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1. INTRODUCTION

We thank each of the comment authors for their insights
and perspectives on our work. The comments were wide-
ranging in content and raised many interesting questions
pertaining to our work and its place in the larger scope of
research in the area. We address each commenter in turn.

2. LI

We thank Dr. Li for his interesting comment and novel
proposal for stabilization in the context of estimating
the average treatment effect. Li asks the question as to
whether stabilization techniques that are common for in-
verse probability of treatment weighted (IPTW) estima-
tors could stabilize doubly robust procedures in weakly
identified settings. In essence, Li proposes to use a stabi-
lized propensity score in combination with one-step esti-
mation or TMLE. The stabilized propensity score is of the
form Ḡ0(w | h) = Ḡ0(w)/h(w), where h : W → [0,1] is
some mapping that may depend on P0. Several choices of
h are discussed, such as

(1) h(w) = Ḡ0(w){1 − Ḡ0(w)}∫
Ḡ0(w){1 − Ḡ0(w)}dQ0,W (w)

.

The author proposes a plug-in estimator hn of h, based
on an estimate of the propensity score, Ḡn, and pro-
ceeds as usual with a one-step and TMLE procedure using
the alternative propensity score estimator Ḡn(w | hn) =
Ḡn(w)/hn(w). The resultant estimators are found via
simulation to have reasonable performance in the simu-
lation settings considered in our paper.

Overall, Dr. Li’s idea to bring in stabilization tech-
niques from the IPTW literature to the doubly robust
sphere is novel and interesting. However, we would like
to highlight a potential difficulty when considering cou-
pling this approach with machine learning or other non-
parametric regression techniques. The potential problem
is illustrated most directly by the analysis of Li’s estima-
tor in the case where Ḡ0 is known exactly, as in a stratified
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randomized trial. This setting is important, since it is one
where asymptotically linear, doubly robust estimators can
be generated under the weakest possible assumptions. We
will argue that when the outcome regression is estimated
nonparametrically Li’s estimator may not achieve asymp-
totic linearity in even this “best-case” scenario.

Let ψ1
n,∗ be Li’s TMLE of ψ1

0 , constructed based
on the targeted outcome regression estimate Q̄1

n,∗, the
true stabilized propensity score Ḡ0(· | h) and the em-
pirical distribution of W , Qn,W . Below, we write Pf

to denote
∫

f (o) dP (o) for a given P -integrable func-
tion f and for each P ∈ M. We also denote by Pn

the empirical distribution function based on O1, . . . ,On,
so Pnf = n−1 ∑n

i=1 f (Oi). We define R0n = P0{D1(· |
Q̄1

n,∗,Qn,W , Ḡ0(· | h)) − D1(· | Q̄1
n,∗,Qn,W , Ḡ0)}. A lin-

earization of �1 along with straightforward algebra gives

�1(
Q1

n,∗
) − �1(

Q1
0
)

= −P0D
1(· | Q̄1

n,∗,Qn,W , Ḡ0
)

= −P0D
1(· | Q̄1

n,∗,Qn,W , Ḡ0(· | h)
) + R0n

= (Pn − P0)D
1(· | Q̄1

n,∗,Qn,W , Ḡ0(· | h)
) + R0n,

(2)

where the third line follows since, by construction, the
targeted estimate Q̄1

n,∗ is such that PnD
1(· | Q̄1

n,∗,Qn,W ,

Ḡ0(· | h)) = 0. The first term in the final equality is an em-
pirical process and standard conditions can be assumed to
control its behavior (Appendix B of the web supplement
accompanying the original paper). However,

R0n = EP0

({
h(W) − 1

}[ A

G0(W)

{
Y − Q̄1

n(W)
}])

= EP0

({
h(W) − 1

}

×
[

A

G0(W)

{
EP0(Y | A,W) − Q̄1

n(W)
}])

= EP0

({
h(W) − 1

}[ A

G0(W)

{
Q̄1

0(W) − Q̄1
n(W)

}])

= EP0

[{
h(W) − 1

}{
Q̄1

0(W) − Q̄1
n(W)

}]
.

