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Fano’s Inequality for Random Variables
Sébastien Gerchinovitz, Pierre Ménard and Gilles Stoltz

Abstract. We extend Fano’s inequality, which controls the average proba-
bility of events in terms of the average of some f -divergences, to work with
arbitrary events (not necessarily forming a partition) and even with arbitrary
[0,1]-valued random variables, possibly in continuously infinite number. We
provide two applications of these extensions, in which the consideration of
random variables is particularly handy: we offer new and elegant proofs
for existing lower bounds, on Bayesian posterior concentration (minimax or
distribution-dependent) rates and on the regret in nonstochastic sequential
learning.

Key words and phrases: Multiple-hypotheses testing, lower bounds, infor-
mation theory, Bayesian posterior concentration.

1. INTRODUCTION

Fano’s inequality is a popular information-theoretical
result that provides a lower bound on worst-case error
probabilities in multiple-hypotheses testing problems. It
has important consequences in information theory (Cover
and Thomas, 2006) and related fields. In mathematical
statistics, it has become a key tool to derive lower bounds
on minimax (worst-case) rates of convergence for various
statistical problems such as nonparametric density esti-
mation, regression and classification (see, e.g., Tsybakov,
2009, Massart, 2007).

Multiple variants of Fano’s inequality have been de-
rived in the literature. They can handle a finite, countable
or even continuously infinite number of hypotheses. De-
pending on the community, it has been stated in various
ways. In this article, we focus on statistical versions of
Fano’s inequality. For instance, its most classical version
states that for all sequences of N ≥ 2 probability distribu-
tions P1, . . . ,PN on the same measurable space (�,F),
and all events A1, . . . ,AN forming a partition of �,

1

N

N∑
i=1

Pi (Ai) ≤
1
N

infQ
∑N

i=1 KL(Pi ,Q) + ln(2)

ln(N)
,
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where the infimum in the right-hand side is over all prob-
ability distributions Q on (�,F). The link to multiple-
hypotheses testing is by considering events of the form
Ai = {θ̂ = i}, where θ̂ is an estimator of θ . Lower bounds
on the average of the Pi (θ̂ �= i) are then obtained.

Several extensions to more complex settings were de-
rived in the past. For example, Han and Verdú (1994)
addressed the case of countably infinitely many proba-
bility distributions, while Duchi and Wainwright (2013)
and Chen, Guntuboyina and Zhang (2016) further gener-
alized Fano’s inequality to continuously infinitely many
distributions; see also Aeron, Saligrama and Zhao (2010).
Gushchin (2003) extended Fano’s inequality in two other
directions, first by considering [0,1]-valued random vari-
ables Zi such that Z1 + · · · + ZN = 1, instead of the
special case Zi = 1Ai

, and second, by considering f -
divergences. All these extensions, as well as others re-
called in Section 7, provide a variety of tools that adapt
nicely to the variety of statistical problems.

Content and Outline of This Article

In this article, we first revisit and extend Fano’s in-
equality and then provide new applications. More pre-
cisely, Section 2 recalls the definition of f -divergences
and states our main ingredient for our extended Fano’s
inequality, namely, a data-processing inequality with ex-
pectations of random variables. The short Section 3 is a
pedagogical version of the longer Section 4, where we
explain and illustrate our two-step methodology to estab-
lish new versions of Fano’s inequality: a Bernoulli re-
duction is followed by careful lower bounds on the f -
divergences between two Bernoulli distributions. In par-
ticular, we are able to extend Fano’s inequality to both
continuously many distributions Pθ and arbitrary events
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Aθ that do not necessarily form a partition or to arbi-
trary [0,1]-valued random variables Zθ that are not re-
quired to sum up (or integrate) to 1. We also point out that
the alternative distribution Q could vary with θ . We then
move on in Section 5 to our main new statistical applica-
tions, illustrating in particular that it is handy to be able
to consider random variables not necessarily summing up
to 1. The two main such applications deal with Bayesian
posterior concentration lower bounds and a regret lower
bound in nonstochastic sequential learning. (The latter ap-
plication, however, could be obtained by the extension
by Gushchin, 2003.) Section 6 presents two other applica-
tions which—perhaps surprisingly—follow from the spe-
cial case N = 1 in Fano’s inequality. One of these ap-
plications is about distribution-dependent lower bounds
on Bayesian posterior concentration (elaborating on re-
sults by Hoffmann, Rousseau and Schmidt-Hieber, 2015).
The end of the article provides a review of the literature
in Section 7; it explains, in particular, that the Bernoulli
reduction lying at the heart of our analysis was already
present, at various levels of clarity, in earlier works. Fi-
nally, Section 8 provides new and simpler proofs of some
important lower bounds on the Kullback–Leibler diver-
gence, the main contributions being a short and enlighten-
ing proof of the refined Pinsker’s inequality by Ordentlich
and Weinberger (2005), and a sharper Bretagnolle and
Huber (1978, 1979) inequality.

2. DATA-PROCESSING INEQUALITY WITH
EXPECTATIONS OF RANDOM VARIABLES

This section collects the definition of and some well-
known results about f -divergences, a special case of
which is given by the Kullback–Leibler divergence. It
also states a recent and less known result, called the data-
processing inequality with expectations of random vari-
ables; it will be at the heart of the derivation of our new
Fano’s inequality for random variables.

2.1 Kullback–Leibler Divergence

Let P,Q be two probability distributions on the same
measurable space (�,F). We write P � Q to indicate
that P is absolutely continuous with respect to Q. The
Kullback–Leibler divergence KL(P,Q) is defined by

KL(P,Q) =
⎧⎪⎨⎪⎩
∫
�

ln
(

dP

dQ

)
dP if P�Q;

+∞ otherwise.

We write Ber(p) for the Bernoulli distribution with pa-
rameter p. We also use the usual measure-theoretic con-
ventions in R ∪ {+∞}; in particular 0 × (+∞) = 0 and
1/0 = +∞, as well as 0/0 = 0. We also set ln(0) = −∞
and 0 ln(0) = 0.

