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A Statistical Framework for Modern Network
Science
Harry Crane and Walter Dempsey

Abstract. We discuss how sampling design, units, the observation mech-
anism and other basic statistical notions figure into modern network data
analysis. These considerations pose several new challenges that cannot be
adequately addressed by merely extending or generalizing classical methods.
Such challenges stem from fundamental differences between the domains in
which network data emerge and those for which classical tools were devel-
oped. By revisiting these basic statistical considerations, we suggest a frame-
work in which to develop theory and methods for network analysis in a way
that accounts for both conceptual and practical challenges of network sci-
ence. We then discuss how some well-known model classes fit within this
framework.
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1. INTRODUCTION

The earliest methods for network analysis were devel-
oped in the quantitative social sciences, beginning with
Moreno’s 1930 introduction of the sociogram [39] and
continuing with the development of stochastic blockmod-
els (SBMs) [28] and exponential random graph models
(ERGMs) [23, 29]. Since the mid-1990s, however, the fo-
cus of network analysis has shifted from social networks
toward large, complex networks that emerge in applica-
tions across the social, biological and physical sciences.
We aim here to clarify a few important aspects of statisti-
cal analysis in this new landscape of network science. Our
discussion culminates in a proposed framework for net-
work modeling that demonstrates how classical statistical
concepts such as sampling design and observational units
figure into theoretical and methodological developments.
A key element of our discussion is how statistical methods
can be built around models that capture known empirical
behavior in observed network data while accounting for
basic tenets of sensible statistical inference and computa-
tional limitations of complex data structures. The discus-
sion subsumes classical network models, such as SBMs,

Harry Crane is Associate Professor, Department of Statistics
& Biostatistics, Rutgers University, 110 Frelinghuysen Road,
Piscataway, New Jersey 08854, USA (e-mail:
hcrane@stat.rutgers.edu). Walter Dempsey is Assistant
Professor, Department of Statistics, Harvard University One
Oxford Street, Cambridge, Massachusetts 02138, USA (e-mail:
wdempsey@uchicago.edu).

ERGMs and graphon models, as well as some more recent
proposals (e.g., the Crane–Dempsey edge exchangeable
framework [16] and the Caron–Fox model based on com-
pletely random measures [8]) that seek to move beyond
the limitations of these classical models.

After introducing our proposed modeling framework in
Section 2, we move on to the simple setting of binary re-
lations observed for an entire population (Section 3), so
that the challenge of accounting for the sampling scheme
does not arise. We then consider the more common sit-
uation in which the observed network is sampled from a
larger population network. Sampling designs are detailed
in Section 4, followed by a discussion of model coher-
ence in Section 5. Section 6 discusses the interplay of
model coherence and inferential tasks, clarifying its role
in both in- and out-of-sample inference. Against the back-
drop of the modeling framework laid out in Sections 2, 5
and 6, we then discuss the specific model classes of ver-
tex exchangeable models (Section 7), relatively exchange-
able models (Section 8.3), edge exchangeable models
(Section 9) and relationally exchangeable models (Sec-
tion 10).

The forthcoming sections aim to provide a broad
overview of a wide swath of work scattered throughout
the statistics and probability literature. We focus here on
the high-level concepts behind recent developments, de-
ferring technical details to the main references, for exam-
ple, [15, 16].
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2. NETWORK MODELING PARADIGM

The variety of situations in which modern network data
arises, for example, from fMRI images, social media in-
teractions, paths between Internet servers and cryptocur-
rency transactions, necessitates a mathematical frame-
work that allows flexibility in how to represent, model and
analyze such data. With this in mind, we stress here the
distinction between “network” as a scientific concept and
“graph” as a mathematical structure. Whereas the concept
of “network” conjures the vague but intuitive image of a
complex system of interrelated entities, the mathematical
notion of “graph” is defined precisely as a set of vertices
V together with a binary relation E ⊆ V × V . Because
networks arise in a variety of situations, it may not al-
ways be appropriate or ideal to represent network data as
a graph, for example, in the interaction network data stud-
ied in [16] and discussed in Section 9 below. Ultimately,
the best representation of a network depends fundamen-
tally on how the network data has been obtained, whether
by sampling, a generative process, or some other means,
bringing the concept of statistical units front and center in
the development of theory and methods for network anal-
ysis.

2.1 Statistical Units for Network Data

In experimental design, the statistical units are defined
as the “experimental units, plots or subjects” [37] of a
given study, which are traditionally the smallest entities
to which a treatment can be assigned. In network analy-
sis, however, units are not entities receiving a treatment
but more often are the entities comprising the network
structure. Whereas the appropriate choice of unit is clear
in many classical settings, for example, plots for agricul-
tural trials or subjects for biomedical trials, it is often less
clear, and varies with context, in network analysis. For
example, in a high school social network obtained by ob-
serving friendships among n sampled students (as in Sec-
tion 3.2), the students are the statistical units. If, however,
the social network were constructed from a sample of n

binary interactions among students in a high school (as
in Section 9), then the interactions are the units. In both
scenarios, the “social network” can be represented by a
graph-like structure with students as the vertices and their
interactions/friendships as the edges. But the statistical in-
terpretation is different, with vertices as the units in the
first scenario and edges as the units in the second sce-
nario. This observation goes against conventional wisdom
in the networks literature that “in most network samples,
the unit of sampling is the actor or node” [25], page 7,
and is a key initial observation underlying the alternative
framework of edge exchangeability [16], as discussed in
Section 9 below.

With the determination of units comes the related no-
tion of sample size for network data. Though it is still

common to think of network data as “a sample of size
1,” the above discussion of units allows us to define the
sample size of a network precisely as the number of ob-
served units. To preview some upcoming examples: the
sample size in the high-school friendship network consid-
ered in Section 3.2 is the number of sampled vertices, in
the phone call scenario of Section 4.3 is the number of
sampled phone calls (or edges), in the coauthorship sce-
nario of Section 4.4 is the number of sampled articles (or
hyperedges), and in the traceroute scenario of Section 4.5
is the number of sampled paths. See [15], Sections 3.8 and
3.9, for further discussion.

With the notions of units and sample size fixed, we of-
ten write Yn to denote network data for a sample of size n,
with the meaning of sample size understood implicitly by
the appropriate identification of the units in the assumed
situation. In the conventional representation of networks
as graphs, the sample size is the number of vertices and
Yn is an n × n array taking values in {0,1}. For interac-
tion data, as studied in [16], Yn is a graph with n labeled
edges. The framework presented in the next section ap-
plies more generally to most current conceptions of net-
work data, for example, as point processes (Section 8.2)
or as relationally-labeled structures (Section 10).

2.2 Modeling Paradigm

Unless otherwise noted, we focus on network data Yn

assumed to have been obtained by sampling from a popu-
lation network YN of size N > n. In this situation, a sta-
tistical model consists of two primary components:

(M1) The descriptive component articulates the
sources of variation and uncertainty in the observed data
by specifying, for each possible sample size n, a set of
candidate distributions Mn for Yn.

(M2) The inferential component links the observed
data Yn to the unobserved population YN by a family
Sn,N of candidate sampling mechanisms that describe
how Yn was obtained from YN .

In the language of [15], Chapter 5, the inferential compo-
nent in (M2) provides the context in which the analysis is
to be interpreted. Though this setup accommodates much
more general modeling considerations, such as networks
evolving according to some generative process, we focus
this paper on network models whose inferential compo-
nent describes a sampling mechanism. In general, Sn,N

can contain an arbitrary number of candidate sampling
maps, just as Mn typically contains an arbitrary number
of candidate probability distributions, but for simplicity
we focus here on the case of a single sampling operation.

For example, the Erdős–Rényi–Gilbert distribution
with parameter 0 ≤ θ ≤ 1 on {0,1}n×n is defined by

Pr(Yn = y; θ) = ∏
1≤i �=j≤n

θyij (1 − θ)1−yij ,

(1)
y ∈ {0,1}n×n.
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A model specified in terms of (M1) and (M2) above
could take Mn = {Pr(Yn = ·; θ) : 0 ≤ θ ≤ 1}, that is, the
set of all Erdős–Rényi–Gilbert distributions on {0,1}n×n

and, for each N ≥ n ≥ 1, Sn,N = {Sn,N }, where Sn,N :
{0,1}N×N → {0,1}n×n is the selection sampling map
which samples from y ∈ {0,1}N×N by “selecting” its
first n rows and columns, that is, Sn,N(y) = y|[n] =
(yij )1≤i,j≤n. (Note that “selection” is sometimes called
“projectivity” or “restriction” by other authors.)

For another example with the same candidate distribu-
tions Mn, take Sn,N = {�n,N }, where �n,N is now a ran-
dom sampling operation obtained by choosing a set S of
n vertices from [N ] uniformly at random without replace-
ment and putting Yn = �n,NYN = YN |S , that is, the re-
striction of YN to this random vertex set. Klusowki and
Wu [32, 33], for example, consider such random sam-
pling operations as an inferential basis for counting motifs
within a fixed network yN . That is, the family of distribu-
tions MN consists of a single distribution PN that assigns
mass one to the network YN = yN .

