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We thank the editors for this opportunity and the dis-
cussants Kennedy, Balakrishnan and Wasserman (2020)
(abbreviated as KBW in the sequel) for their insightful
commentaries on our paper (Liu, Mukherjee and Robins,
2020) (abbreviated as LMR in the sequel).

1. A BRIEF INTRODUCTION TO HIGHER ORDER
INFLUENCE FUNCTIONS

We would like to start our rejoinder by responding
to the philosophical comments in Section 6 of KBW’s
discussion before getting into the other more technical
comments. In Section 6, KBW divide statistical proce-
dures into structure-driven and methods-driven but also
acknowledge that the boundary between these two cate-
gories is blurry. For example, even for the poster child of
the methods-driven tools — deep neural networks — one
common research direction is to prove some form of opti-
mality or robustness under some assumptions, often quan-
tified by smoothness, sparsity or other related complexity
measures such as metric entropy (Schmidt-Hieber, 2020,
Hayakawa and Suzuki, 2020, Barron and Klusowski,
2018).

The discussants then state that higher order influence
function (HOIF) based methods are ‘structure-driven’ be-
cause ‘they typically rely on carefully constructed series
estimates’ and achieve ‘better performance over appropri-
ate Holder spaces potentially at the expense of being more
structure driven.” This statement misunderstands the mo-
tivation and goals of HOIF estimation. Our goal has al-
ways been to make HOIF fully methods-driven. However,
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before we reach this goal, difficult open problems remain
to be solved. Until then, we have had to make restrictive
assumptions to obtain sharp mathematical results — these
assumptions can make our methodology appear at least
partly ‘structure-driven’.

The theory of HOIF is (simplifying somewhat) a theory
based only on higher order scores of finite dimensional
submodels. As a consequence, the theory by itself cannot
quantify the rates of convergence of a HOIF estimator and
thus the bias of a HOIF estimator without additional com-
plexity reducing model assumptions, a central point we
stressed throughout LMR. To be more concrete, for now
let us restrict the attention to smooth nonlinear functionals
Y (0) of a distribution Py lying in an infinite dimensional
model M = {Pg; 8 € ®} with a first order influence func-
tion Iy 4 (@) but (as is generally the case in infinite di-
mensional models) without mth order influence functions
for m > 1. Therefore, HOIF theory often considers finite
k = k(n)-dimensional sieves Mgyp x = {Pg; 6 € Ogup.x C
®} containing an initial training sample estimator 6, an
associated projection map 6 > ék from ® onto Ogyp k
that is the identity for 8 € Ogyp k. The projection map
defines a truncated parameter &k (0),0 € ® by &k ) =
¥ (6(9)), 0 € ©, which will typically have HOIFs of all
orders because Ogyp ¢ is finite dimensional. The theory
of HOIF applied to the parameter k() guarantees that

Yk (6) + Bo[IF,, 5 ()]} — Y (6) = 0|6 — 6] ) or,
equivalently,
Eo[¥mi — ¥k (0)] = EBgmi (Y1) = O(116 — 6™ )

where i, x = ¥ (0) +IF,, ; (0).

Here wl = 1//(9) + IF, (9) is a doubly robust ma-
chine learning (DRML) estlmator based on the first
order influence function and IF w (9) = ]IIF1 W (9)

LA ) = IFjj
is a jth order U-statistic.! Unless stated otherwise all
expectations are conditional on the training sample.

Q]HE‘ i (9) where, under Py,

'Here we are using the same sign convention as in LMR, which
reverses the sign conventions of Robins et al. (2008).
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Thus Eg[Ym,x — ¥ (0)] = EBg,m k(Y1) + TBg k(Y1) with
TBg,k(zﬁl) = lﬂk (60) — ¥ (0). Furthermore, it is often the
case that varg (Y, ) = O(k™'/n™ v 1/n). The above
is pretty much the cornerstone of the theory of HOIF es-
timators. This theory involves no structural assumptions
on components of 8, such as smooth or sparse nuisance
functions. As a consequence the theory is agnostic as to
the rate at which ||t§ — 0| or TBg,k(t/Afl) converges to zero.

The above theory was introduced in Sections 2-3 of
Robins et al. (2008) before either Holder smoothness as-
sumptions or best approximating bases were introduced.
However, we then went on to study models defined in
terms of Holder smoothness to determine whether our ab-
stract theory (just described) could be used to construct
rate minimax estimators (it could) for a particular class
of functionals under this well-known infinite dimensional
model. Under the Holder model, we could determine the
rate at which EBg,m’k(lﬁl) and TBQ’k(lﬁl) converged to
0 for different choices of the sequences m = m(n), k =
k(n), and parametric submodels Mgy . We could thus
optimize m(n), k(n), and Mgy k(n) and often obtained
minimax rates under the Holder model, when we did so.