The Kullback–Leibler divergence function kl between
Bernoulli distributions equals, for all (p, q) ∈ [0,1]2,

kl(p, q)
def= KL

(
Ber(p),Ber(q)

)
= p ln

(
p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
.

Kullback–Leibler divergences are actually a special
case of f -divergences with f (x) = x lnx; see Csiszár
(1963), Ali and Silvey (1966) and Gushchin (2003) for
further details.

2.2 f -Divergences

Let f : (0,+∞) → R be any convex function satisfy-
ing f (1) = 0. By convexity, we can define

f (0)
def= lim

t↓0
f (t) ∈ R∪ {+∞};

the extended function f : [0,+∞) → R ∪ {+∞} is still
convex.

Before we may actually state the definition of f -
divergences, we recall the definition of the maximal slope
Mf of a convex function f and provide notation for the
Lebesgue decomposition of measures.

Maximal slope. For any x > 0, the limit

lim
t→+∞

f (t) − f (x)

t − x
= sup

t>0

f (t) − f (x)

t − x
∈ [0,+∞]

exists since (by convexity) the slope (f (t) − f (x))/(t −
x) is nondecreasing as t increases. Besides, this limit does
not depend on x and equals

Mf
def= lim

t→+∞
f (t)

t
∈ (−∞,+∞],

which thus represents the maximal slope of f . A useful
inequality following from the two equations above with
t = x + y is

∀x > 0, y > 0,
f (x + y) − f (x)

y
≤ Mf .

Put differently,

(2.1) ∀x ≥ 0, y ≥ 0, f (x + y) ≤ f (x) + yMf ,

where the extension to y = 0 is immediate and the one to
x = 0 follows by continuity of f on (0,+∞), which itself
follows from its convexity.

Lebesgue decomposition of measures. We recall that �
denotes the absolute continuity between measures and we
let ⊥ denote the fact that two measures are singular. For
distributions P and Q defined on the same measurable
space (�,F), the Lebesgue decomposition of P with re-
spect to Q is denoted by

P= Pac + Psing

where Pac �Q and Psing⊥Q,
(2.2)



180 S. GERCHINOVITZ, P. MÉNARD AND G. STOLTZ

so that Pac and Psing are both sub-probabilities (positive
measures with total mass smaller than or equal to 1) and,
by definition,

dP

dQ
= dPac

dQ
.

Definition of f -divergences. The existence of the in-
tegral in the right-hand side of the definition below fol-
lows from the general form of Jensen’s inequality stated in
Lemma C.2 (Appendix C) with ϕ = f and C = [0,+∞).

DEFINITION 1. Given a convex function f : (0,

+∞) → R satisfying f (1) = 0, the f -divergence
Divf (P,Q) between two probability distributions on the
same measurable space (�,F) is defined as

(2.3) Divf (P,Q) =
∫
�

f

(
dP

dQ

)
dQ+ Psing(�)Mf .

Jensen’s inequality of Lemma C.2, together with (2.1),
also indicates that Divf (P,Q) ≥ 0. Indeed,∫

�
f

(
dP

dQ

)
dQ ≥ f

(∫
�

dP

dQ
dQ
)

= f
(
Pac(�)

)
,

so that by (2.1),

Divf (P,Q) ≥ f
(
Pac(�)

)+ Psing(�)Mf

≥ f
(
Pac(�) + Psing(�)

)= f (1) = 0.

Concrete and important examples of f -divergences,
such as the Hellinger distance and the χ2-divergence,
are discussed in details in Section 4. The Kullback–
Leibler divergence corresponds to Divf with the func-
tion f : x → x ln(x). We have Mf = +∞ for the
Kullback–Leibler and χ2-divergences, while Mf = 1 for
the Hellinger distance.

2.3 The Data-Processing Inequality and Two Major
Consequences

The data-processing inequality (also called contraction
of relative entropy in the case of the Kullback–Leibler di-
vergence) indicates that transforming the data at hand can
only reduce the ability to distinguish between two proba-
bility distributions.

LEMMA 2.1 (Data-processing inequality). Let P and
Q be two probability distributions on the same measur-
able space (�,F), and let X be any random variable on
(�,F). Denote by PX and QX the associated pushfor-
ward measures (the laws of X under P and Q). Then,

Divf

(
PX,QX)≤ Divf (P,Q).

COROLLARY 2.2 (Data-processing inequality with ex-
pectations of random variables). Let P and Q be two
probability distributions on the same measurable space

(�,F), and let X be any random variable on (�,F) tak-
ing values in [0,1]. Denote by EP[X] and EQ[X] the ex-
pectations of X under P and Q respectively. Then,

divf

(
EP[X],EQ[X])≤ Divf (P,Q),

where divf (p, q) = Divf (Ber(p),Ber(q)) denotes the f -
divergence between Bernoulli distributions with respec-
tive parameters p and q .

COROLLARY 2.3 (Joint convexity of Divf ). All f -
divergences Divf are jointly convex, that is, for all prob-
ability distributions P1,P2 and Q1,Q2 on the same mea-
surable space (�,F), and all λ ∈ (0,1),

Divf

(
(1 − λ)P1 + λP2, (1 − λ)Q1 + λQ2

)
≤ (1 − λ)Divf (P1,Q1) + λDivf (P2,Q2).

Lemma 2.1 and Corollary 2.3 are folklore knowledge.
However, for the sake of self-completeness, we provide
complete and elementary proofs thereof in the extended
version of this article (see Appendix D). The proof of
Lemma 2.1 is extracted from Ali and Silvey (1966), Sec-
tion 4.2 (see also Pardo (2006), Proposition 1.2), while
we derive Corollary 2.3 as an elementary consequence of
Lemma 2.1 applied to an augmented probability space.
These proof techniques do not seem to be well known;
indeed, in the literature many proofs of the elementary
properties above for the Kullback–Leibler divergence fo-
cus on the discrete case (Cover and Thomas, 2006) or use
the duality formula for the Kullback–Leibler divergence
(Massart, 2007 or Boucheron, Lugosi and Massart, 2013,
in particular Exercise 4.10 therein).