The two components, (M1) and (M2), lead to our defi-
nition of a statistical network model as a pair
({Mn}1≤n≤N, {Sm,n}N≥n≥m≥1) of candidate distributions
and subsampling mechanisms for each finite sample size.
In general, each statistical model Mn is defined on a sam-
ple space Nn of “networks of size n,” which is left im-
plicit and depends on context. In the two examples above,
for instance, Nn = {0,1}n×n is the set of all n × n adja-
cency arrays. n other contexts, Nn may be the set of edge-
labeled graphs with edges labeled in [n], as in Section 9
below, or some other natural representation of network
data as the situation calls for it.

Together, components (M1) and (M2) allow the model
to be interpreted both as a data generating process and as
a framework for statistical inference. As a data generating
process, we assume that YN is a population network gen-
erated according to one of the distributions in MN . From
YN , we observe Yn by sampling according to one of the
sampling schemes in Sn,N . The setup affords a comple-
mentary interpretation in the inverse statistical inference
problem, for which we assume the observation Yn is dis-
tributed according to one of the candidates in Mn, and
that the relationship between sample and population via
the sampling mechanism Sn,N provides the necessary link
to draw inferences about the population generating pro-
cess based on Yn, as in (6) below. How sampling affects
inferences from sampled network data highlights the im-
portance of the concept of model coherence introduced in
Section 5.

3. BINARY RELATIONAL DATA

The most basic network data takes the form of a binary
relation R ⊆ [n]×[n] among individuals labeled uniquely
in [n] = {1, . . . , n}. For example, if 1, . . . , n label high

school students, then (i, j) ∈ R might indicate that ‘i is
friends with j ’ or that ‘i and j are both members of the
band’. This relation gives rise to an adjacency matrix Y =
(Yij )1≤i,j≤n with

(2) Yij =
{

1, (i, j) ∈ R,

0, otherwise,
1 ≤ i, j ≤ n.

3.1 Exponential Random Graph Models (ERGMs)

As an initial model for Y = (Yij )1≤i,j≤n observed for
a population of n individuals (e.g., students, countries,
etc.), the dyad independence model assumes that each
dyad Dij = (Yij , Yji), i < j , is distributed independently
according to pij on {0,1} × {0,1}. With

ρij = log
(

pij (0,0)pij (1,1)

pij (0,1)pij (1,0)

)
and

θij = log
(
pij (1,0)/pij (0,0)

)
,

the distribution of Y can be expressed as

Pr(Y = y;p)
(3)

∝ exp
{ ∑

1≤i<j≤n

ρij yij yji + ∑
1≤i �=j≤n

θij yij

}
,

for y = (yij )1≤i,j≤n ∈ {0,1}n×n. Holland and Leinhardt’s
p1 model [29] is a special case of the dyad independence
model with

ρij = ρ(1 ≤ i < j ≤ n) and

θij = θ + αi + βj (1 ≤ i �= j ≤ n)

for parameters θ, ρ, α = (αi)1≤i≤n, and β = (βi)1≤i≤n.
The resulting distribution of Y under the p1 model with
parameter (ρ, θ,α,β) is

Pr(Y = y;ρ, θ,α,β)

=
(

exp
{
ρ

∑
1≤i<j≤n

yij yji + θy•• +
n∑

i=1

αiyi•

(4)

+
n∑

j=1

βjy•j
})

/( ∏
1≤i<j≤n

ηij

)
,

where yi• = ∑n
j=1 yij , y•j = ∑n

i=1 yij , y•• = ∑n
i,j=1 yij

and

ηij := 1 + eρ+αi+βj + eρ+αj+βi + eρ+2θ+αi+αj+βi+βj ,

1 ≤ i < j ≤ n.

In Holland and Leinhardt’s initial presentation, ρ is in-
terpreted as reciprocity and αi and βj as differential at-
tractiveness. Frank and Strauss’s family of Markov ran-
dom graphs extends the p1 model to incorporate prop-
erties beyond reciprocity and differential attractiveness
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[23]. Wasserman and Pattison [46] subsequently devel-
oped the Frank–Strauss model into the p∗ model, now
generically known as the exponential random graph
model (ERGM). For θ1, . . . , θk ∈ R and statistics T1, . . . ,

Tk : {0,1}n×n → R, the exponential random graph model
(ERGM) with (natural) parameter θ = (θi)1≤i≤k and
(canonical) sufficient statistic T = (Ti)1≤i≤k assigns
probabilities

Pr(Y = y; θ, T ) = exp{∑k
i=1 θiTi(y)}∑

y∗∈{0,1}n×n exp{∑k
i=1 θiTi(y∗)} ,

(5)
y ∈ {0,1}n×n.

For statistical inference, ERGMs are limited by compu-
tational and conceptual constraints, particularly with re-
spect to out-of-sample inference as in the next scenario.

3.2 Modeling Friendships in a High School

Consider now a social network of friendships in a high
school with N students, of which only n < N are ob-
served. We wish to use Yn for sampled students to infer
the structure of friendship patterns among all N students.
Doing so requires an understanding of how sampled stu-
dents are related to unobserved students in the population,
raising questions about how the observed data Yn repre-
sents the unobserved population YN and in turn how in-
ferences about the sample relate to inferences about the
population network. It is well known that this common
statistical inference task poses conceptual difficulty for
ERGMs [44], while other models, such as graphon mod-
els and the p1 model, implicitly assume a “selection sam-
pling” mechanism that is unrealistic for most practical ap-
plications; see Section 5.1 for an illustrative example of
why this is the case. These observations raise doubts about
the applicability and interpretability of statistical theory
developed for certain network models, namely graphons,
stochastic blockmodels and ERGMs, along with addi-
tional concerns about the practical implications of using
these network models in modern applications. The model-
ing paradigm from Section 2 seeks to expand the scope of
statistical network analysis beyond its current conceptual
and theoretical limitations by accounting for both statisti-
cal variation and sampling in network analysis. Before ex-
ploring how specific model classes fit in this framework,
we first review a few common network sampling mecha-
nisms.

4. NETWORK SAMPLING

The following sampling descriptions represent specific
instances of the inferential component within the frame-
work of Section 2.

4.1 Selection Sampling

In the scenario of Section 3.2, suppose we model the
population network YN as in (4). Given this description,
how should we model the observed network Yn, n < N ,
so that the derived inferences for the population param-
eters ρ and β attain their intended meaning in terms of
reciprocity and differential attractiveness? Is it legitimate
to estimate ρ and β by first fitting (4) to Yn and then using
those estimates for the population YN ?

For concreteness, suppose the N students are labeled
1, . . . ,N and that Yn is obtained by selection sampling:
that is, Yn is obtained from YN = (Yij )1≤i,j≤N by se-
lecting the students labeled 1, . . . , n. If we assume YN is
modeled by (4) with parameters ρ, θ,α,β , then the sub-
sampled array YN |[n] = (Yij )1≤i,j≤n is also distributed as
in (4) with the same parameters [29]. Because the param-
eters for the sampled network Yn preserve their interpre-
tation under selection sampling, it is logically permissi-
ble to estimate the parameters governing YN by using the
same estimated parameters as those obtained by fitting the
p1 model to the observed network Yn.

In the above modeling paradigm, (M1) and (M2) justify
the above inferential protocol provided that:

(M1) the p1 model adequately describes the variation
in YN and

(M2) selection sampling adequately describes the rela-
tionship between Yn and YN .

More generally, let (Pn)1≤n≤N be a family of probability
distributions with each Pn defined on Nn = {0,1}n×n. We
call (Pn)1≤n≤N consistent under selection if Yn|[m] ∼ Pm

for all 1 ≤ m ≤ n ≤ N , that is, the random array obtained
by first taking Yn ∼ Pn and then restricting to its first
m ≤ n rows and columns is distributed as Pm. Though
a widely studied property of theoretical interest, for ex-
ample, [44], consistency under selection has limited prac-
tical implications, as selection sampling is often not an
accurate description of the relationship between data and
population.

4.2 Generic Sampling

To describe more general sampling relationships be-
tween data Yn and population YN , we write Yn =
�n,NYN to denote that Yn was obtained from YN by
sampling according to some (possibly random) sampling
operation �n,N . To be precise, �n,N is a randomly cho-
sen function from the population space NN to the sample
space Nn, where in general we write Nn for the space of
networks of size n. (In typical settings, Nn = {0,1}n×n

corresponds to the space of undirected graphs, but our
framework accommodates network data of a more gen-
eral form, as discussed above.) Therefore, when we re-
fer to a random sampling operation �m,n from Nn to
Nm, we mean a randomly chosen map �(ω) :Nn → Nm,
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TABLE 1
Database of movies and actors. Each row contains the set of actors in

the corresponding movie. Based on [15], Table 3.2

Starring cast

Rocky (1976) Sylvester Stallone, Bert Young, Carl Weathers, . . .