Indeed, our theoretical work on HOIF since Robins
et al. (2008) and Robins et al. (2017) can be understood
as having been solely directed toward the elimination
of remaining structure-driven assumptions. As an exam-
ple, consider the parameter ¥ (6) = Eg[varg[A|X]] with
A Bernoulli and X high-dimensional with a continuous
distribution. Then 6 = (p, g) where p(x) = Ey[A|X =
x] and g(x) is the density of X. A k-dimensional sub-
model p(x;6;) = pg,(x) for p(x) was chosen to be
{po,; po,(x) = p(x) + Gljik(x)} where z;(x) is the vec-
tor of the first k elements of a sequence of user-selected
set of basis functions {Z;(x), j =1, ...}. The correspond-
ing projection map is O = —Q,:IIEQ[A(ﬁ(X) — p(X))]
with @ = Eg[Zc(X)Zk(X) "] = Eg[24 (X)Z¢(X) T]. The
HOIFs HFm,J/k (0) depended on g through €2; which we
estimated by E;[zx (X Yz (X) 7] with g an estimator of
the density g. In the above papers, we used complex-
ity reducing models (e.g., Holder models) on both p and
g to evaluate the rate of convergence of EBg’m,k(@l) =
O(1p—plPllg — g™ 1) to zero. In the case in which k =
o(n), Mukherjee, Newey and Robins, 2017 introduced
“empirical” HOIF estimators that eliminated the need to
assume a complexity-reducing model on g. Instead they
proposed estimating {Egjik X))z (X))} ! by the inverse
sample Gram matrix {QY}7! = {P,, [Zx(X)Zc(X) 1}~
in the training sample for k& < n. Indeed, the goal of
LMR was to determine the inferential questions concern-
ing smooth nonlinear functionals that remain answerable
when one refuses to impose any complexity reducing
structural assumptions—a goal that seems to us to be ex-
tremely “methods-driven.”

However, several difficult open problems remain to be
solved before HOIF inference becomes fully methods-
driven; i.e. becomes a robust, off-the-shelf, widely appli-
cable methodology for inference on nonlinear functionals
in non- and semiparametric models. We have previously
discussed these remaining problems both in LMR and ear-
lier papers. In this rejoinder, we discuss some of them in
greater depth to respond to discussants’ concerns and sug-
gestions.

2. TOWARDS “METHODS-DRIVEN” HOIFs

The main bottleneck in achieving fully “methods-
driven” HOIF inference is the dependence of the power
of our falsification tests and the efficiency of our estima-
tors on the choice of the basis functions zi(x). In Sec-
tion 2.1, we propose a relaxation of one of the assump-
tions in LMR that dispenses with our reliance on ‘care-
fully constructed’ choices (such as compactly supported
wavelets or B-splines) for the basis functions z; (x), at the
cost of perhaps a small loss in power.

In their final section, KBW consider one of the most
interesting open problem in the theory of HOIF: how
to adaptively select the m basis functions f,(x) =
(fi(x),..., fm(x)) of the d-dimensional vector x to (ap-
proximately) minimize the truncation bias for the ex-
pected conditional variance.> We have been investigat-
ing this same problem for several years but we have yet to
come up with a wholly satisfying approach. KBW suggest
a new approach based on aggregation. In Section 2.2, we
show by a toy example that this approach seems promis-
ing and is worth further in-depth investigation. However,
we also raise a difficult problem that needs to be solved
before this promise can be fulfilled.

2.1 Dispensing with the Need for Carefully
Constructed Basis Functions

LMRs assumed Condition W in the statement and proof
of Theorems 3.2 and 4.2. Condition W imposes severe re-
strictions on the basis function z; that can be chosen. Here
we show these restrictions can be avoided by replacing
Condition W with Condition SW below. In fact, we men-
tioned Condition SW in Remark 2.5 of LMR but failed
to provide sufficient emphasis and context. With the ex-
ception of the online supplement, following the recom-
mendation of a referee, LMR focus on the semisupervised

2Following KBW, we have used m rather than k to indicate the di-
mension of the vector of basis functions in their statistic IF 22, KBW
defined in Section 2.2. Note that by Theorem 3.2 of LMR, we require
m < n to have power to reject the null hypothesis under the alternative
that Bas0.L01)

s.e.9 (Y1)
detect with probability going to 1 any alternative of order c/ n'/2 for
any fixed ¢ > 0 is one of the perhaps surprising consequences of our
tests based on HOIF (due to the fact that with k < n, the variance of
]iF‘QZ  under that alternative is k/ n?)

= § + ¢ for any given ¢ > 0. Recall that our ability to
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setting in which E, [z, (X)Z (X) 7] is known. In that case,

we only require the following weakened form of Condi-

tion W in LMR for the level and power properties stated in

Theorems 3.2 and 4.2 of our test ¥ (za /25 8) for the sur-

|Biasg, k(1/f1)| < § to hOld
s.eol¥1]

— P (0)].

rogate null hypothesis Hg x(d) :
where Biasg (/1) = Eg[1]
CONDITION SW.

1. All the eigenvalues of €2; are bounded away from 0
and oo;

2. The true nuisance functions b(X) and p(X), and the
estimated nuisance functions l;(X ) and p(X), are all
bounded with Pg-probability 1;

3. 1Zx(x) T2k (x)|loo < Bk for some constant B > 0.

Condition SW weakens Condition W in LMR by drop-
ping the requirement that ||l'[[1; — b|Zk]llloo < C and
ITI[p — plzi]llloo < C for some constant C > 0 not de-
pending on n. This extra condition holds for wavelets, B-
spline and local polynomial partition series (Belloni et al.,
2015). However, there are many additional choices of z
that satisfy Condition SW without satisfying Condition
W, including Fourier series and monomial transforma-
tions of the covariates X when X is compactly supported
or monomial transformations of some bounded transfor-
mation of X when X is unbounded. Allowing z; to in-
clude monomial transformations of the covariates makes
our approach more flexible and “methods-driven.”