In order for Li’s estimator to be asymptotically linear with
the claimed influence function, we would need to estab-
lish that R0n = op(n

−1/2). However, the form of R0n is
not second-order unless h(w) = 1 for all w ∈ W (in which
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case Li’s estimator reduces to a standard TMLE). Thus, in
general we do not expect negligibility of this term.

What are the implications for inference? If Q̄n is a max-
imum likelihood estimate based on a correctly specified
parametric model, then ψ1

n,∗ will be asymptotically lin-
ear; however, there should be a first-order contribution
to its influence function from R0n. Thus, standard error
estimates based on the variance of the efficient influence
function alone may not be consistent for the true asymp-
totic variance of the estimator. Nevertheless, in this con-
text, the nonparametric bootstrap should suffice to pro-
vide confidence intervals with valid coverage probability.
On the other hand, if the outcome regression is estimated
nonparametrically, we may expect nonstandard behavior
of Li’s estimator, since we cannot rule out the possibility
that n1/2R0n converges to ±∞. In particular, we expect
that bias of ψ1

n,∗ may not converge faster than n−1/2.
The situation is more difficult still when Ḡ0 is unknown

since (2) is then replaced by �1(Q1
n,∗) − �1(Q1

0) =
−P0D

1(· | Q̄1
n,∗,Qn,W , Ḡ0) + R2,0n, where R2,0n =

P0[{Ḡn(· | hn) − Ḡ0}/Ḡn(· | hn)(Q̄n − Q̄0)]. When the
estimated propensity score targets the true propensity
score, this term is second-order; otherwise, it will in gen-
eral contribute to the first-order behavior of the estimator.
The implications for inference in this setting are the same
as above. For a more extensive analysis of R2,0n when the
propensity estimator does not target the true propensity,
see Benkeser et al. (2017).

2.1 Simulation Study

We provide a short simulation examining the phenom-
ena described above. Our setting is intentionally simplis-
tic. To simulate data, we drew W1 from a Uniform(0,1)

distribution and independently drew W2 from a
Bernoulli(1/2). Given W = w, the treatment A was
drawn from a Bernoulli distribution with Ḡ0(w) =
logit−1(1 + 2w1). Given A = a,W = w, the outcome
was drawn from a Bernoulli distribution with Q̄a

0(w) =
logit−1(−1 + w1 − 2w1w2), for a = 0,1. We studied
three TMLE estimators of ψ1

0 : Li’s proposed estima-
tor based on the choice of h in (1), our CTMLE and

a standard TMLE. We simulated 3000 datasets of size
n = 250,500,1000,2000,3000,4000,5000 and com-
pared estimators’ Monte Carlo bias and their bias when
scaled by n1/2, a key property needed for asymptotic lin-
earity. We plotted estimated sampling distributions of the
centered estimators scaled by an oracle standard error
(i.e., the Monte Carlo standard deviation over the 3000
data sets), as well as the estimated standard error based
on the empirical standard deviation of the efficient in-
fluence function evaluated at each estimator’s choice of
propensity score estimator. Similarly, we studied coverage
probability of nominal 95% confidence intervals based on
oracle and estimated standard errors. We used the highly
adaptive lasso (HAL, Benkeser and van der Laan, 2016,
van der Laan, 2017) to estimate the outcome regression,
propensity score and outcome-adaptive propensity score.

All estimators had small bias in large samples (Figure 1,
left); however, the bias of Li’s estimator is not unequivo-
cally converging faster than n−1/2 (Figure 1, right). On
the other hand, the bias of CTMLE and TMLE appears
to be converging at the proper rate. Evidence of this bias
again appears in the sampling distribution of Li’s estima-
tor (Figure 2, top left), where we see that when scaled by
an oracle standard error, the estimator has a small negative
bias, even in large samples. However, the impact on con-
fidence interval coverage is minimal (Figure 2, top right)
In contrast, the most apparent feature of the sampling dis-
tribution of Li’s estimator when scaled by an estimated
standard error is that its variability is smaller than that of
a standard Normal random variable, particularly in larger
samples. This results in overcoverage of the confidence
intervals based on the estimated standard error. In con-
trast, the CTMLE and TMLE have more standard asymp-
totic behavior with sampling distributions better approx-
imating the asymptotic distribution in large samples and
confidence intervals approach nominal coverage.