Rounders
(1998)

Matt Damon, Ed Norton, John Turturro, . . .

Groundhog
Day (1993)

Bill Murray, Andie McDowell, Chris Elliott, . . .

A Bronx Tale
(1993)

Robert DeNiro, Chazz Palminteri, Joe Pesci, . . .

Over the Top
(1987)

Sylvester Stallone, Robert Loggia, . . .

The Room
(2003)

Tommy Wiseau, Greg Sestero, . . .

...
...

where the underlying probability space (	,F,P ) is left
implicit.1 We reserve the notation Sm,n, m ≤ n, to denote
the operation of selection sampling a network of size m

from one of size n as in Section 4.1. For example, for a
network represented by a binary array y = (yij )1≤i,j≤n,
we write Sm,n y := y|[m] = (yij )1≤i,j≤m.

4.3 Edge Sampling

Suppose we sample calls from a telephone database
in which each entry uniquely identifies caller and re-
cipient of a different phone call. A sample of n calls
(i.e., edges) results in a sequence of caller-receiver pairs
{(Ci,Ri)}1≤i≤n, which in a standard network representa-
tion is regarded as a graph with vertex set {C1,R1, . . . ,

Cn,Rn} and a directed edge from Ci to Ri for each
i = 1, . . . , n. It is clear that the structure induced by the
observed interactions {(Ci,Ri)}1≤i≤n is not the result of
selection sampling applied to the individuals (i.e., ver-
tices) in the call log. The units are instead the phone calls
(i.e., edges) and the sample size is the number of sampled
edges. This example motivates the development of edge
exchangeable models discussed in Section 9.

4.4 Hyperedge Sampling

Consider the Internet Movie Database (IMDB), whose
entries correspond to different movies, their cast of actors,
etc., as illustrated in Table 1. Sampling rows in this table
corresponds to sampling different movies, which results
in a sequence of movie casts M1, . . . ,Mn with each Mi

recording the set of actors who play a role in the ith movie
sampled, that is, Mi = (Mi,1, . . . ,Mi,Ri

) where Ri is the
number of roles in movie i. We observe similar structure
when sampling academic articles from a research repos-
itory, such as arXiv. Article i is identified by its set of

1We consider such measure-theoretic considerations outside the
scope of this article, which is aimed at an expository level.

authors Ai = (Ai,1, . . . ,Ai,ni
) where ni is the number of

coauthors for article i. Authors are ordered according to
convention of the scientific field in which the article is
published. See Table 1 for an example database of movies
and actors, where each row contains the set of actors in
the corresponding movie; this table is based on [15], Ta-
ble 3.2.

4.5 Path Sampling

One guiding question that motivated early interest in
network science was to determine the structure of the In-
ternet network by sampling the paths traveled by mes-
sages sent between servers. Traceroute [1] is a sampling
method used for this purpose. Roughly, given a source
s and target t , identified by their Internet Protocol (IP)
addresses, traceroute returns the path (i.e., “traces the
route”) taken in accessing t from s. An observed network
structure is obtained by piecing together the paths sam-
pled by a number of applications of traceroute sampling.

4.6 Relational Sampling

The preceding examples of edge, hyperedge and path
sampling, along with other common sampling schemes
such as snowball sampling, are special cases of relational
sampling, whereby a network is constructed from a sam-
ple of certain relations among individuals in a popula-
tion. As network datasets are inherently relational struc-
tures and many sampling schemes encountered in prac-
tice are observed in a way that depends on the network
structure itself, relational sampling is often more appro-
priate than the more vertex-centric procedures of selec-
tion sampling or simple random vertex sampling. Many
other sampling schemes arise in practice (e.g., respondent
driven sampling [31], subgraph sampling [33]), but those
listed here are sufficient for illustrating the basic features
of the above modeling framework.

5. MODEL COHERENCE

The description of a model as a family of distri-
butions {Mn}1≤n≤N together with a sampling context
{�m,n}N≥n≥m≥1 provides the bare essentials for statistical
inference as follows. From network data of size n < N ,
suppose we obtain a point estimate P̂n ∈ Mn based on a
stated criterion, for example, maximum likelihood. Given
P̂n and the relationship between Yn and YN established
by the assumed sampling mechanism �n,N , derive the
estimate P̂N ⊆ MN for the population as the set of all
distributions that are consistent with P̂n under sampling
by �n,N . In particular, any distribution P on NN induces
a distribution on Nn by first taking YN ∼ P and then
putting Yn = �n,NYN , that is, the network obtained by
sampling according to �n,N . With �n,NP denoting this
induced distribution, the inferred estimate for the distri-
bution of YN based on P̂n should be

(6) P̂N = {P : �n,NP = P̂n}.
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The protocol in (6) can be expanded in an analogous way
to other inferential objects, such as confidence regions.
(Note that P̂N is a singleton only if the model MN is
identifiable from Mn under sampling from �n,N .)

Though standard in classical statistics, the inference
step in (6) can be complicated in many network problems
and other complex data applications. Deriving sensible
inferences from a model ({Mn}1≤n≤N, {�m,n}1≤m≤n≤N)

requires a coherence among the model components (M1)
and (M2) so that inferences based on the model Mm for
data of size m ≥ 1 have a clear logical relationship to in-
ferences for the model Mn describing unobserved parts
of the population. These considerations give rise to a nat-
ural coherence condition:

(C) For all 1 ≤ m ≤ n ≤ N , �m,nMn = Mm,

where �m,nMn := {�m,nP : P ∈ Mn} is the model that
Mn induces on Nm by sampling according to �m,n.

In words, (C) requires that the asserted model Mm for
each finite sample size m ≥ 1 coincides with the mod-
els induced by sampling according to the assumed sam-
pling scheme, that is, �m,nMn for all n ≥ m ≥ 1. This
coherence condition is designed to ensure that inferences
obtained from (6) admit a clear interpretation within the
context of the chosen model. Given an estimate P̂n ∈Mn

and a sampling description �n,N , the inferred population
model P̂N ought to be a subset of MN , which is assumed
to describe the variation in the population network. On the
other hand, any distribution P ∈ MN for the population
ought to induce a distribution on Nn that is in the model
Mn, or else the explicit description Mn is incompatible
with the induced description via sampling. Together these
considerations give two conditions, �n,NMN ⊆Mn and
Mn ⊆ �n,NMN , which are equivalent to (C). We call a
model ({Mn}1≤n≤N, {�m,n}1≤m≤n≤N) coherent if it sat-
isfies (C).

For a simple example of a coherent model, let Nn

be {0,1}n×n, define Pn(·; θ) to be the Erdős–Rényi dis-
tribution with parameter θ ∈ [0,1] on Nn as in (1)
and let Mn = {Pn(·; θ) : θ ∈ [0,1]} be the set contain-
ing all such distributions parametrized by [0,1]. In the
context of selection sampling, the model ({Mn}1≤n≤N,

{Sm,n}1≤m≤n≤N) is coherent because the family of Erdős–
Rényi distributions is consistent under selection. More
explicitly, because each edge in Yn ∼ Pn(·; θ) is present
independently with probability θ , the edges in the restric-
tion Sm,n Yn = Yn|[m] to the first m labeled vertices are
also independent with probability p, so that Sm,n Yn ∼
Pm(·; θ). From this, it follows that Mm = Sm,nMn, es-
tablishing (C).

To see the significance of this property for inference,
consider how it affects point estimation for the param-
eter θ governing YN modeled by the Erdős–Rényi dis-
tribution in (1). Given a partial observation Yn obtained

from YN by selection sampling, we obtain a point esti-
mate θ̂n = n−2 ∑

1≤i,j≤n Yij ∈ [0,1] and P̂n = Pn(·; θ̂n)

for the distribution of Yn. By the relationship between
Yn and YN via selection sampling, and coherence of the
models Mn and MN , this point estimate for Yn gives an
inferred distribution P̂N = PN(·; θ̂n) using the inference
rule in (6).

For an example of an incoherent model, let Nn be
{0,1}n×n and Pn(·; θ/n) be the Erdős–Rényi distribution
with θ ∈ [0,1]. Here, each edge occurs in Yn indepen-
dently with probability θ/n, and let M′

n = {Pn(·; θ/n) :
θ ∈ [0,1]} be the set containing all such distributions.
The model ({M′

n}1≤n≤N, {Sm,n}1≤m≤n) is incoherent. In-
deed, each edge in Yn ∼ Pn(·; θ/n) is present indepen-
dently with probability θ/n, so the edges in the restric-
tion Sm,n Yn = Yn|[m] to the first m labeled vertices
are independent with probability θ/n; however, Ym ∼
Pm(·; θ/m) has edges present independently with prob-
ability θ/m. The sets of distributions under Mm and
Sm,nMn differ, with the former consisting of all Erdős–
Rényi distributions on Nm parameterized by [0,1/m] and
the latter containing only those distributions parameter-
ized by [0,1/n].

