. (P3) always holds for PRD(β;F(y,x)) with
T in Example 2.3.

PROPOSITION 3.4. Regression depth functional (i),
(ii), (iii) and (iv) satisfy (P4) in the following sense.

(a) The regression depth (i): DObj(β;F(y,x), φ, f ) → 0
when ‖β1‖ → ∞ and ‖β2‖ < ∞ if φ(FR) → ∞ as
|R| → ∞ and f (x) → ∞ as |x| → ∞.

(b) The regression depth (ii): DC(β;F(y,x)) → 0 when
‖β‖ → ∞ if (A) holds.

(c) The regression depth (iii): RDRH(β;P) → 0 when
‖β‖ → ∞ if (A) holds.

(d) The regression depth (iv): PRD(β;F(y,x), T ) → 0
as ‖β‖ → ∞ for T in Example 2.3.

PROOF. See the Appendix. �
REMARKS 3.6.

(I) (a) is established under some assumptions on φ and
β . If φ is the expectation or quantile functional and f (x)

is even, monotonic in |x| and convex, then they satisfy
the assumptions. (a) only treats one case of ‖β‖ → ∞.
This is, the intercept becomes unbounded while ‖β2‖ <

∞ (as argued in (IV) of Remarks 3.1, in this case, the
depth function ought to vanish). The other case of ‖β‖ →
∞ remains untouched.

(II) (b) and (c) are established under the assumption
(A). (d) holds for PRD(β;F(y,x), T ) with T in Exam-
ple 2.3 without any extra assumption. This T could be
the median or quantile functional or the weighted mean
functional in Wu and Zuo (2009) (WZ09).

4. CONCLUDING REMARKS

This article extends four axiomatic properties (eval-
uation criteria) for location depth notions in ZS00 to
depth notions in regression and discusses four general
approaches for introducing notions of depth or unfit-
ness in regression. The latter leads to four representative
depth notions: (i) DObj(β;F(y,x), φ, f ), (ii) DC(β;P),
(iii) RDRH(β;P) and (iv) PRD(β;F(y,x)).

It characterizes (ii) and reveals that this depth notion in
regression is not identical yet closely related to the RDRH
of RH99. The latter is contrary to a claim in the literature.

It further investigates the leading regression depth no-
tions (i), (ii), (iii) and (iv) w.r.t. the evaluation criteria and
shows that (a) DObj(β;F(y,x), φ, f ) satisfy all the four
properties under some conditions on φ and f , with (P4)
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proved under just one special case of ‖β‖ → ∞; (b) under
(A), DC satisfy all (but P3) properties; (c) RDRH(β;P)

satisfy all the four axiomatic properties if (A) holds;
(d) PRD(β;F(y,x)) satisfy all four properties.

Therefore, all but Carrizosa depth (ii) are real regres-
sion depth notions w.r.t. the four properties under those
assumptions. Moreover, depth functions induced from
PRD are representative extensions of eminent projection
depth in location to regression.

As by-product of this article, two new characterizations
of RDRH are obtained. One is in Proposition 2.2 and the
other in Example 2.2. The latter one turns out to be ex-
tremely helpful in studying the asymptotics of the deepest
regression estimator β∗

RDRH
(see Zuo, 2019a).

One of the primary advantages of the notions of depth
is that it can be employed directly to define median-type
deepest (or maximum depth) estimating functionals (esti-
mators in the empirical distribution case) for parameters
in regression or location models. The most outstanding
feature of the univariate median is its exceptional robust-
ness. Do the deepest regression estimating functionals in-
duced from real regression depth notions here inherit this
robustness property? Answers to this for most cases of
(i) and for (iii) have been given in the literature (e.g.,
VAR00). Encouraging answers to (iv) have been estab-
lished in Zuo (2018).

Besides (P1)–(P4), in evaluating and comparing the
overall performance of various regression depth notions,
one certainly has to further take into account the robust-
ness and efficiency of their induced maximum depth es-
timators and their computability. Taking all these factors
into consideration, preliminary results (see Zuo, 2019b)
indicate that projection regression depth, just as its loca-
tion counterpart, is competitive among leading competi-
tors.