2.2 Concluding Thoughts

Li’s idea of bringing stabilized propensity scores in
doubly robust estimation is appealing, but there appear
to be important theoretical considerations in cases of non

FIG. 1. Bias (left) and n1/2-scaled bias (right) of Li’s estimator (circles), our proposed CTMLE (triangles), and a standard TMLE (+).
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FIG. 2. Sampling distribution of estimators centered and scaled by their true standard deviation (left) and their estimated standard error (middle).
The estimators’ distributions are shown in gray-scale, with darker color indicating larger sample sizes; a standard Normal distribution is shown in
black. The right column shows coverage probability for a nominal 95% confidence interval based on estimated standard errors (black circles) or
oracle standard errors (white circles).

and semiparametric implementations. The analysis of Li’s
estimator highlights difficulties that can be expected in the
context of doubly robust estimators when opting for non-
standard targets for the propensity score estimator. Our
target propensity that conditions on the outcome regres-
sion was very carefully selected to avoid these difficulties.
Nevertheless, it will be interesting in future research to
better understand whether and how propensity score sta-
bilization can be used in the context of flexible implemen-
tations of doubly robust estimators.

3. SCHNITZER

We offer our gratitude to Dr. Schnitzer for her com-
ments on our work. Her perspectives on what is needed
for wider adoption are quite welcome. In direct response
to her call for more and better software, we have included
an implementation of our proposed methodology in ver-
sion 1.0.5 of the drtmle package for the R language
(Benkeser, 2020). Beyond this, we add several comments.

Dr. Schnitzer’s first point pertaining to model diagnos-
tics points to an important gap in the literature. Beyond
the lack of available software to facilitate diagnosis of
positivity violations, there is still work to be done in un-

derstanding what diagnostics are most relevant for dou-
bly robust estimators. While such diagnostics have been
extensively studied for matching and IPTW estimators
(e.g., various covariate balance metrics), there are fewer
available studies identifying relevant diagnostics for dou-
bly robust approaches. Moreover, there has not been a
comprehensive evaluation of the impact that analytic de-
cisions made based on these diagnostics may have on
downstream inference. The open question then is to de-
velop methodology that is able to appropriately diagnose
when standard doubly robust estimators will struggle and
adaptively shift estimation toward more stable versions of
those estimators, and of course, as Dr. Schnitzer reminds
us, to develop efficient and easy-to-use software that im-
plements any such methods.

The second point discusses a need for more diverse
software packages that can handle different study de-
signs and estimation of different causal quantities. With
this point, we could not agree more. Current trends in
statistics and data science represent a sort of race, with
the way in which data are collected leading the way.
Methodology developments closely follow, while soft-
ware development lags considerably behind. The reasons
for this lag are likely multifaceted, including but not lim-
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ited to: insufficient training in software development in
doctoral programs, challenges of securing funding specif-
ically for software development, and lack of emphasis on
software development in traditional academic promotion
processes. While there has recently been some improve-
ment in these regards, we still have a ways to go.

Dr. Schnitzer’s third point recommends improving
computational run times associated with machine
learning-based methodology. Certainly, this is a barrier
to adoption of such methodology amongst analysts who
are used to having analyses run in a matter of seconds. To
a certain extent this increase in run time is unavoidable
as we move toward more flexible analytical approaches.
As the field moves toward more flexible approaches, it
will become crucial to emphasize reproducible coding and
unit tests so that the additional analytical time is primarily
computer wall time rather than human time. The relative
simplicity of many classical statistical analyses can allow
bad coding practices to develop. After all, there is little
issue with a program that crashes due to syntax error after
running for half a second on a desktop. However (speak-
ing from personal experience), a program crashing due to
a syntax error after three days of run time on an expensive
cloud computing unit is devastating. To help with the tran-
sition to more sophisticated analyses on larger data sets,
we can emphasize best coding practices for reproducibil-
ity in our training of the next generation of statisticians
and data scientists.