To see the impact on inference, consider point es-
timation for the parameter θ governing YN modeled
by PN(·; θ/N) ∈ M′

N . Given observation Yn related
to YN by selection sampling, the MLE is θ̂n = 1 ∧
(n−1 ∑

1≤i,j≤n Yij ) ∈ [0,1] and P̂n = Pn(·; θ̂n/n) for the
distribution of Yn. By selection sampling, using the infer-
ence rule in (6), P̂N = PN(·; θ̂n/n), which may not be an
element of M′

N on account of incoherence.

5.1 Sampling Consistency

As in the two examples above, most of the network
science literature focuses on consistency under selection.
However, a more general notion of consistency is needed
to account for the variety of sampling mechanisms intro-
duced in Section 4. The reason for considering the mech-
anisms is that selection sampling cannot capture the true
sampling mechanism in many modern network applica-
tions. To see why, consider sampling Yn by choosing a
relatively small number of the indices uniformly at ran-
dom from YN = (Yij )1≤i,j≤N . Assuming the diagonal is
0, there are N(N − 1) ≈ N2 possible nonzero entries in
YN . If

∑
1≤i,j≤N Yij ≈ εN for some constant ε > 0 that

does not depend on N and Yn is obtained from YN |S for
a subset S ⊆ [N ] of n � N vertices sampled uniformly at
random, then each entry of Yn = (Y ∗

ij )1≤i,j≤n satisfies

Pr
(
Y ∗

ij = 1
) ≈ εN/(

(
N(N − 1)

) ≈ ε/N, 1 ≤ i �= j ≤ n.

Thus, the probability that Yn is nonempty satisfies

Pr
( ⋃

1≤i �=j≤n

{
Y ∗

ij = 1
}) ≤ ∑

1≤i �=j≤n

Pr
(
Y ∗

ij = 1
) ≈ n2ε/N,
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which is negligible provided that n is sufficiently smaller
than N . Any nontrivial observation y = (yij )1≤i,j≤n un-
der the above simple random sampling scheme is thus
a low probability event, raising questions about model
adequacy. With this in mind, we propose the following
general definition of consistency under arbitrary network
sampling.

DEFINITION 5.1 (Sampling consistency). Given
probability distributions Pm on Nm and Pn on Nn, with
n > m, and a generic sampling operation �m,n from Nn

to Nm, we call Pm and Pn consistent with respect to �m,n

if Pm = �m,nPn, where �m,nPn is defined as the distribu-
tion of �m,nYn for Yn ∼ Pn. In other words, Pm and Pn

are consistent provided that drawing Ym according to Pm

yields the same distribution as first drawing from Pn and
then subsampling according to �m,n.

5.2 Invariance Principles and Sampling Schemes

Our emphasis on sampling context and model coher-
ence establishes a necessary logical condition for out-of-
sample statistical inference, as shown in (6) and Defini-
tion 5.1. In more traditional applications, the required co-
herence is implicitly specified by an assumed invariance
principle, such as the classical i.i.d. and exchangeabil-
ity assumptions. When modeling networks, such invari-
ance principles often suggest a natural sampling context
within which a model class is coherent. Below we discuss
several common classes of network models described in
terms of a characteristic invariance principle, for example,
vertex exchangeability, relative exchangeability and edge
exchangeability. We discuss the practical implications of
the natural sampling context for these models. See [15],
Chapters 3–5, and [41] for some other recent work on the
relationship between sampling and invariance.

6. STATISTICAL NETWORK MODELS AND
INFERENTIAL TARGETS

While the remaining sections focus on exchangeable
network models, it should be noted that exchangeabil-
ity is not an end goal in and of itself. Neither the de-
scriptive component (M1) nor the inferential component
(M2) require exchangeability, and overall exchangeability
holds no special status in the proposed network modeling
framework. In some cases, exchangeability is debatable.
In others, it is entirely irrelevant. Indeed, there is good
reason to challenge assumptions of exchangeability when
additional structure is present, as is most often the case
in networks applications. Given the complexity of statis-
tical network models, however, invariance considerations
yield statistical models with a built-in model coherence
with respect to a particular sampling protocol. Exchange-
ability is one such invariance principle which can prove
useful in preliminary investigations. At minimum, these
models provide a benchmark for developing more intri-
cate models.

6.1 Stability and Validity of Within-Sample Tasks:
Beyond Data Reduction

For within-sample inferential tasks, the full specifica-
tion of a coherent model may not be necessary. How-
ever, the general concept of coherence is still important.
Consider, for example, a network scientist interested in
within-sample cluster analysis. The scientist may argue
that a vertex-centric model is better because no out-of-
sample inference is involved in a clustering task. We
would disagree. Any approach to such a task should be
setup in a manner consistent with the underlying data
generating process. Dempsey et al. (2019), for exam-
ple, study cluster analysis of ArXiv articles to under-
stand ArXiv topic overlap (i.e., to understand the interdis-
ciplinary level of various topics). The results, presented
briefly in Section 10.1, show that models built upon the
interaction as the statistical unit yield substantial improve-
ment in the clustering task over a vertex-centric approach,
even in the absence of sampling concerns. The conclusion
we reach is simple and universal: the units of observation
are the units of observation, regardless of the inferential
task.

The inferential task enters when assessing model ade-
quacy. Indeed, most goals of statistical inference can be
mathematically instantiated as functionals F : P(S) �→
R

k from the space of probability distributions on the
sample space to some real-valued vector space R

k for
some k ≥ 0 [37]. Posterior predictive checks [24] are a
Bayesian example of assessing model adequacy. The clas-
sical “Box’s loop” [6] is a general iterative procedure that
contains sequences of model formulation and criticism.
Once the model is deemed adequate with respect to the
inferential task, the task can be performed.

Within-sample cluster analysis is one of the simplest
uses of a statistical model as a summary of the data. In
this regard, cluster analysis can be regarded as data re-
duction of the observed network Y[n] to a set partition B :
[n] × [n] → {0,1}, where B(i, j) = 1 implies unit i ∈ [n]
and j ∈ [n] are in the same cluster. Often, however, the
analyst desires to go beyond data reduction, and wishes
to assess validity of the observed clusters (i.e., model ad-
equacy in the parlance of Box’s loop). One way to assess
cluster validity is via stability and predictability [47]. As
defined by [47], “stability refers to the acceptable consis-
tency of a data result relative to ‘reasonable’ perturbations
of the data or model.” Examples of reasonable pertur-
bations include bootstrap, jackknife and cross-validation.
Completion of such analyses requires well-defined statis-
tical units. Cross-validation, for example, requires data-
splitting into training and test which implicitly requires
well-defined statistical units. Chen and Lei [9], for exam-
ple, propose a network cross-validation technique by ver-
tex sampling; Li et al. [36], on the other hand, consider
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network cross-validation by edge sampling. For predic-
tion to be possible, the statistical model must be a family
of processes. Thus application of predictability and stabil-
ity to assess cluster validity requires the concept of statis-
tical unit and coherence. General coherence would imply
the binary relation B : [n] × [n] → {0,1} can be naturally
extended to a function with domain B : N × N → {0,1}.
One instantiation of coherence that accounts for cluster-
ing is relatively exchangeable models in which the distri-
bution Y is invariant to permutations σ that preserve the
binary relation [18].

6.2 Out-of-Sample Inference and the Necessity of
Model Coherence

A statistical model, traditionally defined [10, 35, 38],
is a family of probability distributions M on the sam-
ple space S of all maps from the set of statistical units
U into the response space R. Some other authors discuss
statistical modeling from various perspectives [21, 26,
38], but none of these prior accounts directly addresses
the specific challenges of network modeling, namely the
effects of sampling on network data and its subsequent
impact on inference. The emphasis on model coherence
is an emphasis on processes over distributions, which re-
moves the distinction between estimation and prediction.
Many statistical network models can be made coherent
with respect to a suitably chosen sampling protocol; this
coherence is only relevant in applications, however, if the
sampling mechanism is interpretable. Vertex, edge, hyper-
edge, path and relational sampling are all idealized but
interpretable sampling protocols.

Indeed, implicit in statements such as “valid out-of-
sample inference” is the notion of in-sample and out-of-
sample statistical units. Thus, if the scientist’s ultimate
goal is valid out-of-sample inference, one must have well-
defined units which brings one back to considerations of
model coherence and interpretable sampling protocols. If
edges are the sampling units, then the response is a func-
tion y : U → fin(P) where fin(P) denotes finite multi-
sets of the population P . Therefore, the statistical net-
work model will be edge-centric because the edges are
the unit. A vertex-centrix statistical model can be fit to
the observed sample as a means of constructing summary
statistics (i.e., descriptive analysis of the observed data);
however, this does not mean it makes sense as a means for
building statistical models for inferential tasks.