On the contrary, Corollary 2.2 is a recent though el-
ementary result, proved in Garivier, Ménard and Stoltz
(2019) for Kullback–Leibler divergences. The proof read-
ily extends to f -divergences.

PROOF OF COROLLARY 2.2. We augment the un-
derlying measurable space into � × [0,1], where [0,1]
is equipped with the Borel σ -algebra B([0,1]) and the
Lebesgue measure m. We denote by P ⊗ m and Q ⊗ m

the product distributions of P and m, Q and m. We write
the Lebesgue decomposition P = Pac + Psing of P with
respect to Q, and deduce from it the Lebesgue decom-
position of P ⊗ m with respect to Q ⊗ m: the absolutely
continuous part is given by Pac ⊗m, with density

(ω, x) ∈ � × [0,1] −→ d(Pac ⊗m)

d(Q⊗m)
(ω, x) = dPac

dQ
(ω),

while the singular part is given by Psing ⊗m, a subproba-
bility with total mass Psing(�). In particular,

Divf (P⊗m,Q⊗m) = Divf (P,Q).

Now, for all events E ∈ F⊗B([0,1]), the data-processing
inequality (Lemma 2.1) used with the indicator function



FANO’S INEQUALITY FOR RANDOM VARIABLES 181

X = 1E ensures that

Divf (P⊗m,Q⊗m)

≥ Divf

(
(P⊗m)1E , (Q⊗m)1E

)
= divf

(
(P⊗m)(E), (Q⊗m)(E)

)
,

where the final equality is by mere definition of divf

as the f -divergence between Bernoulli distributions. The
proof is concluded by noting that for the choice of E =
{(ω, x) ∈ � × [0,1] : x ≤ X(ω)}, Tonelli’s theorem en-
sures that

(P⊗m)(E) =
∫
�

(∫
[0,1]

1{x≤X(ω)} dm(x)

)
dP(ω)

= EP[X]
and, similarly, (Q⊗m)(E) = EQ[X]. �

3. HOW TO DERIVE A FANO-TYPE INEQUALITY: AN
EXAMPLE

In this section, we explain on an example the methodol-
ogy to derive Fano-type inequalities. We will present the
generalization of the approach and the resulting bounds
in Section 4, but the proof below already contains the two
key arguments: a reduction to Bernoulli distributions, and
a lower bound on the f -divergence between Bernoulli
distributions. For the sake of concreteness, we focus on
the Kullback–Leibler divergence in this section. We recall
that we will discuss how novel (or not novel) our results
and approaches are in Section 7.

PROPOSITION 3.1. Given an underlying measurable
space, for all probability pairs Pi ,Qi and all events Ai

(not necessarily disjoint), where i ∈ {1, . . . ,N}, with 0 <
1
N

∑N
i=1 Qi (Ai) < 1, we have

1

N

N∑
i=1

Pi (Ai) ≤
1
N

∑N
i=1 KL(Pi ,Qi) + ln(2)

− ln( 1
N

∑N
i=1 Qi(Ai))

.

In particular, if N ≥ 2 and the Ai form a partition,

1

N

N∑
i=1

Pi (Ai) ≤
1
N

infQ
∑N

i=1 KL(Pi ,Q) + ln(2)

ln(N)
.

PROOF. Our first step is to reduce the problem to
Bernoulli distributions. Using first the joint convexity
of the Kullback–Leibler divergence (Corollary 2.3), and
second the data-processing inequality with the indicator
functions X = 1Ai

(Lemma 2.1), we get

kl

(
1

N

N∑
i=1

Pi (Ai),
1

N

N∑
i=1

Qi(Ai)

)

≤ 1

N

N∑
i=1

kl
(
Pi (Ai),Qi(Ai)

)
(3.1)

≤ 1

N

N∑
i=1

KL(Pi ,Qi).

Therefore, we have kl(p, q) ≤ K with

p = 1

N

N∑
i=1

Pi (Ai), q = 1

N

N∑
i=1

Qi (Ai),

K = 1

N

N∑
i=1

KL(Pi ,Qi).

(3.2)

Our second and last step is to lower bound kl(p, q) to
extract an upper bound on p. Noting that p ln(p) + (1 −
p) ln(1−p) ≥ − ln(2), we have, by definition of kl(p, q),

kl(p, q) ≥ p ln(1/q) − ln(2)

thus p ≤ kl(p, q) + ln(2)

ln(1/q)
,

(3.3)

where q ∈ (0,1) by assumption. Substituting the upper
bound kl(p, q) ≤ K in (3.3) concludes the proof. �

4. VARIOUS FANO-TYPE INEQUALITIES, WITH THE
SAME TWO INGREDIENTS

We extend the approach of Section 3 and derive a broad
family of Fano-type inequalities, which will be of the
form

p ≤ ψ(q,K),

where the average quantities p, q and K are described in
Section 4.1 (first ingredient) and where the functions ψ

are described in Section 4.2 (second ingredient). The sim-
plest example that we considered in Section 3 corresponds
to ψ(q,K) = (K + ln(2))/ ln(1/q) and

p = 1

N

N∑
i=1

Pi (Ai), q = 1

N

N∑
i=1

Qi (Ai),

K = 1

N

N∑
i=1

KL(Pi ,Qi).

We address here the more general cases where the finite
averages are replaced with integrals over any measurable
space 
 and where the indicator functions 1Ai

are re-
placed with arbitrary [0,1]-valued random variables Zθ ,
where θ ∈ 
.

We recall that the novelty (or lack of novelty) of our re-
sults will be discussed in detail in Section 7; of particular
interest therein is the discussion of the (lack of) novelty
of our first ingredient, namely the reduction to Bernoulli
distributions.