Turn now to the case considered in the supplement
of LMR and Liu, Mukherjee and Robins (2020a) in
which the expected Gram matrix Q2 = Eg[Z; (X)Zi (X Y]
is unknown and therefore tests of Hp(§) must now
be based on empirical HOIFs that substitute QU =
Py, [2k(X)Zx (X) 7] for . In Section S1 (also in Section
S3 of the supplement of LMR and Liu, Mukherjee and
Robins (2020a), Sections 4 and 5), we show in that case
that the additional conditions ||H[b blzillleo < C and
ITI[p — plzk]lllcoc < C are needed for tests X33, k(Qk ;
Za/2,6) (see equation (S1.1)) that use Qk to attain the
same asymptotic power as the oracle tests X (zq4/2, 8) that
use Q. When these infinity-norm bounds do not hold
(e.g., for Fourier series or monomial transformation of
compactly-supported covariates), the asymptotic power
of the test might be less. However, the level of the test
X33. k(ﬁk_l; Za/2, 6) under Conditions W and SW are iden-
tical under some additional restrictions.> Hence, at least
in the context of bias testing, we shall relax Condition
W to Condition SW in the future (e.g., Liu, Mukherjee

3For the additional restrictions, see Proposition S1.1 and Remark
S3.5 of the supplement of LMR. In Liu, Mukherjee and Robins
(2020a), we show that it is possible to remove these additional restric-
tions by extending U -statistics of order three to diverging order with
increased computational cost.

and Robins, 2020a), whether or not Eg[Z(X)z X)T]
is known, so as to remove restriction to “carefully con-
structed series.” The only cost is a possible small loss in
power and that only if the infinity norms of the projec-
tions H[B — b|z¢] and/or TI[p — p|zi] are not bounded
even though those of b — b and p — p are bounded un-
der Condition SW. In summary, by adopting Condition
SW rather than Condition W, our methodology becomes
more “methods-driven” and allows z; to include most ba-
sis functions relevant for practice.

2.2 KBW'’s Aggregation Approach

In the following, to avoid irrelevant issues, we con-
sider the case in which the density g of X is known,
Y (0) = Eg[varg[A| X]], and our inferential goal is to test
the actual null hypothesis Ho(5) : Biasy (1}1) < 58.8.9(1/}1)
as in LMR.

KBW propose the following procedure. First divide the
data into three randomly selected subsamples: a training
sample D;,, a selection (auxiliary) sample Dy, and an
estimation sample Deg. We are given an estimate p(x) of
[Eg[A|X = x] obtained from D;,. We then use data Dse| to
regress the residuals A — p(X) using m different methods

to obtain f(x) = {fg(x), ¢ =1,...,m} predictors of the
true residual function p(x) — p(x). Finally in sample Deg;,
we compute*

ﬁZZ,KBW(fm)

1
CR I >

i1#i2€Dest

Ai, — PXi)) fn(Xi) T

x Q7! fu (X)) (Aiy = P(Xi).
where Q7 = Eglfn(X)/n(X) 1Dl = [ fu(@) x

Fn()Tg(x)dx. KBW test the hypothesis Ho(8), using
their test statistic

XKBW,m (Za/2, 8)

. { IF2 kw (fn) 5. (2. kaw () 5}
s.e.(Y1) se.(Y1)
which is precisely the test statistic X (zq /2, 6) in Section 3

of LMR except that ﬁgz,k is replaced by ]TIF‘ZZ’ KW ( fm).
Roughly speaking, KBW’s idea is that if one among
the m (m < n) methods both captures the true structure
class (e.g., a smoothness class versus a sparsity class) of
the true residual function p(x) — p(x) and appropriately
chosen tuning parameters, then the power of the KBW test
XKBW,m (a2, 8) will be equal to or greater than the power

— <a/2

4As in LMR, we always condition on Dy, which is therefore sup-
pressed in the notation.
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of the LMR test (22, 8) that would be used by an ora-
cle who knew the true structure class and the optimal basis
functions z (x) that maximize the power of Xx(zq/2, 6).

Below we will show how the KBW test performs in a
toy example under Holder assumptions.

EXAMPLE. Let X be one-dimensional, p(x) be
Holder with exponent s with s < 1/2 and p(x) be a
series estimator of p using Zg, the first k* =< n!/(1+25)
compactly supported Cohen—Daubechies—Vial (CDV)
wavelets (of sufficient order).

This k* is minimax optimal for estimating p under
mean squared error loss. With this minimax optimal D,
Biasy (1) = Eo[(p(X) — p(X))*] =< n=2/0+29)_ Since
s < 1/2, Biasg(¥1) > n~'/2 and thus "Ho(8) is false. For
any k such that n > k > k*, Biasg, k(l//]) =Ty [HFQQ’]{]

BlaSQ(wl) (or equivalently MEIZI; 0) and by Theo-

rem 3.2 of LMR, the LMR test Xi(z«/2, 8) rejects Ho(6)
with probability approaching 1 with increasing sample
size.

In the same setup, we consider the KBW test
XKBW,m (Za/2,8) with m =1 and f the estimated re-
gression function of A — p(X) on Z(X), with k* <
k < (% A n). Below we argue that the KBW test
XKBW,m=1(Za/2, 8) with such z; rejects Ho(8) with prob-
ability approaching 1. The reason for k <« % will be

explained in the end of this section. Thus in summary, for
every s € (0,1/2), we can construct a test Xx(zq/2,8) as
in LMR and a test Xxkpw,m=1(2a/2, 8) as in KBW to reject
Ho(8) with probability approaching 1.