7. VERTEX EXCHANGEABLE MODELS

Here, we specialize to the conventional setup in which
vertices are the units and network data is represented by a
{0,1}-valued array Yn. The class of vertex exchangeable
models in this section is characterized by the property of
assigning equal probability to any two graphs that are iso-
morphic up to relabeling of their vertices, which in turn

implies that the observed network reflects a representative
sample of vertices from the population. Within the frame-
work of Section 2, the natural sampling context for vertex
exchangeable models is given by selection sampling or
any vertex sampling scheme independent of the network,
for example, simple random vertex sampling.

7.1 Finite Exchangeable Random Graphs

A random graph YN in {0,1}N×N is called vertex ex-
changeable if

(7) Yσ
N = D YN for all permutations σ : [N ] → [N ],

where Yσ
N := (Yσ(i)σ (j))1≤i,j≤N and = D denotes equal-

ity in distribution. To describe finite exchangeable mod-
els, let UN be the set of unlabeled graphs with N vertices,
whose elements correspond to the equivalence classes of
arrays {0,1}N×N under relabeling. More precisely, for
y,y′ ∈ {0,1}N×N , we write y ∼= y′ if there exists a permu-
tation σ : [N ] → [N ] such that yσ = y′. In this way, UN

consists of the equivalence classes over all y ∈ {0,1}N×N

given by 〈y〉∼= := {y′ ∈ {0,1}N×N : y′ ∼= y}. One can eas-
ily show, for example, [15], Theorem 6.1 and Exercise
6.3, that any vertex exchangeable distribution for YN cor-
responds to a unique distribution p on UN which first
takes U ∼ p in UN and then, given U = u, puts YN = y
for y chosen uniformly among all y′ ∈ {0,1}N×N for
which 〈y′〉∼= = u.

Though networks observed in practice are always fi-
nite, in many applications the population size N is ei-
ther unknown or very large, on the order of millions or
billions, making it both conceptually and computation-
ally challenging to apply the theory of finite exchange-
able models to real network data. In such cases, it is pru-
dent to specify a model for Y∗ = (y∗

ij )1≤i,j≤n that is ro-
bust to the unknown population size N ≥ n from which
the observation may have been drawn. With this, co-
herence (in the selection sampling context) requires that
Sn,NYN = D Sn,N ′YN ′ for all n ≤ N ≤ N ′, and in par-
ticular YN = D SN,N ′YN ′ for all N ≤ N ′. In this case,
a coherent model describes a family of random popula-
tion structures (YN)N≥1, with each being exchangeable
in the sense of (7) and coherent with respect to the selec-
tion sampling operations (SN,N ′)1≤N≤N ′ . These consid-
erations lead to the class of graphon models.

7.2 Graphon Models

For N ≥ 1, we define a model on {0,1}N×N by spec-
ifying a function φ : [0,1] × [0,1] → [0,1], which can
be assumed symmetric (φ(u, v) = φ(v,u)) when model-
ing undirected graphs. From φ, we construct a random
array YN in {0,1}N×N by first drawing U1, . . . ,UN i.i.d.
Uniform[0,1] and then, given U1, . . . ,UN , assigning the
values Yij conditionally independently with probabilities

(8) Pr(Yij = 1 | U1, . . . ,UN) = φ(Ui,Uj ),
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for all pairs 1 ≤ i, j ≤ N . Intuitively, the random vari-
ables U1, . . . ,UN associate to each i = 1, . . . ,N a latent
random effect Ui , allowing us to express the distribution
of YN = (Yij )1≤i,j≤N in closed form by

PrN(YN = y;φ)

=
∫
[0,1]N

∏
1≤i,j≤N

φ(ui, uj )
yij(9)

× (
1 − φ(ui, uj )

)1−yij du1 · · ·duN,

for y = (yij )1≤i,j≤N . By construction, the family (Yn)n≥1
generated according to (8) with the same φ is consistent
under selection. Thus, letting  = {φ : [0,1] × [0,1] →
[0,1]} be the set of all such functions and taking Mn =
{Pn(·;φ) : φ ∈ �} for all n ≥ 1 for some subset of func-
tions � ⊆  determines an exchangeable model that is
coherent with respect to selection sampling in the sense
of Section 5. Aldous [3], pp. 124–125, refers to these pro-
cesses as φ-processes, but here we adopt the modern ter-
minology and call YN a graphon process directed by φ.

7.3 Statistical Implications of Vertex Exchangeability

The Aldous–Hoover theorem [2, 30] associates every
infinite exchangeable random array Y to a probability
measure ϕ on  such that Y can be constructed as a
graphon process directed by φ chosen randomly accord-
ing to ϕ. With this interpretation, the distribution of every
exchangeable family of compatible arrays (Yn)n≥1 is de-
termined by a measure ϕ on the space  so that

Prn(Yn = y;ϕ)
(10)

=
∫


Prn(Yn = y;φ)ϕ(dφ), y ∈ {0,1}n×n,

for Prn(·;φ) as defined in (9).
Equation (10) articulates the basic structure and limi-

tations of vertex exchangeable models. Notice first that
the Erdős–Rényi model with parameter p ∈ (0,1) can
be represented in this setting by the constant function
φ(−,−) ≡ p. It is well understood that the simple struc-
ture of this model is unable to replicate the heteroge-
neous features of many real-world networks, and con-
sulting (10) suggests why graphon models may not offer
much improvement over Erdős–Rényi in practical appli-
cations. The Aldous–Hoover theorem has two immediate
practical implications for the use of graphon models in
network analysis.

7.4 Edge Density

Define the edge density of a random array Y =
(Yij )i,j≥1 as the proportion

(11) ε(Y) := lim
n→∞

1

n2

∑
1≤i,j≤n

1(Yij = 1).

By the Aldous–Hoover theorem, any exchangeable Y be-
haves as a graphon process for some randomly chosen φ.
Given φ, the limit ε(Y) exists and is deterministic, allow-
ing us to write

ε(φ) :=
∫
[0,1]2

φ(u, v) dudv.

In many applications, the observed relational array Yn for
a sample [n] ⊆ N has empirical density n−2 ∑

1≤i,j≤n ×
1(Yij = 1) that is often judged to be “small” relative to
n and thus leads to the assumption that Y is sparse, that
is, that ε(Y) = 0 with probability 1. Under the graphon
process construction, however, the limiting density ε(φ)

equals 0 only if φ(u, v) ≡ 0 for almost all u, v ∈ [0,1],
and any Y generated from such a φ must have Yij = 0
for all i �= j with probability 1. This observation yields
an important practical implication of the Aldous–Hoover
theorem for vertex exchangeable random graphs:

A vertex exchangeable network model for a countable
population is dense or empty with probability 1.

As discussed elsewhere, for example, [8, 15, 16, 42],
this observation all but disqualifies graphons as a viable
class of models in many modern contexts. This observa-
tion alone has inspired much recent work on new model
classes, in particular the models discussed in Sections 8.1
and 9 below.

7.5 Representative Sample

Apart from the above empirical challenge, vertex ex-
changeability presents a conceptual issue for statistical
applications. When the observed network Yn is sampled
from a larger population network of unknown size, vertex
exchangeability implies that the observed vertices com-
prise a representative sample of all vertices. This assump-
tion is necessarily violated in sparse networks, for which
a representative sample of vertices would produce a net-
work that is empty (i.e., has no edges) with high proba-
bility. We comment here, however, that while the focus
of network modeling has been on devising new models
which are able to replicate sparsity, this narrow focus may
be misplaced. Vertex exchangeable, that is, graphon, mod-
els are a poor fit to real-world networks because they pro-
duce dense networks with homogeneous structure, but this
defect of graphon models can be diagnosed prior to com-
paring the empirical properties of graphons to those of
real-world networks. By simply noticing that the natural
sampling context of graphon models, which takes the ob-
served vertices to be representative of the population of all
vertices, is incompatible with the way in which most net-
work data is observed, the practical limitations of graphon
models are immediately clear.

8. ALTERNATIVES TO VERTEX EXCHANGEABILITY

The viability of graphons suffers from three main chal-
lenges: (i) vertex exchangeability assumes homogeneity
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of observed and unobserved vertices, (ii) the generality
of the graphon setup raises identifiability and estimation
issues and (iii) realizations from graphon models do not
replicate empirical behaviors observed in many real world
networks. These challenges have led to some alternative
approaches to network modeling that aim to address het-
erogeneous network properties in a way that is statisti-
cally tractable. We review these below.

8.1 Sparse Graphon Models

An early approach to the above issues appeared in work
by Bickel and Chen [4], who noted that the homogeneity
of the φ-process is such that the number of edges grows on
the order of n2 as n → ∞. Bickel and Chen subsequently
propose to take Yn as a φn-process with φn = ρ−1

n φ for
some sequence ρn → ∞ such that

ρ−1
n

∫ 1

0

∫ 1

0
φ(u, v) dudv → 0.

But while a sequence of graphs (Yn)n≥1 distributed ac-
cording to this model is sparse with probability 1, Bickel
and Chen’s formulation still maintains all of the same ho-
mogeneity properties that make graphon models unsuit-
able to most applications. Moreover, the class of models
for (Yn)n≥1 has not been shown to be coherent, in the
sense of Section 5, with respect to any natural sampling
scheme, raising the question of how inferences from this
model are to be interpreted or how asymptotics proven in
the proposed regime are to be used.