4.1 Reduction to Bernoulli Distributions

As in Section 3, we can resort to the data-processing
inequality (Lemma 2.1) to lower bound any f -divergence
by that of suitably chosen Bernoulli distributions. We
present three such reductions, in increasing degree of gen-
erality. We only indicate how to prove the first one, since
they are all similar.
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Countably many distributions. We consider some un-
derlying measurable space, countably many pairs of prob-
ability distributions Pi ,Qi on this space, not necessarily
disjoint events Ai , all indexed by i ∈ {1,2, . . .}, as well as
a convex combination α = (α1, α2, . . .). The latter can be
thought of as a prior distribution. The inequality reads

divf

(∑
i≥1

αiPi (Ai),
∑
i≥1

αiQi(Ai)

)

≤∑
i≥1

αidivf

(
Pi (Ai),Qi(Ai)

)
(4.1)

≤∑
i≥1

αiDivf (Pi ,Qi).

The second inequality of (4.1) follows from the data-
processing inequality (Lemma 2.1) by considering the in-
dicator functions X = 1Ai

. For the first inequality, we
resort to a general version of Jensen’s inequality stated
in Lemma C.2 (Appendix C), by considering the con-
vex function ϕ = divf (Corollary 2.3) on the convex set
C = [0,1]2, together with the probability measure

μ =∑
i

αiδ(Pi (Ai),Qi (Ai)),

where δ(x,y) denotes the Dirac mass at (x, y) ∈ R2.
Distributions indexed by a possibly continuous set. Up

to measurability issues (that are absent in the countable
case), the reduction above immediately extends to the
case of statistical models Pθ ,Qθ and not necessarily dis-
joint events Aθ indexed by a measurable parameter space
(
,G), equipped with a prior probability distribution ν

on 
. We assume that

θ ∈ 
 −→ (
Pθ (Aθ ),Qθ (Aθ )

)
and

θ ∈ 
 −→ Divf (Pθ ,Qθ )

are G-measurable and get the reduction

divf

(∫


Pθ (Aθ )dν(θ),

∫


Qθ (Aθ )dν(θ)

)
≤
∫



divf

(
Pθ (Aθ ),Qθ (Aθ )

)
dν(θ)(4.2)

≤
∫



Divf (Pθ ,Qθ )dν(θ).

Random variables. In the reduction above, it was un-
necessary that the sets Aθ form a partition or even be
disjoint. It is therefore not surprising that it can be gen-
eralized by replacing the indicator functions 1Aθ with ar-
bitrary [0,1]-valued random variables Zθ . We denote the
expectations of the latter with respect to Pθ and Qθ by
EPθ

and EQθ
and assume that

θ ∈ 
 −→ (
EPθ

[Zθ ],EQθ
[Zθ ]) and

θ ∈ 
 −→ Divf (Pθ ,Qθ )

are G-measurable. The reduction reads in this case

divf

(∫


EPθ

[Zθ ]dν(θ),

∫


EQθ

[Zθ ]dν(θ)

)
≤
∫



divf

(
EPθ

[Zθ ],EQθ
[Zθ ])dν(θ)(4.3)

≤
∫



Divf (Pθ ,Qθ )dν(θ),

where the first inequality relies on convexity of divf and
on Jensen’s inequality, and the second inequality follows
from the data-processing inequality with expectations of
random variables (Lemma 2.2).

4.2 Any Lower Bound on divf Leads to a Fano-Type
Inequality

The section above indicates that after the reduction to
the Bernoulli case, we get inequations of the form (p is
usually the unknown)

divf (p, q) ≤ D,

where D is an average of f -divergences, and p and q

are averages of probabilities of events or expectations of
[0,1]-valued random variables. We thus proceed by lower
bounding the divf function. The lower bounds are id-
iosyncratic to each f -divergence and we start with the
most important one, namely, the Kullback–Leibler diver-
gence.

Lower bounds on kl. The most classical bound was al-
ready used in Section 3: for all p ∈ [0,1] and q ∈ (0,1),

kl(p, q) ≥ p ln(1/q) − ln(2),

thus p ≤ kl(p, q) + ln(2)

ln(1/q)
.

(4.4)

It is well known that this bound can be improved by re-
placing the term ln(2) with ln(2 − q): for all p ∈ [0,1]
and q ∈ (0,1),

kl(p, q) ≥ p ln(1/q) − ln(2 − q),

thus p ≤ kl(p, q) + ln(2 − q)

ln(1/q)
.

(4.5)

This leads to a nontrivial bound even if q = 1/2 (as is the
case in some applications). A (novel) consequence of this
bound is that

(4.6) p ≤ 0.21 + 0.79q + kl(p, q)

ln(1/q)
.

The improvement (4.5) is a consequence of, for example,
a convexity inequality, and its proof and the one for (4.6)
can be found in Section 8.1.

The next and final bound makes a connection between
Pinsker’s and Fano’s inequalities: on the one hand, it is a
refined Pinsker’s inequality and on the other hand, it leads
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to a bound on p of the same flavor as (4.4)–(4.6). Namely,
for all p ∈ [0,1] and q ∈ (0,1),

kl(p, q) ≥ max
{

ln
(

1

q

)
,2
}
(p − q)2,

thus p ≤ q +
√

kl(p, q)

max{ln(1/q),2} .
(4.7)

The first inequality was stated and proved by Ordentlich
and Weinberger (2005), the second is a novel but straight-
forward consequence of it. We provide their proofs and
additional references in Section 8.2.

Lower bound on divf for the χ2-divergence. This case
corresponds to f (x) = x2 − 1. The associated divergence
equals +∞ when P ��Q, and when P �Q,

χ2(P,Q) =
∫
�

(
dP

dQ

)2
dQ− 1.

A direct calculation and the usual measure-theoretic con-
ventions entail the following simple lower bound: for all
(p, q) ∈ [0,1]2,

χ2(Ber(p),Ber(q)
)

= (p − q)2

q(1 − q)
≥ (p − q)2

q
,

thus p ≤ q +
√

qχ2
(
Ber(p),Ber(q)

)
.