We now complicate our example by supposing that we
only know s € (0, 1/2) but do not know its true value.
Therefore, p will be an optimal adaptive estimator of p
estimated from the training sample D;,.. Our goal now
is to construct an adaptive test that rejects with proba-
bility going to 1 whatever the true value s is. The LMR
test Xk (2 2,6) with k =n/c with any ¢ > 1 is adaptive
in this sense. However, no KBW test Xkgw,m=1(Z«/2, )
can be adaptive. To see this, if s = 1/2 — € for some
very small € > 0, then the value of k used for the test

2 1 .
XKBW,m=1(Za/2, §) must be less than % =n21€ with k*

1 .
evaluated at n'+20/2=9_ On the other hand, if s =€, k

must be larger than k* = nﬁ. Hence, there exists no
single test XkBw,m=1(2a/2,d) that can adapt. It remains
an open question whether there exists an adaptive test
XKBW,m (Za/2, 8) for any choice of m, even in this simple
example.

We now justify the above claims. KBW first estimate
the regression of A — p(X) on z;(X) from the selection
sample Dq as follows:

f@) =207 B,

Q¥ Cieny Ze(X)(A; — p(Xi)). Then
KBW compute ]HE‘QQ,KBW( f ) as in equation (2.1).

Recall that by choosing &k > k*, Biase,k(lﬂl) =
Biasg (1}1). Following the proof of Theorem 3.2 of LMR,
for xxBw,1(za/2,8) to reject the null hypothesis Hy(6)
with probability approaching 1, we need:

where B

1/2.

(i) the mean of @ZZ,KBW( f) exceeds n~

o~ A : 7 \2 A
Eo[TF22,kpw (/)] = 224 > s..9 (Y1) = = and

(i1) the mean of ﬁzz,KBw( f ) dominates its standard
error: Eg[IF2 kpw ()] > s.e.o[lF2 kpw(f)].

In Section S2, we show that ]ﬁF‘zz,KBw( f ) has mean of
Biasg.x (¥1)°
k/n

der W when Ho(8) is false and Biasg x (/1) =

Biase(x/q). Hence, (ii) shouldA hold. £n terms of (i), if
Ho(8) is false, that is, Biasg (1) =< % > ﬁ or equiv-

order , which dominates its standard error of or-

alently k* > /n (or equivalently the smoothness index
s <1/2), there always exists k >> k™ also satisfying (i) as

() k* <« & [ > when k* > /n and (2) (i) is equivalent to
Biasy (1) _ k*? 1 k*?

Biasg,« (/1)?
: = APy
k/n k/n " kn > Jn CrL NS

3. CLASSES OF FUNCTIONALS AND THE BIAS TEST

3.1 Monotone Bias Class and Alternative Sample
Splitting Schemes

The analysis of the expected density example described
in Section 2 of KBW illustrates our approach in a simple
setting and is essentially isomorphic to the analysis of the
expected conditional variance Eg[varg[A|X]] when, as in
the semisupervised setting considered in the main text of
LMR, the marginal distribution of X is known. Both of
these functionals are members of our monotone bias class,
a class so named because of our claim that the bias of the
our second order U-statistic estimator was nonincreas-
ing in the number of basis functions k. KBW show that
our claim does not hold if, following Newey and Robins
(2018), one uses two different estimates of the density of
X (or of Ey[A|X] in the Eg[varg[A|X]] example) coming
from two independent subsamples of the training sample.
This is a fact we were well aware of (see Section S.1.1 of
the supplement of LMR).

The multiple training sample splitting nuisance func-
tion estimators of Newey and Robins (2018) can some-
times achieve faster convergence rates than the (single
training sample) DRML estimators considered in the
main text of LMR. In fact, they can even achieve n~!/2
rates for estimation of [Eg[vary[A|X]] and [Eg[covg[A, Y| X]]
under minimal Holder smoothness assumptions (Robins
et al., 2009) needed for /n-estimation. But this result re-
quires, not only that the Holder class assumptions are true,
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but also that one uses particular undersmoothed nuisance
function estimators (such as local polynomials or regres-
sion splines) rather than flexible black-box machine learn-
ing (such as random forests or deep learning) estimators,
that are the motivation for and the subject of our paper.

Indeed, it was our intention to define DRML estimators
to be estimators in which all nuisance functions were esti-
mated with ML algorithms from the same training sample,
as this is the current ‘state of the art’; and, as we empha-
sized in the Introduction of our paper, our approach is one
of being “in dialogue with current practice and practition-
ers.” In fact, our technical Lemma 2.3 of LMR, which is
the lemma in which we differentiate the bias properties of
Eg[varg[A|X]] from those of Eg[covg[A, Y|X]], is cor-
rect as stated, as the lemma explicitly applies to the case
in which a single estimator of p of Eg[A|X] is used in the
DRML estimator 1& 1 of Eg[varg[A|X]] (as is evident from
the paragraph just prior to the Lemma).

There remain important open problems that we, with
other colleagues, and our discussants are considering in
ongoing work on the properties of multiple training sam-
ple splitting nuisance function estimators: (1) is it possible
to develop a general theory of the benefit of multiple train-
ing sample splitting, even when black-box machine learn-
ing estimators of the nuisance functions are employed and
(2) can undersmoothing be automated to directly balance
bias with variance for the estimators of the functional of
interest? The model selection strategy in Cui and Tchet-
gen Tchetgen (2019) may be a viable option.