8.2 Graphex Models

A recent alternative approach [8] represents network
data as a point process in the upper half-plane [0,∞) ×
[0,∞). For a motivating example, consider a network of
Facebook friendships, which can be represented as a pair
(x,y) where the entries of x = (xi)i≥1 record the time at
which user i first joined Facebook and y = (yij )i,j≥1 is
a binary array with yij = 1 if user i and j are friends
and yij = 0 otherwise. This network can alternatively be
represented by a point process X ⊆ [0,∞) × [0,∞) with
(xi, xj ) ∈ X if and only if yij = 1. For t > 0, a finite ran-
dom graph can be constructed by restriction of the point
process X to [0, t)×[0, t); that is, Xt = X∩[0, t)2 and the
random graph Yt is constructed by restricting the binary
array y to users i for which xi < t .

In introducing this model, Caron and Fox [8], Sec-
tion 3.5, suggest that each xi be interpreted as “the time
at which a potential node enters the network and has the
opportunity to link with other existing nodes,” as in the
above scenario. The above example provides some moti-
vation for the class of random graph models constructed
from exchangeable random measures, for which Veitch
and Roy [45] leverage Kallenberg’s theory of exchange-
able point processes to prove a graphex representation.

The technical details of this model class are beyond the
scope of this discussion. We simply point out here that
graphex models, though based on the theory of exchange-
able point processes, are not exchangeable with respect to
vertices, nor edges, nor any simple, intepretable relations.
Instead, ‘’exchangeability” here refers to the fact that any
observation of the point process X over a time window of
length t ≥ 0 is representative of the process over any other
window of length t . Due to space constraints, we cannot
provide further technical details of this model class here;
see [5, 8, 45] and more recent references for further dis-
cussion, and also [15], Chapter 7, for a discussion of the
sampling interpretation of this exchangeability condition
on point processes.

8.3 Relative Exchangeability

Neither graphon nor sparse graphon models are able
to account for distinguishing characteristics in heteroge-
neous populations. For example, in a friendship network
of n high school students there are cliques, that is, groups
of students who are mostly friends with one another, and
other heterogeneous patterns based on class year and ex-
tracurricular interests. In this case, the sampled vertices
are still representative but are no longer homogeneous.

The stochastic blockmodel (SBM) [28] was originally
proposed to handle such heterogeneity by partitioning
vertices into nonoverlapping communities (or blocks)
B := (B1,B2, . . .) so that two vertices v, v′, one in block
Bi and the other in block Bj , are related in Y with block-
dependent probability pij . Notice that according to this
description, the SBM is not vertex exchangeable, as the
distribution of Y is not invariant under permutation of ver-
tices occupying different blocks of B . The SBM is, how-
ever, invariant with respect to permutations of the vertices
that leave the partition B unchanged. In particular, ver-
tices can be interchanged with other vertices within their
same community, but not with vertices in different com-
munities. This property of the SBM illustrates a special
case of the more general class of relatively exchangeable
network models (cf. [18]) by which the distributional in-
variance properties are determined by the symmetries of
an underlying structure in the population.

Another example of a relatively exchangeable model is
the Hoff–Raftery–Handcock family of latent space mod-
els (LSMs) [27], which instead of a community structure
allows for relationships among individuals to depend on
covariates and their closeness in an abstract latent “social
space.” Let Z = {zi}ni=1 denote the set of latent locations
for each student where zi ∈ R

k (i.e., a vector in some low-
dimensional Euclidean space). Moreover, assume we ob-
serve some vector-valued characteristics xi,j which may
be pair-specific. Under conditional independence given Z

and {xi,j }1≤i,j≤n, the presence of an edge between i and j
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FIG. 1. Network depiction of phone call sequence (a, b), (c, a),
(d, e), (a, c) given in (12).

can be described by a conditional logistic regression, for
example,

logitpr(yi,j = 1|zi, zj , xi,j ) = α + β ′xi,j − |zi − zj |.
In a sense made precise in [18] relatively exchangeable

models are a generalization of graphon models for which
the edge probabilities depend not only on latent uniform
random variables U1,U2, . . . as in (9) but also on the sym-
metries of some fixed underlying structure that determines
the symmetries in the population. See [15], Chapter 8, for
further discussion on the relationship between graphons
and relatively exchangeable models.

9. EDGE EXCHANGEABLE MODELS

The models presented in Sections 7 and 8 take a vertex-
centric perspective on network data, by which the natural
units of observation either are the vertices or are closely
related to the vertices (as in the case of graphex models).
In many examples, as in those discussed in Sections 4.3–
4.6, the edges or entities related to edges (such as hyper-
edges or paths) are better regarded as the units. This ob-
servation prompted the development of edge exchange-
able models, for which we start with a simple motivating
example. Within the framework of Section 2, the natural
sampling context for edge exchangeable models is given
by any edge sampling scheme as described in Section 4.3.

9.1 Sampling Phone Calls

Consider a network constructed by monitoring ingoing
and outgoing calls at a telephone switchboard or by sam-
pling calls at random out of a call log. With each call, we
observe an ordered pair (s, r) corresponding to the sender
s and receiver r of the call. Figure 1 depicts the structure
of the sequence of calls

X1 = (a, b), X2 = (c, a),

X3 = (d, e), X4 = (a, c).
(12)

Notice the network representation labels the vertices
a, b, c, d, e and edges 1,2,3,4 so that the sequence
X1,X2,X3,X4 can be exactly reconstructed. Networks
constructed from email correspondence, scientific coau-
thorship, movie actor collaborations and trace-route sam-
pling of Internet topology can all be formulated within a
similar framework as this phone call example.

FIG. 2. Network depiction of phone call sequence X1 = (a, b),
X2 = (c, a), X3 = (d, e), X4 = (a, c) along with its description under
relabeling X2,X3,X4,X1. Any such reordering has equal probability
under an exchangeable model.

9.2 Edge-Centric Perspective

There is a tendency based on the representation in Fig-
ure 1 to regard the vertex labels a, b, c, d, e as arbitrary
“names” which carry no additional meaning except to dis-
tinguish between vertices. While it is true that the vertex
labels only identify individual vertices, it is crucial to note
that the specification of vertex exchangeable models does
not accurately reflect the manner in which such networks
are observed. As Section 7 makes clear, vertex exchange-
ability brings with it implications well beyond the consid-
eration of arbitrary vertex names. In the case of the sam-
pled phone calls, the observed vertices are, in fact, part of
the sampling process, and their identities (as determined
by their phone call behavior) are also part of the data.

Assume the calls are sampled in such a way that the
observations X1,X2,X3,X4 form an exchangeable se-
quence of ordered pairs. When regarded as the structure
in Figure 2 with vertices identified, the data has the form
of an exchangeable sequence. If modeled as an initial seg-
ment of an infinite exchangeable sequence X1,X2, . . ., the
available class of models is determined by de Finetti’s
theorem [19]. Even now, it is clear that delabeling the
edges and viewing this as a vertex-labeled network im-
poses a perspective that does not reflect how the data is
observed. It is reasonable, however, just as in Figure 2,
to assume that the sequence of calls is sampled in an
exchangeable manner, as illustrated in Figure 2. For the
purpose of inference, then the sequences X1,X2,X3,X4
and X′

1,X
′
2,X

′
3,X

′
4 determine the same interaction struc-

ture among vertices and thus convey the same information
about the phone call database, even though individually
the two observations may have different probabilities of
occurrence. The net effect of this is the decision to dis-
regard the vertex names in the network representation, as
shown in Figure 3, leading to the edge exchangeable net-
work models initiated and developed in [16].

9.3 Edge Exchangeable Models

The phone call data from Section 9.1 takes the form of
a sequence X1,X2, . . . in the set P × P of ordered pairs
in a population P . Assume data comes in the form of a
sequence X1,X2, . . . from P × P . We may thus regard
the data as a function X : N→ P ×P in the usual way by
the map i �→ Xi . For any bijection ρ : P → P , we write
ρ X to denote the composition of X with the function ρ
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induces on P ×P through (a, b) �→ (ρ(a), ρ(b)), so that
ρ X : N→ P ×P corresponds to i �→ ρ(Xi). For any per-
mutation σ : N → N, we write Xσ : N → P × P as the
reordering of X according to σ , so that Xσ (i) = X(σ (i)).
The edge-labeled graph induced by X : N → P × P is
defined formally as the equivalence class

yX = { ′
X :N→ P ×P : ρ ′

X = X

for some bijection ρ : P → P
}
.

(13)

We write EN to denote the space of edge-labeled graphs
(with edges labeled in N) defined as in (13), and Y to
denote a random, edge-labeled graph. An illustration of
the operation in (13) is shown in Figure 3.