(4.8)

Lower bound on divf for the Hellinger distance.
This case corresponds to f (x) = (

√
x − 1)2, for which

Mf = 1. The associated divergence equals, when P�Q,

H 2(P,Q) =
∫
�

(√
dP

dQ
− 1

)2
dQ

= 2
(

1 −
∫
�

√
dP

dQ
dQ
)

and always lies in [0,2]. A direct calculation indicates that
for all p ∈ [0,1] and q ∈ (0,1),

h2(p, q)
def= H 2(Ber(p),Ber(q)

)
= 2

(
1 − (√

pq +
√

(1 − p)(1 − q)
))

,

and further direct calculations in the cases q = 0 and q =
1 show that this formula remains valid in these cases. To
get a lower bound on h2(p, q), we proceed as follows.
The Cauchy–Schwarz inequality indicates that

√
pq +

√
(1 − q)(1 − p)

≤
√(

p + (1 − q)
)(

q + (1 − p)
)

=
√

1 − (p − q)2,

or put differently, that h2(p, q) ≥ 2(1 −
√

1 − (p − q)2),
thus

p ≤ q +
√

1 − (
1 − h2(p, q)/2

)2
= q +

√
h2(p, q)

(
1 − h2(p, q)/4

)
,

(4.9)

which is one of Le Cam’s inequalities. A slightly sharper
but less readable bound was exhibited by Guntuboyina
(2011), Example II.6, and is provided, for the sake of
completeness, in an extended version of this article; see
Appendix D.

4.3 Examples of Combinations

The combination of (4.2) and (4.4) yields a continuous
version of Fano’s inequality. (We discard again all mea-
surability issues.)

LEMMA 4.1. We consider a measurable space (
,E)

equipped with a probability distribution ν. Given an un-
derlying measurable space (�,F), for all two collections
Pθ ,Qθ , of probability distributions on this space and all
collections of events Aθ of (�,F), where θ ∈ 
, with

0 <

∫


Qθ (Aθ )dν(θ) < 1,

we have ∫


Pθ (Aθ )dν(θ)

≤
∫

 KL(Pθ ,Qθ )dν(θ) + ln(2)

− ln(
∫

Qθ (Aθ )dν(θ))

.

The combination of (4.2), used with a uniform distribu-
tion ν on N points, and (4.7) ensures the following Fano-
type inequality for finitely many random variables, whose
sum does not need to be 1. It will be used in our second
application, in Section 5.2.

LEMMA 4.2. Given an underlying measurable space,
for all probability pairs Pi ,Qi and for all [0,1]-valued
random variables Zi defined on this measurable space,
where i ∈ {1, . . . ,N}, with

0 <
1

N

N∑
i=1

EQi
[Zi] < 1,

we have

1

N

N∑
i=1

EPi
[Zi]

≤ 1

N

N∑
i=1

EQi
[Zi] +

√√√√ 1
N

∑N
i=1 KL(Pi ,Qi)

− ln( 1
N

∑N
i=1 EQi

[Zi])
.

In particular, if N ≥ 2 and Z1 + · · · + ZN = 1 a.s., then

1

N

N∑
i=1

EPi
[Zi] ≤ 1

N
+
√√√√ 1

N
infQ

∑N
i=1 KL(Pi ,Q)

ln(N)
.
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For the χ2-divergence now, the combination of, for ex-
ample, (4.1) in the finite and uniform case and (4.8) leads
to the following inequality.

LEMMA 4.3. Given an underlying measurable space,
for all probability pairs Pi ,Qi and all events Ai (not
necessarily disjoint), where i ∈ {1, . . . ,N}, with 0 <
1
N

∑N
i=1 Qi(Ai) < 1, we have

1

N

N∑
i=1

Pi (Ai)

≤ 1

N

N∑
i=1

Qi (Ai)

+
√√√√ 1

N

N∑
i=1

Qi(Ai)

√√√√ 1

N

N∑
i=1

χ2(Pi ,Qi).

In particular, if N ≥ 2 and the Ai form a partition,

1

N

N∑
i=1

Pi (Ai) ≤ 1

N
+ 1√

N

√√√√ 1

N
inf
Q

N∑
i=1

χ2(Pi ,Q).

Similarly, for the Hellinger distance, the simplest re-
duction (4.1) in the finite and uniform case together with
the lower bound (4.9) yields the following bound.

LEMMA 4.4. Given an underlying measurable space,
for all probability pairs Pi ,Qi and all events Ai (not
necessarily disjoint), where i ∈ {1, . . . ,N}, with 0 <
1
N

∑N
i=1 Qi(Ai) < 1, we have

1

N

N∑
i=1

Pi (Ai)

≤ 1

N

N∑
i=1

Qi(Ai)

+
√√√√ 1

N

N∑
i=1

H 2(Pi ,Qi)

√√√√1 − 1

4N

N∑
i=1

H 2(Pi ,Qi).

In particular, if N ≥ 2 and the Ai form a partition,

1

N

N∑
i=1

Pi (Ai)

≤ 1

N
+ inf

Q

√√√√ 1

N

N∑
i=1

H 2(Pi ,Q)

×
√√√√1 − 1

4N

N∑
i=1

H 2(Pi ,Q)

≤ 1

N
+ inf

Q

√√√√ 1

N

N∑
i=1

H 2(Pi ,Q).

4.4 Comments on These Bounds

Section A in Appendix discusses the sharpness of the
bounds obtained above, for the case of the Kullback–
Leibler divergence.

Section D provides a pointer to an extended version of
this article where the choice of a good constant alternative
distribution Q is studied. The examples of bounds derived
in Section 4.3 show indeed that when the Ai form a par-
tition, the upper bounds feature an average f -divergence
of the form

1

N
inf
Q

N∑
i=1

Divf (Pi ,Q)

and one may indeed wonder what Q should be chosen
and what bound can be achieved. Section D points to a
discussion of these matters.

5. MAIN APPLICATIONS

We present two new applications of Fano’s inequality,
with [0,1]-valued random variables Zi or Zθ . The topics
covered are:

– Bayesian posterior concentration rates;
– robust sequential learning (prediction of individual se-

quences) in the case of sparse losses.

As can be seen below, the fact that we are now able to
consider arbitrary [0,1]-valued random variables Zθ on
a continuous parameter space 
 makes the proof of the
Bayesian posterior concentration lower bound quite sim-
ple.

Two more applications will also be presented in Sec-
tion 6; they have a different technical flavor, as they rely
on only one pair of distributions, that is, N = 1.