3.2 Generalization to Functionals with the Mixed Bias
Property

In Liu, Mukherjee and Robins (2020a), we also show
that the methods of LMR and the theory of HOIFs
(Robins et al., 2008, 2016) can be extended to the entire
class of parameters/functionals with the so-called mixed
bias property (henceforth called MB functionals), studied
by Rotnitzky, Smucler and Robins (2019). This class is
a strict superset of the union of two overlapping classes
of functionals introduced in Robins et al. (2008) and
Chernozhukov, Newey and Singh (2018), respectively.

DEFINITION 3.1 (Definition 1 of Rotnitzky, Smu-
cler and Robins, 2019). A parameter/functional (6)
is an MB functional if, for each 6 € ®, there exist
b:x+— b(x)eBand p:x+— p(x) e P such that (i)
0= (b, D, 9\(},’]7)) and ® =B x P x @\(va) and (ii) for
any 6,60’

Y () — ¥ (©) +Eg[IF1 ()]
=Eo[Spp (b(X) — ' (X)) (p(X) — p'(X))].

where Sy, = 55,(0) and o — sp,(0) is a known function
that does not depend on 6 or 6’ satisfying either Py (S, >
0) =1 or Pg(Spp <0) =1 and IF(0) is the (first order)
influence function of the parameter i (6).

(3.1)

4. ON THE COVARIATE STRUCTURE

KBW raise the interesting question of “how and
whether randomness of the covariates and/or smooth-
ness of the covariate density should be relied on in
practice.” They suggest that, perhaps, the covariates X
should be conditioned on (and thus be regarded as fixed
rather than random) in any inferential procedure, when-
ever study subjects are not randomly sampled from some
well-defined population. If this suggestion were followed
the benefits of HOIFs may be greatly diminished, but, if
so, HOIFs would not be alone. In many areas, it is es-
sential that the covariates X and the outcome Y have a
joint distribution (X, Y) — conformal inference, prediction
risk minimization, the bias-corrected lasso, and covariate
shift methods being four current examples, at least two of
which our discussants have written about. In fact, if the
subjects were not randomly sampled, one could equally
ask why should we consider Y conditioned on X = x as
random, as we have no reason to believe any measure of
their association is invariant across studies or populations,
especially if noncausal.

So the question is how to inject randomness into an ob-
servational study, a question that arises when an investi-
gator wishes to generalize her findings from the observed
study subjects to some larger population. For example, an
investigator who considers recommending a public health
intervention, would hope to have studied subjects that are
in some sense representative of the population of poten-
tial recipients. The simplest random model allowing gen-
eralization is to consider the study subjects as a random
sample from some very large (effectively infinite) hypo-
thetical (i.e., fictitious) superpopulation of potential re-
cipients with the superpopulation empirical distribution
serving as the target of inference. This is effectively re-
verse engineering, in the sense that even if one has stud-
ied a ‘convenience sample’, one can still hypothesize a
superpopulation that is similar, allows the use of ordi-
nary i.i.d. statistical methods, to obtain valid confidence
intervals for functionals of the superpopulation empirical
distribution (see Robins, 1988). This approach may seem
distasteful (or even vacuous) to a purist and not as ele-
gant as de Finetti’s subjectivist approach, but we believe
it underlies what frequentist analyses that epidemiologists
and statisticians are doing daily, perhaps without explicit
recognition. Of course, generalization from a convenience
sample to an actual, nonhypothetical, population is possi-
ble only based on further substantive knowledge. Typical
examples of the sort of convenience samples we are think-
ing of include (i) all members of a HMO admitted for an
acute myocardial infarction between Jan 1, 2015 and Dec
31, 2017 or (ii) all workers employed at a particular as-
bestos mine at any point in the interval 1959 to 1965.
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Putting such philosophical matters aside, let us for now
assume X is random. In this case, KBW raised the ques-
tion whether the performance of HOIF tests and esti-
mators is robust to misspecification of a model for the
density g of X say in the estimation of Eg[varg[A|X]].
The answer is HOIFs are not robust as can be seen from
the fact that the estimation bias Eg[y, x — Yk (0)] =

EBg,m k(Y1) = O(Ip — pl*I& — gll’i’_ll Thus, if g is
inconsistent with ||g — g|| > 1, then ¥, x may have bias
even greater than the bias O (|| p—p %) of the DRML es-
timator 1. If, following KBW’s suggestion, we react to
this nonrobustness by choosing to make no assumptions
whatsoever regarding the density of X, then we need to
restrict ourselves to the use of empirical higher order in-
fluence functions, as they do not require that we estimate
g (Mukherjee, Newey and Robins, 2017). The following
example helps understand their statistical properties.

Following KBW, suppose the functional of interest is
Y(0) =Eg[b1(X)] = Eg[Ap(X)Y], where 1 (0) is equal
to the counterfactual mean of an outcome Y when a binary
treatment A is set to a = 1 under ignorability of treatment
A conditional on the d-dimensional covariate X. Here
by(x) =Eg[Y|A =a,X =x] and p(x) = 1/Ey[A|X =
x]. Suppose we have a correct Holder smoothness model
for by(x) and p(x) having unknown smoothness expo-
nents sp and sp unrestricted except for the requirement
that s /d = (sp + sp)/(2d) < 1/4, implying (6) cannot
be estimated at rate n~ /% (Robins et al., 2009). Sup-
pose however we make no complexity reducing assump-
tions about fx(x), the density of X. In that case we
would need to use an empirical HOIF estimator w:ﬁp =
w(é) + ]HE‘;mgk (é) with z;(x) chosen as appropriate d-
dimensional ’compactly supported CDV wavelets for op-
timal approximation with k < n; =n /2,5 so the inverse
of empirical Gram matrix Py, [Z;(X)Zx (X )71 exists with
high probability. It follows from a slight modification of
Theorem 5 of Mukherjee, Newey and Robins (2017) that
with k = n/(log(n))* and m = \/log(n), V¥, ¢ has, up to
log terms, truncation bias n=2/4 and variance O(1 /n)
and negligible estimation bias and thus attains (up to log
terms), the rate of convergence n~>*/¢ found by Wang
et al. (2008) for gy [varg[Y|X]] under a fixed design. We
believe that no other estimator of the counterfactual mean
is known to achieve this rate of convergence for all s, and
sp satisfying (sp + sp)/(2d) < 1/4 without imposing fur-
ther assumptions on the density of X. Finally, we conjec-
ture the log terms may be eliminated by decreasing the
rate at which k/n converges to zero and appropriately ad-
justing the rate at which m(n) increases with n.