4. SHORTREED AND MOODIE

Drs. Shortreed and Moodie provide a timely and wide-
ranging reflection on possible pitfalls of automation in
data analysis. We thank them for their thoughtful con-
tribution. In our response, we first clarify several points
about our work before turning to the broader question of
automation.

4.1 Points of Clarification

Quoting from Petersen et al. (2012), Drs. Shortreed and
Moodie imply that our proposed procedure is “[in prin-
ciple, settling] for a better estimate of a less interesting
parameter” (Section 3). We do not believe this to be the
case. The cited literature surrounding this statement dis-
cusses trimming propensity scores to estimate parameters
that are easier to identify than the average treatment ef-
fect. However, we wish to emphasize that this is not the
approach adopted in our work; we directly estimate aver-
age treatment effect. It is possible that Drs. Shortreed and
Moodie are highlighting that the target propensity score
of our procedure is less interesting than the true propen-
sity score and we agree that this is probably true in many
contexts. However, the goal of our work is not propensity
score estimation as an end in itself, but rather as a means

to the end of drawing stable inference on the average treat-
ment effect.

The next two points of clarification pertain to the use of
cross-validation-based ensemble learning, or super learn-
ing (van der Laan, Polley and Hubbard, 2007). Since
this methodology was not discussed in the original pa-
per, for the sake of completeness and to contextualize
or responses below, we provide a brief description here.
Super learning is a generalization of regression stacking
(Wolpert, 1992, Breiman, 1996) and entails prespecifying
a number of candidate estimators, each aimed at estimat-
ing the same target quantity. Cross-validation is used to
determine an ensemble (e.g., convex combination) of the
estimators that minimizes a cross-validated estimate of a
user-specified risk criteria (e.g., mean squared-error). Or-
acle inequalities demonstrate that the resultant ensemble
estimator has essentially the same or better asymptotic
risk when compared to the best single estimator among
all of the candidates. While super learning can be used
outside of the context of TMLE (and vice versa), the two
methods have often been combined in our past work.

Drs. Shortreed and Moodie state that, in the context
of TMLE, super learning for estimation of a propen-
sity score is “potentially harmful,” while the same is
not true for outcome regression estimation, which “[un-
derscores] that the goals of prediction and causal infer-
ence can differ” (Section 2). We would like to expand
this discussion. The cited works of Alam, Moodie and
Stephens (2019) and Pirracchio and Carone (2018) deal
specifically with propensity score matching, adjustment
or weighting, and not doubly robust approaches. Indeed,
a central assumption to the asymptotics of doubly ro-
bust approaches is L2(P0)-convergence of both the out-
come regression and propensity score to their true respec-
tive counterparts. Thus, for doubly robust estimators the
goals of prediction (e.g., having low mean squared-error)
and causal inference seem to align quite well. On the
other hand, in the context of the aforementioned “singly
robust” approaches, standard implementations of treat-
ment effect estimators are not expected to have stan-
dard asymptotic behavior when coupled with a standard
implementation of super learning. For example, van der
Laan (2014) provided an analysis of a super learner-based
IPTW estimator and highlighted that additional effort is
required to attain asymptotic linearity of such estima-
tors. An alternative approach to attaining asymptotic lin-
earity in this case is to utilize an undersmoothed mini-
mum loss estimator (e.g., van der Laan, Benkeser and Cai,
2019). In either case, a careful application of super learn-
ing (or other machine learning approaches) is required
to satisfy theoretical requirements in large samples. In
small samples, various modifications have been shown
to stabilize behavior in several contexts (e.g., propensity
score truncation as in Bembom and van der Laan, 2008,
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Xiao, Moodie and Abrahamowicz, 2013). It would be in-
teresting to evaluate these modifications in the context
of the extensive simulations performed by Alam, Moodie
and Stephens (2019).

Overall, Alam, Moodie and Stephens (2019) rightfully
point out that singly robust approaches are common in
practice and provide an illustration of where naïve ap-
plications of super learning may not perform apprecia-
bly better than simple propensity score estimation ap-
proaches, such as main terms logistic regression. How-
ever, we do not believe that these results should dissuade
practitioners from ever using more flexible propensity
score estimators. Rather, the arguments of Alam, Moodie
and Stephens (2019) point to a clear need for better com-
munication of how such flexible methodologies can be ap-
propriately employed in practice.