Below we write Yσ as the edge-labeled graph with
edges relabeled according to a permutation σ : N → N.
Formally, this is defined by taking any X such that Y = yX
and putting Y = yXσ , where Xσ is as defined above. A
random edge-labeled graph is edge exchangeable if its
distribution is invariant under this relabeling operation.

DEFINITION 9.1 (Edge exchangeability). A random
edge-labeled graph Y is edge exchangeable if Yσ = D Y
for all permutations σ :N →N.

The Hollywood model is a special class of edge ex-
changeable models with statistical properties aimed at
closing the gap between empirical aspects of network data
and theoretical properties of statistical models. For (α, θ)

satisfying either:

• α < 0 and θ = −kα for some positive integer k =
1,2, . . . or

• 0 ≤ α ≤ 1 and θ > −α,

the Hollywood model assigns probability to edge-labeled
graphs with n edges

Pr(Yn = y;α, θ)

= αv(y) (θ/α)↑v(y)

θ↑(2n)
(14)

×
∞∏

k=2

exp
{
Nk(y) log(1 − α)↑(k−1)},

where v(y) be the number of nonisolated vertices in y and
let Nk(y) be the number of vertices in y with total degree
(i.e., in-degree plus out-degree) k. The natural description
of this model in terms of sampling movies from a movie
database inspired the naming as the Hollywood model in
[16].

The sparsity and power law properties of the Holly-
wood model are readily seen from the connection be-
tween (14) and the two-parameter Chinese restaurant pro-
cess; see [12, 22] for a survey. In particular, for α ∈ (0,1)

the degree distribution exhibits power law with exponent

α + 1 and is sparse for α ∈ (1/2,1). When 0 < α < 1,
v(Yn) satisfies

(15) E
[
v(Yn)

] ∼ �(θ + 1)

α�(θ + α)
nα

as n → ∞, where ‘an ∼ bn as n → ∞’ indicates that
limn→∞ an/bn = 1 and �(t) = ∫ ∞

0 ut−1e−u du is the
gamma function; see [43], p. 69. From this, we deduce
that the sequence (Yn)n≥1 obtained from the Hollywood
model with parameter (α, θ) is sparse with probability 1
provided that 1/2 < α < 1, and the degree distribution has
power law with exponent α + 1 when 0 < α < 1. See [16]
for many more details about edge exchangeable models in
general and the Hollywood model in particular.

9.4 Statistical Implications of Edge Exchangeability

In direct analogy to the Aldous–Hoover theorem and
related results for vertex exchangeable models, Crane and
Dempsey [16], Theorem 3.2, have proven a generic repre-
sentation of edge exchangeable models as a mixture over
what may be called interaction propensity processes. De-
fine the (P ×P)-simplex by

FP×P =
{
(f(s,t))s,t∈P×P : f(s,t) ≥ 0 and

(16) ∑
s,t∈P

f(s,t) = 1
}
,

which corresponds to the set of all probability distribu-
tions on P×P . Given any f ∈ FP×P , we define εf as the
probability distribution of a random edge-labeled graph
Y ∈ EN determined by drawing X = (X1,X2, . . .) i.i.d.
from

(17) P
(
Xi = (s, t) | f ) = f(s,t), (s, t) ∈ P ×P,

and putting Y = yX as defined in (13). The distribution
of Y generated in this way is edge exchangeable by con-
struction. We call εf the interaction propensity process
directed by f . As an immediate observation, we note
that the interaction propensity process allows for the oc-
currence of multiple edges, and in fact multiple edges
between two vertices will occur with probability 1 in
any large enough sample as long as f(s,t) > 0 for some
s, t ∈P .

A second observation is that the vertices appear in
Y ∼ εf in size-biased order according to their overall fre-
quency of occurrence in the network, thus demonstrat-
ing in a precise sense how the assumption of vertex ex-
changeability is incompatible with the manner in which
the phone call data in Section 9.1 was observed. Whereas
vertex exchangeability treats observed vertices as repre-
sentative of the population of all vertices, edge exchange-
ability treats observed vertices as nonrepresentative (i.e.,
a size-biased sample) of all vertices. Many more details
about edge exchangeable models are left to [16] and fu-
ture work on this topic.
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FIG. 3. Phone call networks containing the same sufficient information, as shown by the edge-labeled graph on the right.

10. BEYOND EDGE EXCHANGEABILITY

Many common network datasets admit a similar de-
scription to the motivating example of phone call sam-
pling from Section 9.1. These examples suggest the re-
finement of edge exchangeability to relational exchange-
ability.

Like edge exchangeable models, relationally exchange-
able models describe networks constructed by a represen-
tative sample of relations, for example, edges, hyperedges
and paths, as described in Section 4. For example, in Sec-
tion 4.5 we discussed how the Internet network can be
sampled by piecing together paths traversed between ran-
domly chosen source and target vertices. Following the
same rationale as in the phone call example of Section 9.1,
we realize that the different servers in the Internet do
have distinct identities but that the identities of observed
vertices cannot be severed from their participation in the
observed paths. Under the assumption that the paths are
representative of the population of all possible paths, we
obtain a path exchangeable network, whose distribution
assigns equal probability to path labeled graphs that are
isomorphic up to relabeling of paths, and for which the
analog to the representation of edge exchangeable models
in Section 9.4 is a special case of the more general char-
acterization of relationally exchangeable network models
proven in [17].

As mentioned before, edge, hyperedge and path sam-
pling are three special kinds of relational sampling, in
which a network is obtained by sampling among some
collection of relations. Because network datasets are pri-
marily relational in nature, relational sampling is far more
natural for most networks applications than the more
commonly assumed vertex sampling. If the sampled re-
lations are representative of a larger population of all re-
lations, as in the presumed example of Section 9.1 or in

sampling uniformly without replacement from the arXiv
or SSRN, then the resulting network is called relationally
exchangeable, as introduced and studied in [17]. Relation-
ally exchangeable structures exhibit many analogous be-
haviors to the more specific edge exchangeable structures
of Section 9. Because the concepts that arise for relational
exchangeability are the same as those for edge exchange-
ability, but are more technical, we leave those details to
[17].

10.1 Hierarchical Interaction Exchangeable Networks

We end this section by highlighting the impact of the
edge-centric perspective on a real statistical network anal-
ysis. Here we consider a subset of articles posted to
ArXiv. Relations such as scientific articles can be re-
garded as hierarchical interactions. Each article can be
summarized by a list of scientific topics and a list of au-
thors

X = (t̄ , ā) = (
(t1, . . . , tk1), (a1, . . . , ak2)

)
,

where t̄ is the set of associated topics from a finite popu-
lation of topics P1 and ā are the associated authors from
an infinite population of authors P2.

For simplicity, start by considering an article consist-
ing of a single topic and single author X = (t, a) and the
following choice of interaction propensity process:

(18) P
(
X = (t, a) | f (1), f (2)) = f

(1)
t × f

(2)
a|t ,

where f (1) is a distribution on P1, and (f
(2)
·|t )t∈P1 is a

sequence of distributions on P2 indexed by t ∈ P1. The
model is hierarchical, that is, the distribution of the author
a depends on the topic t . The hierarchical vertex com-
ponents model generalizes (18) to accomodate the more
general structure of scientific articles; see [20] for details.
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The statistical task is characterizing topic overlap
within ArXiv. Two affinity matrices, denoted A(e) and
A(v), are constructed with rows and columns indexed by
the finite set of topics t ∈ P1. First, A(e) is constructed
from the “edge-centric” perspective. For every pair of top-
ics, t and t ′, an overlap score SO(t, t ′) is calculated using
the posterior distributions obtained under the hierarchi-
cal vertex components model and A

(e)
t,t ′ is set equal to this

score. The affinity matrix A(v) is constructed from the
“vertex-centric” perspective. For every pair of topics, t

and t ′, A
(v)
t,t ′ is set equal to the number articles that contain

both topics. A normalized spectral clustering algorithm
[40] is applied to A(e) and A(v) with the number of clus-
ters set to 6. Figure 4 reconstructs a heatmap that visu-
alizes the spectral clustering analysis for topics that have
been seen in the same article at least 100 times. Analysis
of A(e) leads to clusters that are interpretable. Cluster 1,
for example, includes cs.AI (Artificial Intelligence) and
cs.IR (Information Retrieval); it is a group of topics that
pertain to algorithmic approaches to artificial intelligence.
Analysis of A(v), on the other hand, is unable to recover
the meaningful groupings that the edge-centric approach
produces. See [20] for additional discussion.

11. DYNAMIC NETWORK MODELS

We end by briefly mentioning some recent develop-
ments toward a theory for networks that are dynamic (i.e.,
whose connectivity changes over time). Consider, for ex-
ample, the binary relational array of friendships from Sec-
tion 3. From year to year, these friendships may change so
that instead of observing just one array, we might observe
the social relationships over the course of several years.
In this case, the data is observed as a sequence (y(t))t∈T
for some set of times T . This section mostly considers the
situation in which the vertex set is fixed while the edges
are allowed to vary over time. The population process is
therefore a collection of networks Y = (Y (t))t∈T indexed
by times in T , of which the entire population of N ver-
tices or a sample of n < N vertices may be observed.