Next, we turn to KBW’s question concerning the per-
formance of HOIF when X is random but we perform in-
ference conditional on X. We begin by providing an ex-
ample in which unconditional and conditional inference

Snsy denotes the training sample size.

are essentially equivalent. Robins et al. (2008) consider
the question of whether, for estimation of a conditional
variance, random regressors provide faster rates of con-
vergence than do fixed equal-spaced regressors, and, if
so, how? They consider a setting in which »n i.i.d. copies
of (Y, X) are observed with X a d-dimensional random
vector, with density f(-) bounded away from 0 and in-
finity and absolutely continuous w.r.t. the uniform mea-
sure on the unit cube [0, 1]¢. The regression function
b(x) =Eg[Y|X = x] is assumed to lie in a given Holder
ball with Holder exponent s < 1. The goal is to esti-
mate Eg[varg[Y|X]] under the homoscedastic semipara-
metric model vary[Y|X] = o2. Under this model, the au-

thors construct a simple estimator 62 that converges at
4s/d

raten /4 when s/d < 1/4. Shen et al. (2019) recently
proved this estimator was minimax optimal by proving a
matching lower bound.®

Wang et al. (2008) and Cai, Levine and Wang (2009)
earlier proved that if X;,i =1, ..., n, are nonrandom but
equally spaced in [0, 1], the minimax rate of conver-

gence for the estimation of % is n =/ (when s /d < 1/4)
_ 4s/d )
which is slower than n '+4/¢, Thus randomness in X

allows for improved convergence rates even though no
smoothness assumptions are made regarding f (-).

To explain how this happens, we describe the estimator
of Robins et al. (2008). The unit cube in R is divided into
k =k(n) =nY, y > 1 identical sub-cubes each with edge
length k~!/¢_ For each sub-cube with two or more obser-
vations, we randomly select two subjects i and j without
replacement. We estimate o in each such sub-cube by
Y; — Yj)2/2. Our estimator 62 of o2 is the average of
the sub-cube-specific estimates (¥; — Yj)2 /2 over all the
sub-cubes with at least two observations.

A simple probability calculation shows that the num-
ber of sub-cubes containing at least two observations is
Op, (n%/k) so &2 has variance of order k/n? conditional
on X=(Xq,...,Xpn).

To compute the conditional bias, observe that for a
given sub-cube with i and j selected Eg[(Y; — Y j)z/
21X] = Eol(Y; — Y))?/21X:, Xj] = o0 + (b(Xi) —
b(Xj)}?/2. However, |b(X;) — b(X )| = O(| X; = X; )
ass < land || X; - X[ = d'?20 (k=14 as X; and X are
in the same sub-cube. It follows that the conditional bias
is Eg[62 — 02|X] = Op, (k~2*/?). We next find the k that
equates variance and squared bias. Specifically, we solve
k/n* = k=*/ which gives k = nﬁ. Then the rate of

. . ../ .
convergence at this optimal k is n~ #%74 conditional on X

6Suppose we change the model by assuming s > 1 but in no other

way. In that case, when s/d < 1/4 no estimator that attains the rate
asjd
n 1+4/d js known; however no lower bound has been proved that

would imply such an estimator is impossible.
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4s/d
with high probablhty, since n~ #74 is (k/n*)!/? evalu-
4s/d
atedatk =n 1+4S/d . Butn %74 ig also the unconditional

rate of convergence since the conditional bias and condi-
tional variance are of order O (k~%/4) and O (k / n?) with
overwhelming probability.’

Robins et al. (2008) conclude that the random design
estimator has better bias control and hence converges
faster than the optimal equal-spaced fixed design esti-
mator, because the random design estimator exploits the

—2 . .
Op, (n? /n1+47d) random fluctuations for which the X’s
corresponding to two different observations are only a

distance of 0({nﬁ}_l/ dy apart. In summary, our cal-
culations conditional on X indicate that the difference in
rates is wholly attributable to the difference between the
empirical distribution of the X;,i =1,...,n in a typical
realization under the random design and the empirical dis-
tribution in the fixed design. That is, given the realized X,
it is of no consequence whether or not it was generated
by a random process; all that matters is how the number
of bins with at least two observations scales with the total
number of bins k.