APPENDIX

PROOF OF PROPOSITION 2.2. Proof of part (ii). As-
sume that ‖β‖ < ∞, we need to show that

(23) RDRH(β;P) = inf
α∈S(β)

P
(∣∣r(β)

∣∣ ≤ ∣∣r(α)
∣∣).

Denote the angle between the hyperplane Hβ (determined
by y = w′β) and the horizontal hyperplane plane Hh (de-
termined by y = 0) by θβ (consider the acute one only,
hereafter). That is, θβ is the angle between the normal vec-
tor (−β ′

2,1)′ and the normal vector (0′,1)′ in the (x′, y)′-
space. Therefore, it is easy to see that | tan(θβ)| = ‖β2‖.
For any α = (α1,α

′
2)

′ ∈ S(β) (‖α‖ < ∞) define similarly
(hereafter) Hα and θα .

First, we show that the LHS of (23)) is no less than
its RHS. Tilting β to a vertical position in Definition 2.2
means tilting Hβ along a hyperline lv(β) which is the in-
tersection line of Hβ with some vertical hyperplane Hv .

Let P(lv(β)) be the minimum probability mass touched
by tilting Hβ in the definition of RDRH to a vatical posi-
tion along lv(β) in two ways. Then it is readily seen that

(24) RDRH(β;P) = inf
lv(β)

P
(
lv(β)

)
.

Let Hγ be the hyperplane with θγ = arctan((‖α2‖ +
‖β2‖)/2) which contains the hyperline lv(β). Then it is
seen that Hγ is in-between Hβ and Hα (consider again
the situation that the angle formed between Hβ and Hα is
acute, w.l.o.g.). Furthermore, points on Hγ have the same
vertical distances to Hβ and Hα . That is, Hγ bisects the
double wedge formed by Hβ and Hα (i.e., it bisects the
vertical distance between the two hyperplanes).

Now it is not difficult to see that P(|r(β)| ≤ |r(α)|)
equals the probability mass touched by tilting Hγ (toward
Hβ initially) along the hyperline lv(β) to the vertical po-
sition. In order to reach the infimum over S(β), we need
to seek α′s such that the probability mass above becomes
smaller.

Consider αm ∈ S(β) that approach β (or let θαm → θβ )
while Hαm and Hβ still intercept at lv(β) (that is, tilting
Hα toward Hβ along lv(β) yields αm). As m → ∞, the
probability mass contained in the interior of the double
wedge formed between Hβ and Hγ m

approaches zero and
P(|r(β)| ≤ |r(αm)|) decreases to the probability mass
touched by tilting Hβ to the vertical position along the
hyperline lv(β) in one of two ways (the other way is de-
scribed below).

Consider αn ∈ S(β) that approach β (or let θαn → θβ )
with Hαn being on the other side of Hβ and still inter-
cept at lv(β) (i.e. if previously θαm < θβ , then θαn ≥ θβ

now, vice versa). Using the same hyperline lv(β) above,
one can conclude similarly that P(|r(β)| ≤ |r(αn)|) de-
creases to the probability mass touched by tilting Hβ to
the vertical position along the hyperline lv(β) in the other
way, as n → ∞.

The above results imply that infα∈S(β) P (|r(β)| ≤
|r(α)|) ≤ P(lv(β)). The arbitrariness of lv(β) (which can
be any hyperline that is the intersection line of Hβ and any
vertical hyperplane Hv), in conjunction with (24) implies
that RDRH(β;P) ≥ infα∈S(β) P (|r(β)| ≤ |r(α)|).