11.1 Markov Property

Suppose that Y is a time homogeneous Markov chain,
meaning that its transition behavior is governed by a
family of transition probabilities (Pt )t∈T so that for any
y,y′ ∈ {0,1}N×N , the distribution of Y is given by

Pr
(
Y

(
t ′

) = y′ | Y(t) = y,
(
Y(u)

)
u≤t

)
(19)

:= Pt ′−t

(
y,y′), y,y′ ∈ {0,1}N×N,

for t, t ′ ∈ T and t < t ′. In words, Pt ′−t (y,y′) is the proba-
bility that the network changes from y to y′ in t ′ − t units
of time. While the Markov property is a common assump-
tion for modeling dynamic phenomena in all manner sta-
tistical applications, there are good reasons to think that

the Markov property is overly simplistic for many net-
works applications. Recall the descriptive component of
the statistical model ought to account for the specific at-
tributes of a given application. This is especially true for
dynamic network models.

11.2 Temporal Exponential Random Graph Model
(TERGM)

The most widely studied dynamic network model has
so far been the temporal exponential random graph model
(TERGM) [34], which is a natural temporal extension of
the class of ERGMs discussed in Section 3. Let {0,1}n×n

be the state space for binary relational array and let �

be some parameter space. In the TERGM, we define a
joint sufficient statistic T : {0,1}n × {0,1}n →R

d , where
d ≥ 1 is the length of the sufficient statistic vector T =
(T1, . . . , Td). The TERGM defines the transition proba-
bilities of a discrete time Markov chain Y = (Y (m))m≥0
by

Pr
(
Y(m + 1) = y′ | Y(m) = y; θ)

(20)
∝ exp

{
η(θ) · T (

y,y′)}, y,y′ ∈ {0,1}n×n,

where η(θ) is the natural parameter for the exponential
family. TERGMs incorporate Markovian dependence into
the ERGM through the sufficient statistic T .

TERGM suffers from the the same practical issues as
the ERGM. Kravitsky and Handcock (2014) presented the
subclass of separable TERGMs (STERGMs) which de-
scribes network evolution with an intermediate step that
separates the changes into a formation model and disso-
lution model for describing how edges are added and re-
moved between times. TERGM may be appropriate when
modeling the network dynamics for a fully observed pop-
ulation. In the case of modeling dynamics of a large net-
work based on an observed sample, however, the model
ought to account for the fact that observed dynamics are
the result of a sampling process.

11.3 Projectivity and Sampling

Suppose a population process Y = (Y (t))t≥0 evolves
on {0,1}N×N for N assumed to be in the hundreds of mil-
lions, as in the Facebook network. While we are interested
in learning the dynamics governing the entire network of
size N , the population size is often too large to observe
the while process all at once. We aim to infer the dy-
namics based on an observation from a sample of n � N

vertices, which need not preserve the Markov property.
Here, we consider the case where sampling occurs by se-
lection and consider circumstances under which the re-
stricted processes Y[n] = (Y[n](t))t∈T are Markov for all
1 ≤ n ≤ N , where we write Y[n](t) := Y(t)|[n].

In practice, this is an especially important property for
modeling dynamic networks: since we must observe a
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FIG. 4. Heat maps of two-way entropy per article.

sample Yn of size n � N from Y, the dynamics associ-
ated to the observed data must be coherent with respect to
the dynamics of Y and the manner in which Yn was sam-
pled, just as in Section 2. Otherwise the dynamics inferred
from the observation Yn would have no clear connection
to the population process of interest.

Under the assumption that the Markov property of Y
projects to each Y[n] under selection, that is, Y[n] =
(Y[n](t))t≥0 is a Markov chain for every 1 ≤ n ≤ N , it
follows from a theorem of Burke and Rosenblatt [7] that
the transition probabilities P

(n)
t of Yn can be expressed in

terms of those of Y by

P (n)(y,y′) = P
(
y∗,

{
y′′ ∈ {0,1}N : y′′|[n] = y′}),

(21)
y,y′ ∈ {0,1}n×n,

where y∗ ∈ {0,1}N×N is any choice such that y∗|[n] = y.
Note that this condition is not always satisfied for the
TERGM. We next discuss a class of models that do pre-
serve the Markov property under selection sampling.

11.4 Rewiring Chains

For any n = 1,2, . . ., let Wn be the space of rewiring
maps, which correspond to arrays taking values in
({0,1} × {0,1})n×n. Each such array determines an oper-
ation on {0,1}n×n in the following way. For any W ∈Wn,
write the ij entry as W(i, j) = (W0(i, j),W1(i, j)) and
define the image of y ∈ {0,1}n×n under W as the array
y′ = W(y) = (y′

ij )1≤i,j≤n given by

(22) y′
ij = Wyij

(i, j) =
{
W1(i, j), yij = 1,

W0(i, j), yij = 0.

In words, W acts on y by replacing each yij by the corre-
sponding entry in W1 if there is an edge ij in y and by W0

if no edge ij in y. For a concrete example:

y W⎛
⎜⎜⎝

0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(0,0) (1,0) (0,1) (0,0)

(1,0) (0,0) (1,0) (1,1)

(0,1) (1,0) (0,0) (0,1)

(0,0) (1,1) (0,1) (0,0)

⎞
⎟⎟⎠

(23)

�→

W(y)⎛
⎜⎜⎝

0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

⎞
⎟⎟⎠ .

We construct a Markov chain Y = (Y (m))m≥0 on
{0,1}N×N by first taking an initial state Y(0) = y ∈
{0,1}N×N , a probability distribution ω on WN and set-
ting

Y(m + 1) = Wm+1
(
Y(m)

)
(24)

= (Wm+1 ◦ · · · ◦ W1)(y), m ≥ 0,

for W1,W2, . . . drawn i.i.d. from ω. Following [11], we
call the resulting process Y a rewiring chain with direct-
ing measure ω.

Notice that the transition behavior Y constructed in (24)
is determined by the measure ω and that the action of each
W on {0,1}n×n as defined in (22) is such that the distribu-
tion of the restriction Y(m+ 1)|[n] given Wm+1 and Y(m)

depends only on the restrictions Wm+1|[n] and Y(m)|[n].
In particular, for any W ∈ WN , we define the restriction
W |[n] ∈ Wn in the usual way, W |[n] = (W(i, j))1≤i,j≤n.
Then the restriction of Y(m + 1) to {0,1}n×n is given by

Y(m+1)|[n] = (
Wm+1

(
Y(m)

))|[n] = Wm+1|[n]
(
Y(m)|[n]

)
.

It follows from this that all rewiring chains are projective
by construction.
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11.5 Exchangeable Rewiring Processes

The class of rewiring processes characterizes the behav-
ior of projective Markov processes on {0,1}N×N (count-
able population) whose transitions are exchangeable,
in the sense that their transitions satisfy Pt(yσ ,y′σ ) =
Pt(y,y′), for y,y′ ∈ {0,1}N and t ≥ 0 for all permuta-
tions σ : [N ] → [N ]. For finite populations {0,1}N×N ,
an exchangeable discrete time chain Y can be con-
structed by taking ω to be an exchangeable probability
measure on WN , meaning that W ∼ ω satisfies Wσ =
(W(σ(i), σ (j)))1≤i,j≤N = D W for all permutations σ :
[N ] → [N ]. If the population is taken to be countable and
labeled in N, then the class of rewiring chains character-
izes the process.

THEOREM 11.1 (Crane [11, 13]). Let Y =
(Y (m))m≥0 be an exchangeable, projective Markov chain
on {0,1}N×N with initial state y ∈ {0,1}N×N. Then there
exists an exchangeable probability distribution ω on WN

so that Y= D Y∗ = (Y ∗(m))m≥0 generated by

Y ∗(m) = Wm

(
Y(m − 1)

) = (Wm ◦ · · · ◦ W1)(y),

with W1,W2, . . . are i.i.d. from ω.

Theorem 11.1 limits the dynamics of exchangeable,
projective Markov chains for countable graphs are lim-
ited to those with transitions that depend only locally on
the current state of the process. For more discussion of
graph-valued stochastic process models for dynamic net-
works, see [11, 13, 14] and [15], Chapter 11.

12. CONCLUDING REMARKS

We have presented a general framework within which
to develop theory and methods for network analysis that
accounts for the varied contexts in which such modern
network data arise. Due to space constraints and the tech-
nical nature of this work, our presentation here was nec-
essarily brief. There are, of course, many more aspects
of statistical network analysis that have been treated else-
where in the literature, for example, [15, 16], and which
can be developed further in future work. The proposed
statistical framework is intended to help the network sci-
ence community move beyond the limitations of certain
statistical models (e.g., graphons, ERGMs and SBMs) by
providing guiding principles, that is, (M1), (M2) and (C),
for building new models and methods to tackle the next
generation of network science problems.
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