Now suppose that varg[Y|X = x] = oz(x) is het-
eroscedastic. Then to consider inference conditional on
X we can take P, {varg[V|X]} = n~' Y ceq Vara[Y|X;]
rather than () = Eg[varg[Y|X]] as our object of in-
ference, where we have again randomly split the data
into an estimation and a training sample and we note
if X is random our object is random. In the random X
case, Py {varg[Y|X]} is a n'/2_consistent estimator of
Eg[varg[Y|X]]. It is natural to estimate ]Pneg[{varg[Y |X]}

with either the empirical HOIF estimator wm P =

wemp(Q”) defined earlier or with wemp(QeSt) where
Qi“ = 17 Y et ZK(X)Zi(X;) T replaces Q,i’ in the
estimator.® Motivated by KBW’s questions concerning
conditional inference, it is of great interest to us to
study the properties, conditional on X, of 1}:;3?(?22’ ) and
Ipemp(Qe“) as estimators of P,,__ {varg[Y|X]}.

Nest

5. ON UNIVERSAL INFERENCE

Rather than relying on asymptotic theory, Wasserman,
Ramdas and Balakrishnan, 2020 construct an ingenious
universal confidence set by inverting concentration in-
equalities of the log-likelihood ratios, hence valid for any

TTo see this, define the event /., for any ¢ > 0, as

2
n
I, := {EI >c 7 bins with at least two observations of X s}

On this event, we have (6 — )2 < n~=%/@+4) with high probability.
Furthermore, for k < n?, there exists ¢ > 0 such that I, happens with
high probability when the density fx is bounded away from 0 and co.

]HF22 k(QeSt) and wemp(QZSt) were introduced in Section S3 of the

m,k
supplement of LMR and its properties were studied via simulation.

sample size n for models with likelihood functions. This
is another interesting contribution by two of the discus-
sants to the large body of assumption-free/-lean inference
literature (e.g., Rinaldo, Wasserman and G’Sell (2019)).
In this section, we compare HOIF inference with univer-
sal inference for smooth nonlinear functionals. The take-
home message is the following:

1. Universal inference requires a likelihood function.
For undominated nonparametric problems, KBW con-
sider (i) finite k = k(n)-dimensional sieves Mgpr =
{Pg; 6 € Ogup.k C O} of increasing dimension k, (ii) (un-
der the conditions of Proposition 7 in Wasserman, Ram-
das and Balakrishnan (2020)) an associated projection
map 6 +— «9~K|_,k from ® onto Oy, x that is the iden-
tity if 6 € Ogyp x and otherwise is the minimizer in KL-
divergence between 6 and ®gyp k, and (iii) a preliminary
estimator QAKLJ< for 0~K|_,k from a split sample. When a
functional ¥ (0) is the object of inference, KBW pro-
pose to construct a universal confidence interval for the
KL-projection parameter &KL,;{(O) = w(éKL(Q)). Univer-
sal inference and HOIF inference may choose the same
sieve. In that case, under certain laws Py, the KL pro-
jection Yk x(6) may be equal to the truncated parameter
1/~/k (0), as we will show below. Without further complex-
ity reducing assumption to quantify the distance between
the sieve and the true law Py, inference for 1/7K|_,k(0) in
universal inference or ¥ () in HOIF inference is the best
one could hope for.

2. Universal confidence intervals are guaranteed to
cover tﬁKL,k(H) at the nominal rate for any sample size
n under the conditions of Proposition 7 in Wasserman,
Ramdas and Balakrishnan (2020). However, we will show
that the length of the confidence interval is of order
||0~K|_’k — éKL,k||,9 which is generically > n~12 when
n > k> n'/2. In contrast, HOIF Wald confidence in-
tervals for ¥ (0) centered at &emp have length of order

~1/2 because estimators w x P of Y (0) typically have

variance of order 1/n for k < n and bias less than n~1/2
when m is sufficiently large. When J/KL,;{(H) = 1/7k(8),
it follows that HOIF confidence intervals will be nar-
rower than universal confidence intervals; however, nom-
inal coverage of these HOIF Wald confidence intervals
for Y, (0) is guaranteed only in large samples. It is an
interesting open problem to construct universal intervals
with guaranteed finite sample coverage of optimal length
in large samples.'?

We now explain the above statements. To be concrete,
we consider the following data generating process and

9Here I - || is the £> norm of a k-dimensional vector.

10First order influence function based intervals will enjoy the same
properties as the higher order intervals when the test of the null hy-
pothesis Hy  (8) fails to reject in large samples.
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functional of interest to simplify our analysis. We observe
n ii.d. copies of (A, X), with X ~ Uniform([0, 1]) and
A~ N(p(X),1) with p(x) € L,([0, 1]). The goal is to
estimate ¥ (0) = Eg[p(X )2]. Let p(x) denote some ini-
tial machine learning estimator of the regression func-
tion p(x), computed from an independent training sample
treated as fixed. Again, we assume that the density of X
is known to focus on the important issues.

5.1 Nonparametric Universal Inference
We choose the following sieve for universal inference:
Miuvk = {N(pg, (X) = p(X) + 6 2x(X), 1);
Ok € Ogub.k }

for some k = k(n). The KL-divergence between any mem-
ber in this sieve Mgyp x and the true law A ~ N(p(X), 1)
is

KL(p, pe,) = Eo[(p(X) — po, (X))*]
=Eo[(p(X) — H(X) — 6 2 (X))*].

By definition, 0~K|_7k minimizes KL(p, pg,) and hence
Ok = = "Egl2(X)(p(X) — p(X))]. By Proposi-
tion 7 in Wasserman, Ramdas and Balakrishnan (2020),
a nominal 1 — « universal confidence set always covers
QNKL,k with probability at least 1 — «.