Now we show that the LHS of (23)) is no greater than its
RHS. For a given α ∈ S(β), Hβ intersects Hα at a hyper-
line, say l(β,α). Replace lv(β) with this line in the above
proof, it is readily seen that for the given β,α ∈ S(β), and
l(β,α), P(|r(β)| ≤ |r(α)|) equals the probability mass
touched by tilting Hγ (toward Hβ initially) along the
hyperline l(β,α) to the vertical position, which implies
that P(|r(β)| ≤ |r(α)|) ≥ P(l(β,α)), where P(l(β,α))

is again the minimum probability mass touched by tilt-
ing Hβ along the hyperline l(β,α) to the vertical po-
sition in two ways in the Definition of 2.2. Hence, the
RDRH(β;P) ≤ infα∈S(β) P (|r(β)| ≤ |r(α)|) in light of
(24). This completes the proof of (ii).
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Proof of part (i). Consider only the α that does not be-
long to S(β). Hence, Hα is parallel to Hβ . Let Hγ be
the hyperplane in the middle of the hyperstripe with Hα

and Hβ as its two boundaries (i.e., θγ = arctan((‖α2‖ +
‖β2‖)/2)). Then it is readily seen that P(|r(β)| ≤ |r(α)|)
equals to the probability mass carried by the closed half
of the hyperstripe with Hγ and and Hβ as its two bound-
aries.

Consider αn /∈ S(β) that approach β (or let α1n → β1),
it is readily seen that the probability mass contained in
the interior of the half-hyperstripe formed between Hβ

and Hγ n
approaches zero, and P(|r(β)| ≤ |r(αn)|) de-

creases to P(Hβ) = P(r(β) = 0) as n → ∞. Similar
to the proof of part (ii) above, it is readily shown that
infα /∈S(β) P (|r(β)| ≤ |r(α)|) = P(r(β) = 0). On the other
hand, by the proof of part (ii) above, it is readily seen that
infα∈S(β) P (|r(β)| ≤ |r(α)|) ≥ P(r(β) = 0). This com-
pletes the proof of (i). �

PROOF OF PROPOSITION 2.3. (i) For any given β =
(β1,β

′
2)

′, let the angle between the hyperplane Hβ (deter-
mined by y = w′β) and the horizontal hyperplane plane
Hh (determined by y = 0) be θ . That is, θ is the angle be-
tween the normal vector (−β ′

2,1)′ and the normal vector
(0′,1)′. Therefore, it is easy to see that | tan(θ)| = ‖β2‖.
When ‖β‖ = (|β1|2 + ‖β2‖2)1/2 → ∞, assume w.o.l.g.
that |β1| < ∞ (otherwise DC(β;P) → 0 by definition
(6)), then | tan(θ)| → ∞, Hβ turns to be vertical, which
further implies by Proposition 2.2 that DC(β;P) → 0
since the closed double wedge formed by Hβ and its
eventual vertical hyperplane Hv becomes smaller and
smaller (in Lebesgue measure sense), and Hβ approaches
its eventual vertical hyperplane Hv .

(ii) Part (i) implies that when ‖β‖ becomes unbounded,
the RHS of (10) cannot reach its maximum value at such
β . For a fixed α, f (β;α) = P(|r(β)| ≤ |r(α)|) is upper
semicontinuous in β , hence the infimum of upper semi-
continuous functions DC(β;P) is also upper semicontin-
uous. The upper semicontinuity of DC(β;P) in β over a
bounded set, in conjunction with the extreme value theo-
rem, yields (ii). �

PROOF OF THE STATEMENT IN EXAMPLE 2.3. Let
v = (−v1,v′

2)
′ ∈ R

p , v1 ∈ R, v2 ∈ R
p−1, and ‖v2‖ = 1;

r(β) = y − w′β and g(β,v) = r(β) ∗ ((v2)
′x − v1) =

r(β)w′v. Here, we wanted to show that

(25) RDRH(β,P ) = inf‖v2‖=1,v1∈R
E

(
I
(
g(β,v) ≥ 0

))
.

That is, the RHS above is equivalent to (12).

(i) Let us just focus on w′v ≥ 0 (the case w′v ≤ 0
can be treated similarly). Since w′v ≥ 0 is equivalent
to x′(v2) − v1 ≥ 0, the latter represents a closed half-
plane Hx(v1,v2) in the x-hyperplane (horizontal hyper-
plane y = 0 in the (x′, y)′ space). From the (x′, y)′ space

point of view, it represents a closed vertical half-space
D in (x′, y)′ space. The intersection of this D with
x-hyperplane (or the vertical projection of D onto x-
hyperplane) results in Hx(v1,v2).