As a segue into our broader discussion of automation,
we also wish to respond to Drs. Shortreed and Moodie
on the point that “[when combined with super learning]
TMLE is less automated than we might think.” Based on
our reading, we understand Drs. Shortreed and Moodie
use automated to refer to methodology that is mostly de-
void of human input. If this is indeed their intended defi-
nition, then we agree that super learning is not automated,
nor should it be. In fact, rather than removing human input
from modeling, the super learner framework should invite
human collaboration. For example, in recent collabora-
tions involving observational studies of influenza vaccine
effectiveness, we required models for predicting influenza
infection in a health care setting. With limited background
knowledge of the biology of influenza, it would be ex-
tremely difficult to pose realistic parametric models, and
thus we may be tempted to instead rely exclusively on
black-box machine learning approaches, which require
little subject matter expertise. Thankfully, our collabo-
rators have been developing influenza prediction mod-
els for years and could anticipate where we should ex-
pect to see interactions between variables, which variables
may have nonlinear relationships with the outcome, and
other idiosyncrasies unique to influenza data. But natu-
rally our collaborators had uncertainty about their models
(e.g., should participant age be included as a linear term?
a quadratic? in categories?). The super learner framework
allows the past experiences of collaborators in influenza
modeling to be incorporated in the analysis by including
several different versions of the proposed regression mod-
els in the super learner, while providing an objective, pre-
specified means of making difficult modeling decisions.
The appeal of the super learner framework is this ability to
facilitate prespecified collaboration in the face of estima-
tor uncertainty, rather than as a means of moving toward
statistical methodology that requires no human input.

4.2 On Automation

We turn now to the broader question at the core of the
comment by Drs. Shortreed and Moodie: should automa-
tion and data-driven analyses be preferred when inferen-
tial, rather than predictive, analyses are undertaken? We
first focus on inferential questions that are confirmatory,
as opposed to exploratory, in nature. By this we mean that
there is an a-priori hypothesis that, for example, variable
A has an effect on outcome B and we wish to use data to
quantify the magnitude of this effect or test for the pres-
ence of such an effect. We consider exploratory analyses
in the sequel.

We build our argument for where and when automa-
tion may be applied in the scientific process on a formal
roadmap for inference (Petersen and van der Laan, 2014).
The roadmap outlines the interplay of science and statis-
tics en route to drawing conclusions from data. With this
entire process in front of us, we can scrutinize areas where
automation is useful and where it may lead us astray.

1. Specify knowledge about the system under study.

• Using a structural causal model or related graph-
ical technique, codify existing knowledge about
how variables in the system under study do/do not
causally relate to one another.

2. Specify observed data and link to causal model.

• Determine the implications of the causal model on
the observed data distribution. How does the sam-
pling procedure relate to the causal model?

3. Specify target causal quantity.

• Decide which variables in your system on which we
would intervene in an “ideal experiment” and how
we would intervene on those variables.

4. Assess identifiability of the causal parameter.

• Given the assumptions made by the structural causal
model and the sampling design, can we estimate the
target causal quantity using observed data?

5. Commit to statistical model and estimand.

• Select an estimand that is as close as possible to the
target causal quantity given the potential limitations
of the data.

6. Estimate the chosen statistical estimand.

• Develop a prespecified analysis plan, possibly in-
formed by a blinded analysis of the data. Execute
the analysis plan on the real data.

7. Interpret the results.

• Determine whether assumptions are sufficient to
interpret results causally or as mere associations.
Make explicit the assumptions under which the in-
terpretation holds.
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To begin, all statisticians would likely agree that automa-
tion should be desired in Step 6. Human intervention
could and should occur in the development of an analy-
sis plan (e.g., as in the influenza example above) and the
development of robust code needed to execute that anal-
ysis. However, analytic decisions should ideally be made
prior to unblinding of the data, while the actual data anal-
ysis should occur in a nearly fully automated way. Such
automation prevents human bias from infecting the anal-
ysis and preserves interpretability of confidence intervals
and hypothesis tests.