Based on the sieve chosen above, ONKL,k = 5k (see
Section 1), and therefore &KLJ{(Q) = fpéKL,k (x)%dx =

fpék (x)%dx = &k(e). This is not surprising because the
KL-divergence between two normals is a quadratic form.
Such isomorphism breaks down if A ~ Bernoulli(p(X))
even with the same perturbation py, . However, we can
easily restore the isomorphism by replacing KL-diver-
gence with x2-divergence. See Section S3.1 for more de-
tail. Thus it will be interesting to generalize Proposition
7 of Wasserman, Ramdas and Balakrishnan (2020) from
KL projection to projection based on general f-divergences
(Csiszar, 1963, Ali and Silvey, 1966), which include KL-
and x2-divergences as special cases.

5.2 On the Length of Universal vs. HOIF Confidence
Intervals

In this section, we suppose that &KL’ x(0) in universal
inference and !Zk (0) in HOIF inference coincide. It is then
natural to compare the length of the confidence intervals
for &KL’/{(Q) based on these two approaches.

Universal inference first estimates 9~K|_’ x from half of the
sample D of size n/2 by éKL,k,Dl 1 Switching to another
half of the sample D also of size n/2, universal inference

"okLap, = = Qp (Pup, B X)(BX) — Al with Q! | =
{P,, D, Ze(X)ze (X)) T~ where P, p denotes the empirical mea-
sure over the sample D.

first finds a nominal 1 — « confidence set @Dz () (see
equation (S3.3)) for GNKL,k.

To construct a universal confidence interval for the
functional 1/7KL, «(0) based on the confidence set ®D2 (@),
Wasserman, Ramdas and Balakrishnan (2020) suggest to
use the profile universal confidence interval @gjf'le (o) or

the plug-in universal confidence interval @%I;g'in (a) (see
equations (S3.2) or (S3.1)). In Section S3.2, we show
that both intervals have to contain the “plug-in” estimator

/ P . D, (x)?dx. Combined with the following lemma'?,

a lower bound is obtained on the expected length of both
universal confidence intervals:

LEMMA 5.1. For any confidence interval ¥ contain-
ing fpéKLkD (x)%dx, if it covers the target parameter
k. Dy

1/~/K|_?k(9) with probability at least 1 — a, then
Eg[L(¥)|D;]

== a)‘f péKL,k.Dl (1) = Pk (x)*dx
=(1—-0ao)

X |(GkLx.D, — OkLDy) T 2 OkLk. Dy + kD))

Note that the lower bound given in Lemma 5.1 is typi-
cally of the same order as ||0AKL, kD — 0~K|_,k |. The length
of a plug-in or a profile universal confidence interval is
hence of order ||é|(|_’k"D1 — ONKL,kH, which is typically of
order (k/n)l/2 > n~ Y2 when k > n'/2.

In contrast, HOIF estimators unbiasedly estimate
lﬁk 0) = &KL’ % (0) using a second order U -statistic 1&2, K3
with standard error of order (1/n)'/2 v (k/n*)!/2. Then
a large sample HOIF Wald confidence interval 1&2,/( +
Za /28.’.3.(1}2, %) typically has length of order n~!/? even if
k > n'/? as long as k < n. Even if k > n, the length (of
order (k/ n?)!1/2) of an HOIF interval is still shorter than
that of a universal confidence interval (of order (k/n) 172y,

REMARK 5.2. In Murphy and van der Vaart (2000),
the authors (MvdV) showed that, under certain regularity
conditions, the confidence interval for &KLJ{(@) based on
inverting the profile likelihood ratio test of the hypothesis
U= I/N/KL,k(G) attains nominal coverage in large samples
and has length of order n~1/2 even when 9~K|_’k cannot be
estimated at rate n~ /2. In contrast, as just shown, the uni-
versal confidence interval will not shrink at rate n~!/2 in
this setting; yet, if the universal confidence interval uses
the MLE under the sieve model as a preliminary estimator

12ZFor proof, see Theorem 1 in Low (1997).

13When g is unknown, one needs to use empirical higher order
U -statistic @;m,f to further reduce the bias due to estimating 2 =
S Zr (x)zx (x) g (x)dx; see Section 1 and Mukherjee, Newey and Robins
(2017).
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of <9~K|_,k, then the only difference between MvdV’s inter-
val and KBW’s universal interval is that for the former
the unconditional MLE of 9~K|_, ¢ in the numerator is com-
puted from the same sample as the maximum profile like-
lihood in the denominator, while in the latter they come
from different (split) samples. By examining the proofs in
MvdV, one can see that the better rate depends crucially
on an asymptotic expansion that exploits the fact that the
numerator and denominator come from the same sample.

It is yet unclear to us how to reduce the length of a
universal confidence interval. On the other hand, we have
conjectured in LMR that a nonasymptotic HOIF confi-
dence interval could be constructed by inverting exponen-
tial inequalities for U-statistics (Giné, Latata and Zinn,
2000, Adamczak, 2006) but the theory is very challenging
and doing so will necessarily increase the confidence in-
terval’s length. It will be interesting to investigate if such a
nonasymptotic HOIF confidence interval will still shrink
faster than the universal confidence interval.

REMARK 5.3 (Final remark on regression and machine
learning). We agree with KBW that machine learning
is more than prediction. In our paper, we equate “ma-
chine learning” with statistical prediction in order to con-
nect with the most current use in causal inference. We be-
lieve and expect that many other aspects of machine learn-
ing, including clustering, density estimation with gen-
erative adversarial networks (GAN), dimension reduc-
tion/manifold learning, and optimal transport, will play
more and more important roles in causal inference.
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