(ii) On the other hand, given a closed vertical half-
space D in (x′, y)′ space, it intercepts with the y = 0 hy-
perplane (or the x-hyperplane) at a closed half-plane Hx
in x-hyperplane with its boundary a hyperline lx in the
x-hyperplane. Call the direction in the x-hyperplane that
is perpendicular to the hyperline lx and pointing into the
half-plane Hx as v2. Denote the distance from the origin
to the point on v2 and lx as v1; it then follows that D

is equivalent to x′v2 ≥ v1 in the (x′, y)′ space. That is,
w′v ≥ 0.

It is readily seen from (i) and (ii) above that the RHS of
(25) is equivalent to (12). Also, it is straightforward to see
that it is equivalent to (28) under the assumptions there.
Furthermore, it can be shown that

(26)

RDRH(β,P ) = inf‖v2‖=1,v1∈R
E

(
I
(
g(β,v) ≥ 0

))
= inf

v∈Sp−1
E

(
I
(
r(β) ∗ (

v′w
) ≥ 0

))
.

Incidentally, it is seen that

inf‖v2‖=1,v1∈R
E

(
I
(
g(β,v) ≥ 0

))
= inf‖v2‖=1,v1∈R

E
(
I
(
r(β) ∗ (

v′w
) ≥ 0

))
= inf‖v2‖=1,v1∈R

min
{
E

(
I
(
r(β) ∗ (

v′w
) ≥ 0

))
,

E
(
I
(
r(β) ∗ (−v)′w

) ≥ 0
)
)
}

= inf‖v2‖=1,v1∈R
min

{
E

(
I
(
r(β) ∗ (

v′w
) ≥ 0

))
,

E
(
I
(
r(β) ∗ (

v′w
) ≤ 0

))}
= inf‖v2‖=1,v1∈R

min
{
E

(
I
(
g(β,v) ≥ 0

))
,

E
(
I
(
g(β,v) ≤ 0

))}
.

Note that the RHS of the last equality is the quantity used
for the empirical regression depth calculation in RH99 (up
to a constant factor n). �

PROOF OF PROPOSITION 3.1. (i) For the DObj(β;
F(y,x), φ, f ) in Section 2.3.1, notice the facts that(

y + x′b
) − x′(β + b) = y − x′β,

s ∗ y − x′(s ∗ β) = s ∗ (
y − x′β

)
, s 
= 0,

y − x′A
(
A−1β

) = y − x′β.

These, in conjunction with the scale equivalence of
S, yield the invariance of R = f (r(β)/S(Fy)) and of
the depth function. (P1) follows immediately for the
DObj(β;F(y,x), φ, f ) in (21).
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(ii) By (ii) of Proposition 2.3, DC(β;P) = P(y −
w′β = 0), replacing the x in (i) above verification by
w, it is readily seen the (P1) follows immediately for
DC(β;P).

(iii) For RDRH(β;P), in the empirical case, the fact
that the latter satisfies it has already been declared in Sec-
tion 2.1 of RH99. For the general population case, note
that a characterization of RDRH(β;P) is (see the proof
above)

RDRH(β;P) = inf‖v2‖=1,v1∈R
E

(
I
(
r(β) ∗ (

v1,v′
2
)
w ≥ 0

))
= inf

v∈Sp−1
E

(
I
(
r(β) ∗ v′w ≥ 0

))
.

(27)

Similar to the proof in (i), (P1) follows immediately for
RDRH(β;P).

(iv) For PRD(β;F(y,x)) in (17). (P1) follows straight-
forwardly from (13), (14) and (17), coupled with (A1) and
(A4). �

REMARKS A.1.

(I) (27) is one of representations of the RDRH. Many
other characterizations exist. For example, one is given in
RS04 displayed in (12) and another one given in VAR00
is

RDRH(β;P) = inf
u∈Rp−1,v∈R

{
P

(
r(β) > 0 ∩ x′u < v

)
+ P

(
r(β) < 0 ∩ x′u > v

)}
.

(28)

They assumed that P(x′u = v) = 0 (and implicitly as-
sumed that (A0): P(r(β) = 0) = 0).