5.1 Lower Bounds on Bayesian Posterior
Concentration Rates

In the next paragraphs we show how our continuous
Fano’s inequality can be used in a simple fashion to derive
lower bounds for posterior concentration rates.

Setting and Bayesian terminology. We consider the fol-
lowing density estimation setting: we observe a sample
of independent and identically distributed random vari-
ables X1:n = (X1, . . . ,Xn) drawn from a probability dis-
tribution Pθ on (X ,F), with a fixed but unknown θ ∈ 
.
We assume that the measurable parameter space (
,G)

is equipped with a prior distribution π and that all Pθ ′
have a density pθ ′ with respect to some reference mea-
sure m on (X ,F). We also assume that (x, θ ′) → pθ ′(x)

is F ⊗ G-measurable. We can thus consider the transition
kernel (x1:n,A) → Pπ(A|x1:n) defined for all x1:n ∈ X n

and all sets A ∈ G by

(5.1) Pπ(A|x1:n) =
∫
A

∏n
i=1 pθ ′(xi)dπ(θ ′)∫




∏n
i=1 pθ ′(xi)dπ(θ ′)



FANO’S INEQUALITY FOR RANDOM VARIABLES 185

if the denominator lies in (0,+∞); if it is null or infi-
nite, we set, for example, Pπ(A|x1:n) = π(A). The result-
ing random measure Pπ(·|X1:n) is known as the posterior
distribution.

Let � : 
×
 →R+ be a measurable loss function that
we assume to be a pseudo-metric.1 A posterior concentra-
tion rate with respect to � is a sequence (εn)n≥1 of positive
real numbers such that, for all θ ∈ 
,

Eθ

[
Pπ

(
θ ′ : �(θ ′, θ

)≤ εn|X1:n
)]−→ 1

as n → +∞,

where Eθ denotes the expectation with respect to X1:n
where each Xj has the Pθ law. The above convergence
guarantee means that, as the size n of the sample in-
creases, the posterior mass concentrates in expectation on
an εn-neighborhood of the true parameter θ . Several vari-
ants of this definition exist (e.g., convergence in probabil-
ity or almost surely; or εn that may depend on θ ). Though
most of these definitions can be handled with the tech-
niques provided below, we only consider this one for the
sake of conciseness.

Minimax posterior concentration rate. As our sequence
(εn)n≥1 does not depend on the specific θ ∈ 
 at hand,
we may study uniform posterior concentration rates: se-
quences (εn)n≥1 such that

inf
θ∈


Eθ

[
Pπ

(
θ ′ : �(θ ′, θ

)≤ εn|X1:n
)]−→ 1

as n → +∞.
(5.2)

The minimax posterior concentration rate is given by a
sequence (εn)n≥1 such that (5.2) holds for some prior π

while there exists a constant γ ∈ (0,1) such that for all
priors π ′ on 
,

lim sup
n→+∞

inf
θ∈


Eθ

[
Pπ ′

(
θ ′ : �(θ ′, θ

)≤ γ εn|X1:n
)]

< 1.

We focus on proving the latter statement and provide a
general technique to do so.

PROPOSITION 5.1 (A posterior concentration lower
bound in the finite-dimensional Gaussian model). Let
d ≥ 1 be the ambient dimension, n ≥ 1 the sample size,
and σ > 0 the standard deviation. Assume we observe
an n-sample X1:n = (X1, . . . ,Xn) distributed according
to N (θ, σ 2Id) for some unknown θ ∈ Rd . Let π ′ be any
prior distribution on Rd . Then the posterior distribution
Pπ ′(·|X1:n) defined in (5.1) satisfies, for the Euclidean
loss �(θ ′, θ) = ‖θ ′ − θ‖2 and for εn = (σ/8)

√
d/n,

inf
θ∈Rd

Eθ

[
Pπ ′

(
θ ′ : ∥∥θ ′ − θ

∥∥
2 ≤ εn|X1:n

)]≤ cd,

where (cd)d≥1 is a decreasing sequence such that c1 ≤
0.55, c2 ≤ 0.37, and cd → 0.21 as d → +∞.

1The only difference with a metric is that we allow �(θ, θ ′) = 0 for
θ �= θ ′.

This proposition indicates that the best possible poste-
rior concentration rate is at best σ

√
d/n up to a multi-

plicative constant; actually, this order of magnitude is the
best achievable posterior concentration rate, see, for ex-
ample, Le Cam and Yang (2000), Chapter 8.

There are at least two ways to prove the lower bound of
Proposition 5.1. A first one is to use a well-known con-
version of “good” Bayesian posteriors into “good” point
estimators, which indicates that lower bounds for point
estimation can be turned into lower bounds for posterior
concentration. For the sake of completeness, we recall this
conversion in Appendix B and provide a nonasymptotic
variant of Theorem 2.5 by Ghosal, Ghosh and van der
Vaart (2000).

The second method—followed in the proof below—is,
however, more direct. We use our most general contin-
uous Fano’s inequality with the random variables Zθ =
Pπ ′(θ ′ : ‖θ ′ − θ‖2 ≤ εn|X1:n) ∈ [0,1].

PROOF OF PROPOSITION 5.1. We may assume, with
no loss of generality, that the probability space on which
X1:n is defined is (Rd)n endowed with its Borel σ -field
and the probability measure Pθ = N (θ, σ 2)⊗n. Let ν

denote the uniform distribution on the Euclidean ball
B(0, ρεn) = {u ∈ Rd : ‖u‖2 ≤ ρεn} for some ρ > 1 to be
determined by the analysis. Then, by the continuous Fano
inequality in the form given by the combination of (4.3)
and (4.7), with Qθ = P0 = N (0, σ 2)⊗n, where 0 denotes
the null vector of Rd , and with the [0,1]-valued random
variables Zθ = Pπ ′(θ ′ : ‖θ ′ − θ‖2 ≤ εn|X1:n), we have

inf
θ∈Rd

Eθ [Zθ ] ≤
∫
B(0,ρεn)

Eθ [Zθ ]dν(θ)

≤
∫
B(0,ρεn)

E0[Zθ ]dν(θ)

(5.3)

+
√√√√∫

B(0,ρεn) KL(Pθ ,P0)dν(θ)

−ln
∫
B(0,ρεn)E0[Zθ ]dν(θ)

≤
(

1

ρ

)d

+
√

nρ2ε2
n/(2σ 2)

d lnρ
,

where the last inequality follows from (5.4) and (5.5)
below. First note that, by independence, KL(Pθ ,P0) =
nKL(N (θ, σ 2),N (0, σ 2)) = n‖θ‖2

2/(2σ 2), so that∫
B(0,ρεn)

KL(Pθ ,P0)dν(θ)

= n

2σ 2

∫
B(0,ρεn)

‖θ‖2
2 dν(θ)

≤ nρ2ε2
n

2σ 2 .