The next place where automation could play a lim-
ited role is in the interplay of Steps 3 and 4. Algorithms
for identification of counterfactual distributions are avail-
able in the literature (among others, Tian and Pearl, 2002,
Shpitser and Pearl, 2006) and can help enumerate which
causal quantities are identifiable. Similarly, diagnostic
procedures could be used to assess positivity assumptions
that could lead to a lack of identifiability of some esti-
mands. In both situations, it is still important to have a
human in the loop to identify estimands that most appro-
priately answer the scientific question of interest and de-
termine the most appropriate way forward. Or, if no suit-
able estimands can be identified, human input is required
to identify what data should be collected in the future that
would enable us to answer the question of interest.

It is interesting to note that the roadmap also highlights
exactly where automation failed in the examples provided
by Drs. Shortreed and Moodie. In the example of Google
Flu, postmortem examinations revealed that, among other
issues, the prediction algorithm failed to adapt to changes
in the underlying Google search algorithms (failure of au-
tomation in Step 1) (Lazer et al., 2014). The system under
study was changing over time and knowledge of this sys-
tem was not incorporated into the architecture of predic-
tions made by Google Flu. Conversely, for the example
of the moon landing, we should all be grateful that Arm-
strong and Aldrin did indeed have a strong understand-
ing of the system they were operating, such that human
intervention was possible. The examples provided in pre-
dictive policing come down to inappropriate automation
of Steps 2 and/or 3. Certainly, if bias is present in current
policing data sets, we can expect that bias to propagate
through to analyses derived from those data (failure of au-
tomation in Step 2). Moreover, recent research in the area
has lead to the idea that “default” criteria used to train
prediction algorithms (e.g., based purely on predictive ac-
curacy) are not necessarily appropriate for the stated end
(failure of automation in Step 3) (Corbett-Davies et al.,
2017, Kusner et al., 2017). Finally, the study of health
plan disenrollment and suicide risk is another example of
the failure of automation in Step 2, where the observed
data were inappropriately linked to the causal model.

In summary, in the setting of confirmatory analysis, we
believe that opportunities for full automation are, at least

for the time being, rather limited. However, automation
is absolutely essential in the estimation stage in order to
deliver accurate, unbiased and reproducible inferences.
Looking to the future, further automation of the scien-
tific process will likely require new artificial intelligence
technologies that are capable of more appropriately adju-
dicating cause and effect (i.e., better automation of Steps
1 and 2, Hartnett, 2018).

We turn now to exploratory data analysis, where it is
more natural to “let the data ask the questions.” In some
settings, data are quite rich, but we lack a basic under-
standing of what the interesting questions might be. For
example, in the intensive care unit, myriad measurements
are made on patients in real time: blood pressure moni-
toring, heart rate monitoring, oxygen saturation, level of
intravenous drug administration, etc. Some health out-
comes, such as sepsis, are so poorly understood that col-
laborators often ask open-ended questions such as, “Can
we use the data to determine what variables are important
in this setting?” In these instances, science has not pro-
gressed far enough to provide testable hypotheses; nev-
ertheless, we should like to learn something from such a
rich source of data. At the very least, we can hope to gen-
erate hypotheses that inform the next generation of confir-
matory studies. This has motivated our developments per-
taining to data-adaptive target parameters, which provide
a formal framework for using data to learn what ques-
tions may be interesting to ask, while simultaneously pro-
viding an answer to that question in the form of an es-
timated association or effect (van der Laan and Luedtke,
2015, Hubbard, Kherad-Pajouh and van der Laan, 2016,
Hubbard, Kennedy and van der Laan, 2018). However,
even this process requires a human in the loop to provide
the class of questions from which the “most interesting”
questions are chosen based on the data.

To conclude, in the modern Big Data era and at a time
when artificial intelligence/machine learning are at a crest
of enthusiasm, Drs. Shortreed and Moodie pose important
questions as to how much of the scientific process can re-
liably be turned over to automation. In our opinion, for
the time being, the answer is relatively little. Neverthe-
less, automation at the point of execution of a prespecified
analysis plan is fundamental to the very notion of frequen-
tist statistics and must be emphasized to draw robust and
reproducible scientific conclusions from data.
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