(II) Another representation of the RDRH given in
AMY02 is displayed in (7), which is slightly more general
than (28) but again also implicitly made the assumptions
above. The latter implies that these representations are
valid only for regression lines or hyperplanes that do not
contain any probability mass. The empirical version of
(7) was also given on page 158 of Maronna, Martin and
Yohai (2006) (MMY06).

(III) Empirical versions of the regression depth of
RH99 and its relationship to the location (half-space)
depth were also extensively investigated in Mizera (2002)
(pages 1689–1690).

(IV) Another empirical version (which actually is
slightly different from RDRH) was given in Bai and He
(1999):

RDRH(β,Zn)

= inf‖u‖=1,v∈Rmin

{
n∑

i=1

I
(
ri(β)

(
u′xi − v

)
> 0

)
,

n∑
i=1

I
(
ri(β)

(
u′xi − v

)
< 0

)}
,

where yi = β0 + x′
iβ1 + ei , β ′ = (β0,β

′
1) ∈ R

p , xi ∈
R

p−1, ri(β) = yi − (1,x′
i )β , and Zn = {(xi , yi), i =

1, . . . , n}. They again implicitly assumed that (A0) hold
and P(x′u = v) = 0.

PROOF OF PROPOSITION 3.2. (a) In light of (21),
the existence of maximizer of DObj is equivalent to
the existence of the minimizer of φ(FR), where R =
f (r(β)/S(Fy)). The latter holds true by virtue of the
property (“monotonicity”) of the given functional φ (i.e.
φ(FR1) ≤ φ(FR2) if R1 ≤ R2) and the unique minimizer
0 of the given f with the minimum value 0. Under (C1)
or (C2), it is readily seen that the maximizer is β0, in the
respective cases.

(b) For Dc(β;P), P2 follows directly from Proposi-
tion 2.3.

(c) Following the proof of Proposition 2.3, it can show
similarly that under the given condition P(Hv) = 0,
RDRH(β;P) → 0 when ‖β‖ → ∞ for β = (β1,β

′
2)

′ with
bounded β1. For |β1| → ∞ case, we have to adopt the
slightly modified definition for RDRH, as done in (6) for
DC . That is, RDRH(β;P) → 0 when |β1| → ∞. Follow-
ing the arguments given in (ii) of Proposition 2.3, we see
that the maximum of RDRH(β;P) exists and is attained
at a bounded β∗ (note that RDRH(β;P) is upper semi-
continuous). Now, if (C2) holds, that is, F(y,x) is regres-
sion symmetric about the β0, then by Theorem 3 of RS04

RDRH(β0) = 1

2
+ 1

2
P

(
y − w′β0 = 0

)
,

which is the maximum possible depth value for all β ∈ R
p

in this case.
(d) We have to show that (a) the depth value cannot

be maximized when the norm of β ∈ R
p becomes un-

bounded and (b) within the set of bounded β ∈ R
p , there

exits a β0 which can attain the maximum depth value.
For (a), by Lemma A.1 (given below), one immediately
sees that PRD(β) → 0 as ‖β‖ → ∞. For (b), first, the
continuity of PRD(F(y,x);β) in β follows directly from
the (A3) and the property of supremum; second, by the
extreme value theorem, the existence of a bounded max-
imizer β0 is guaranteed. When F(y,x) is T -symmetric
about β0 ∈ R

p , (iii) of Lemma A.1 yields the desired re-
sult. �

A function f from R
d →R is quasi-concave if f (λx +

(1 − λ)y) ≥ min{f (x), f (y)}, ∀λ ∈ [0,1] and x, y in R
d

(d ≥ 1). For the distribution FX of any random vector X,
denote its empirical version by Fn

X .