(5.4)

Second, using the Fubini–Tonelli theorem (twice) and the
definition of

Zθ = Pπ ′
(
θ ′ : ∥∥θ ′ − θ

∥∥
2 ≤ εn|X1:n

)
= Eθ ′∼Pπ ′ (·|X1:n)

[
1{‖θ ′−θ‖2≤εn}

]
,
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we can see that

q
def=
∫
B(0,ρεn)

E0[Zθ ]dν(θ)

= E0

[∫
B(0,ρεn)

Eθ ′∼Pπ ′ (·|X1:n)

[
1{‖θ ′−θ‖2≤εn}

]
dν(θ)

]

= E0

[
Eθ ′∼Pπ ′ (·|X1:n)

[∫
B(0,ρεn)

1{‖θ ′−θ‖2≤εn} dν(θ)

]]
(5.5)

= E0
[
Eθ ′∼Pπ ′ (·|X1:n)

[
ν
(
B
(
θ ′, εn

)∩ B(0, ρεn)
)]]

≤
(

1

ρ

)d

,

where to get the last inequality we used the fact that
ν(B(θ ′, εn) ∩ B(0, ρεn)) is the ratio of the volume of the
(possibly truncated) Euclidean ball B(θ ′, εn) of radius εn

and center θ ′ with the volume of the support of ν, namely,
the larger Euclidean ball B(0, ρεn), in dimension d .

The proof is then concluded by recalling that ρ > 1 was
a parameter of the analysis and by picking, for example,
εn = (σ/8)

√
d/n: by (5.4), we have

inf
θ∈Rd

Eθ

[
Pπ

(
θ ′ : ∥∥θ ′ − θ

∥∥
2 ≤ εn|X1:n

)]
= inf

θ∈Rd
Eθ [Zθ ]

≤ inf
ρ>1

{(
1

ρ

)d

+ ρ

8
√

2 lnρ

}
def= cd.

We can see that c1 ≤ 0.55 and c2 ≤ 0.37 via the respective
choices ρ = 5 and ρ = 3, while the fact that the limit is
smaller than (and actually equal to)

√
e/8 ≤ 0.21 follows

from the choice ρ = √
e.

Note that, when using (4.7) above, we implicitly as-
sumed that the quantity q in (5.5) lies in (0,1). The
fact that q < 1 follows directly from the upper bound
(1/ρ)d and from ρ > 1. Besides, the condition q > 0 is
met as soon as P0(Pπ ′(B(0, εn)|X1:n) > 0) > 0; indeed,
for θ ′ ∈ B(0, εn), we have ν(B(θ ′, εn) ∩ B(0, ρεn)) > 0
and thus q appears in the last equality of (5.5) as being
lower bounded by the expectation of a positive function
over a set with positive probability. If on the contrary
P0(Pπ ′(B(0, εn)|X1:n) > 0) = 0, then P0(Z0 > 0) = 0, so
that infθ Eθ [Zθ ] = E0[Z0] = 0, which immediately im-
plies the bound of Proposition 5.1. �

REMARK 1. Though the lower bound of Proposi-
tion 5.1 is only stated for the posterior distributions
Pπ ′(·|X1:n), it is actually valid for any transition kernel
Q(·|X1:n). This is because the proof above relies on gen-
eral information-theoretic arguments and does not use the
particular form of Pπ ′(·|X1:n). This is in the same spirit
as for minimax lower bounds for point estimation.

In Section 6.2, we derive another type of posterior con-
centration lower bound that is no longer uniform. More
precisely, we prove a distribution-dependent lower bound
that specifies how the posterior mass fails to concentrate
on εn-neighborhoods of θ for every θ ∈ 
.

5.2 Lower Bounds in Robust Sequential Learning
with Sparse Losses

We consider a framework of robust sequential learn-
ing called prediction of individual sequences. Its ori-
gins and core results are described in the monography
by Cesa-Bianchi and Lugosi (2006). In its simplest ver-
sion, a decision-maker and an environment play repeat-
edly as follows: at each round t ≥ 1, and simultane-
ously, the environment chooses a vector of losses �t =
(�1,t , . . . , �N,t ) ∈ [0,1]N while the decision-maker picks
an index It ∈ {1, . . . ,N}, possibly at random. Both play-
ers then observe �t and It . The decision-maker wants to
minimize her cumulative regret, the difference between
her cumulative loss and the cumulative loss associated
with the best constant choice of an index: for T ≥ 1,

RT =
T∑

t=1

�It ,t − min
k=1,...,N

T∑
t=1

�k,t .

In this setting, the optimal regret in the worst-case is of
the order of

√
T ln(N). Cesa-Bianchi et al. (1997) exhib-

ited an asymptotic lower bound of
√

T ln(N)/2, based on
the central limit theorem and on the fact that the expec-
tation of the maximum of N independent standard Gaus-
sian random variables is of the order of

√
ln(N). To do

so, they considered stochastic environments drawing in-
dependently the loss vectors �t according to a well-chosen
distribution.

Cesa-Bianchi, Lugosi and Stoltz (2005) extended this
result to a variant called label-efficient prediction, in
which loss vectors are observed upon choosing and with a
budget constraint: no more than m observations within T

rounds. They prove an optimal and nonasymptotic lower
bound on the regret of the order of T

√
ln(N)/m, based on

several applications of Fano’s inequality to deterministic
strategies of the decision-maker, and then, an application
of Fubini’s theorem to handle general, randomized, strate-
gies. Our reshuffled proof technique below shows that a
single application of Fano’s inequality to general strate-
gies would be sufficient there (details omitted).