LEMMA A.1. The projection regression depth
PRD(β;F(y,x)) in (17) is

(i) affine invariant, quasi-concave and continuous in β ,
(ii) vanishing when ‖β‖ → ∞,

(iii) maximized at the center β0 of T-symmetric F(y,x),
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(iv) continuous in F(y,x) in the sense that PRD(β;
Fn

(y,x))
m−→ PRD(β;F(y,x)) in the same mode as

Fn
(y,x)

m−→ F(y,x) when n → ∞, provided that (for a
given β)

(a) T (Fn
(y−x′β)/x′v)

m−→ T (F(y−x′β)/x′v) uniformly

in v ∈ S
p−1 and S(Fn

y )
m−→ S(Fy),

(b) sup‖v‖=1 |T (F(y−x′β)/x′v)| < MT , and
infn S(Fn

y ) > MS > 0,

where convergence mode “m” could be in oP (1),
o(1) a.s., or in OP (n−1/2).

PROOF OF LEMMA A.1. (i) This is a straightforward
verification, by (A1), (A3), and (13), (14) and (17).

(ii) In light of (A1), it is readily seen that
T (F(y−x′β)/x′v) = T (F(y/x′v) − ‖β‖ for β 
= 0 and v =
β/‖β‖. This, in conjunction with (A2), (13), (14) and
(17), yields PRD(β;F(y,x)) → 0 as ‖β‖ → ∞.

(iii) In virtue of the definition of T-symmetric about β0
in (22), (13), (14) and (17), one sees that PRD(β0;F(y,x))

attains its maximum possible value 1.
(iv) Write G for PRD, and in light of (17), (14) and

(13), a simple derivation leads to∣∣G(
β;Fn

(y,x)

) − G(β;F(y,x))
∣∣

≤ sup
‖v‖=1

∣∣UFv
(
β;Fn

(y,x), T
) − UFv(β;F(y,x), T )

∣∣

≤ sup
‖v‖=1

D(Tn)S(Fy) + D(Sn)|T (F(y−x′β)/x′v)|
S(Fn

y )S(Fy)

≤ 1

MS

sup
‖v‖=1

D(Tn) + MT

MSS(Fy)
D(Sn)

by the given (b), where D(Tn) = |T (Fn
(y−x′β)/x′v) −

T (F(y−x′β)/x′v)| and D(Sn) = |S(Fn
y ) − S(Fy)|. This, in

conjunction with the given (a), leads immediately to (iv).
�

REMARKS A.2.

(I) The assumption (a) in (iv) of the lemma holds for
classical location estimating functionals T such as Med
functional or trimmed and winsorized mean functionals of
WZ09 and for S such as MAD or trimmed and winsorized
standard deviations functionals (Wu and Zuo, 2008). Uni-
formity in v ∈ S

p−1 can usually be established via the II.4.
and II.5. of Pollard (1984).

(II) The assumption (b) in (iv) of the lemma holds
true for T and S above, as long as S(Fy) > δ > 0 and
|T (F(y−x′β)/x′v)| < Mv < ∞ for any v ∈ S

p−1.

PROOF OF PROPOSITION 3.3. It is readily seen that
to prove (P3), it suffices to show that (1) there exists a
deepest point β0 of G(β;P), and (2) the regression depth
function G(β;P) is quasi-concave in β .

(a) For regression depth (i) (i.e., DObj(β;F(y,x), φ, f )),
(1) follows from the given condition and (I) of Re-
marks 3.4. For (2), in light of (21), we only need to
show that φ(FR) is quasi-convex in β with R = f (r(y −
x′β)/S(Fy)). The latter follows from the quasi-convexity
of f and the “monotonicity” of φ.

(b) For regression depth (iii) (i.e., RDRH), (1) follows
from (ii) of Proposition 3.2 and (2) follows directly from
(iii) of Lemma A.2 given below.

(c) For the projection regression depth functional, (1)
follows from the (i) and (ii) of Lemma A.1. For (2), in
virtue of definition (17), it is seen that it suffices to show
that UF(F(y,x);β, T ) is quasi-convex in β . By (A3), cou-
pled with (13) and (14), it is readily seen that for any
β = λβ1 + (1 − λ)β2, λ ∈ [0,1]

UF(β;F(y,x), T )

≤ max
{
UF(β1;F(y,x), T );UF(β2;F(y,x), T )

}
.

This completes the proof of (P3) for PRD(β;F(y,x), T ).
(d) Let λ ∈ (0,1) is fixed. For given β1 and β2 ( 
=

β1) in R
p , assume that P(r(βi ) = 0) = 1/2, i = 1,2.

Then we have that DC(λβ1 + (1 − λ)β2;P) = 0 and
DC(βi;P) = 1/2 by Proposition 2.2. This implies that

DC

(
λβ1 + (1 − λ)β2;P

)
< min

{
DC(β1;P);DC(β2;P)

}
= DC(β2;P).

That DC(β;P) attains it maximum value at β1 yields the
desired result. �

LEMMA A.2. RDRH(β;P) of RH99 is

(i) upper semicontinuous in β , and continuous in β if
the density of P exists and discontinuous in β generally;

(ii) continuous in P in the sense that RDRH(β;Qn)

converges to RDRH(β;P) in the same mode (in distri-
bution, in probability, with probability one) as Qn con-
verges to P ; If Qn is the empirical version Pn of P , then
RDRH(β;Pn) converges to RDRH(β;P) almost surely
and uniformly in β ∈ R

p .
(iii) quasi-concave in β ∈ R

p .

PROOF OF LEMMA A.2. (i) For fixed v, f (β;v) =
P(r(β) ∗ v′w) in (27) is upper semicontinuous in β ,
hence the infimum of upper semicontinuous functions
RDRH(β;P) is also upper semicontinuous. If a density
of P exists, then f (β;v) is continuous in β and so is the
infimum of continuous functions RDRH(β;P). We focus
on the discontinuity part. Suppose that the distribution of
(y,x) has its entire probability mass on the hyperplane de-
termined by y = w′β0 for some β0 ∈ R

p , and any hyper-
line contains zero probability mass; then RDRH(β0;P) =
1, and RDRH(β;P) = 0 for any β(
= β0) ∈ R

p . Thus,
when β approaches β0, RDRH(β;P) can never approach
RDRH(β0;P).
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(ii) First part follows directly from the characterization
of RDRH(β;P) given in (27) and the continuity of the
infimum function; the second part follows from standard
empirical process theory, such as Pollard (1984).

(iii) Let β1,β2 ∈ R
p and λ ∈ [0,1], and β := λβ1 +

(1 − λ)β2. Let Hβ be the hyperplane determined by y =
w′β , and a = min{w′β1,w′β2}, b = max{w′β1,w′β2}.
Denote by W(Hβ1

,Hβ2
) = {(x ′, y) : x ∈ R

p−1, y ∈ [a,

b]} the closed double wedge formed by two hyperplanes
Hβ1

and Hβ2
(assume w.l.o.g. that Hβ1

is not parallel to
Hβ2

).
By Definition 2.2, RDRH(β;P) is the minimum proba-

bility mass that needs to pass when Hβ is tilted into a ver-
tical position. Notice that the position of Hβ is in-between
that of Hβ1

and Hβ2
, it is readily seen that

RDRH
(
λβ1 + (1 − λ)β2;P

)
≥ min

{
RDRH(β1;P),RDRH(β2;P)

}
+ min

{
P

(
W(Hβ ,Hβ1

)
)
,P

(
W(Hβ ,Hβ2

)
)}

≥ min
{
RDRH(β1;P),RDRH(β2;P)

}
.

This completes the proof of part (iii). �
PROOF OF PROPOSITION 3.4. (a) By virtue of its

definition (21), it suffices to show that φ(FR) → ∞ when
‖β‖ → ∞ with R = f (r(β)/S(Fy)). The latter, in light
of given conditions, follows if we can show that |r(β)| →
∞ when |β1| → ∞. Note that S(Fy) is a fixed positive
number and |r(β)| ≥ |β1| − |y − β ′

2x| ≥ |β1| − |β ′
2x| −

|y| ≥ |β1| − |y| − ‖β2‖‖x‖ → ∞ with probability one.
This implies that |R| → ∞ by virtue of the given condi-
tion on f , which in turn implies that φ(FR) → ∞.

(b) DC(β,P ) satisfies P4 follows directly from the
Proposition 2.3.

(c) RDRH(β;P) satisfies P4 has been proved in (c) of
the proof of Proposition 3.2.

(d) This part was given in (ii) of Lemma A.1. �
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