Recently, Kwon and Perchet (2016) considered a set-
ting of sparse loss vectors, in which at each round at most
s of the N components of the loss vectors �t are different
from zero. They prove an optimal and asymptotic lower
bound on the regret of the order of

√
T s ln(N)/N , which

generalizes the result for the basic framework, in which
s = N . Their proof is an extension of the proof of Cesa-
Bianchi et al. (1997) and is based on the central limit the-
orem together with additional technicalities, for example,
the use of Slepian’s lemma to deal with some dependen-
cies arising from the sparsity assumption.

The aim of this section is to provide a short and ele-
mentary proof of this optimal asymptotic

√
T s ln(N)/N

bound. As a side result, our bound will even be nonasymp-
totic. However, for small values of T , given that s/N is
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small, picking components It uniformly at random en-
sures an expected cumulative loss thus an expected cu-
mulative regret less than sT /N . The latter is smaller than√

T s ln(N)/N for values of T of the order of N ln(N)/s.
This is why the bound below involves a minimum be-
tween quantities of the order of

√
T s ln(N)/N and sT /N ;

it matches the upper bounds on the regret that can be guar-
anteed and is therefore optimal.

The expectation in the statement below is with re-
spect to the internal randomization used by the decision-
maker’s strategy.

THEOREM 5.2. For all strategies of the decision-
maker, for all s ∈ {0, . . . ,N}, for all N ≥ 2, for all T ≥ 1,
there exists a fixed-in-advance sequence of loss vectors
�1, . . . , �T in [0,1]N that are each s-sparse such that

E[RT ] =
T∑

t=1

E[�It ,t ] − min
k=1,...,N

T∑
t=1

�k,t

≥ min
{

s

16N
T,

1

32

√
T

s

N
lnN

}
.

PROOF. The case s = 0 corresponds to instantaneous
losses �j,t that are all null, so that the regret is null as well.
Our lower bound holds in this case, but is uninteresting.
We therefore focus in the rest of this proof on the case
s ∈ {1, . . . ,N}.

We fix ε ∈ (0, s/(2N)) and consider, as Kwon and
Perchet (2016) did, independent and identically dis-
tributed loss vectors �t ∈ [0,1]N , drawn according to one
distribution among Pi , where 1 ≤ i ≤ N . Each distri-
bution Pi on [0,1]N is defined as the law of a random
vector L drawn in two steps as follows. We pick s com-
ponents uniformly at random among {1, . . . ,N}. Then,
the components k not picked are associated with zero
losses, Lk = 0. The losses Lk for picked components
k �= i are drawn according to a Bernoulli distribution with
parameter 1/2. If component i is picked, its loss Li is
drawn according to a Bernoulli distribution with parame-
ter 1/2 − εN/s. The loss vector L ∈ [0,1]N thus gener-
ated is indeed s-sparse. We denote by P T

i the T th product
distribution Pi ⊗· · ·⊗Pi . We will actually identify the un-
derlying probability and the law P T

i . Finally, we denote
the expectation under P T

i by Ei .
Now, under P T

i , the components �k,t of the loss vec-
tors are all distributed according to Bernoulli distribu-
tions, with parameters s/(2N) if k �= i and s/(2N) − ε

if k = i. The expected regret, where the expectation E is
with respect to the strategy’s internal randomization and
the expectation Ei is with respect to the random choice of

the loss vectors, is thus larger than

Ei

[
E[RT ]]
≥

T∑
t=1

Ei

[
E[�It ,t ]

]− min
k=1,...,N

T∑
t=1

Ei[�k,t ]

=
T∑

t=1

s

2N

(
1 − εEi

[
E
[
1{It=i}

]])− T

(
s

2N
− ε

)
= T ε

(
1 −Ei

[
E
[
Fi(T )

]])
,

(5.6)

where

Fi(T ) = 1

T

T∑
t=1

1{It=i}.

All in all, we copied almost word for word the (stan-
dard) beginning of the proof by Kwon and Perchet (2016),
whose first lower bound is exactly

sup
�1,...,�t

E[RT ]

≥ 1

N

N∑
i=1

Ei

[
E[RT ]]

≥ T ε

(
1 − 1

N

N∑
i=1

Ei

[
E
[
Fi(T )

]])
.

(5.7)

The main differences arise now: we replace a long asymp-
totic argument (based on the central limit theorem and the
study of the limit via Slepian’s lemma) by a single appli-
cation of Fano’s inequality.

We introduce the distribution Q on [0,1]N correspond-
ing to the same randomization scheme as for the Pi , ex-
cept that no picked component is favored and that all their
corresponding losses are drawn according to the Bernoulli
distribution with parameter 1/2. We also denote by P

the probability distribution that underlies the internal ran-
domization of the strategy. An application of Lemma 4.2
with Pi = P⊗ P T

i and Qi = P⊗ QT , using that F1(T ) +
· · · + FN(T ) = 1 and thus (1/N)

∑N
i=1 EQ[E[Fi(T )]] =

1/N , yields

1

N

N∑
i=1

Ei

[
E
[
Fi(T )

]]
(5.8)

≤ 1

N
+
√√√√ 1

N ln(N)

N∑
i=1

KL
(
P⊗ P T

i ,P⊗ QT
)
.

By independence, we get, for all i,

KL
(
P⊗ P T

i ,P⊗ QT )= KL
(
P T

i ,QT )
= T KL(Pi,Q).

(5.9)

We now show that

(5.10) KL(Pi,Q) ≤ s

N
kl
(

1

2
− ε

N

s
,

1

2

)
.
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Indeed, both Pi and Q can be seen as uniform convex
combinations of probability distributions of the follow-
ing form, indexed by the subsets of {1, . . . ,N} with s

elements and up to permutations of the Bernoulli distri-
butions in the products below (which does not change
the value of the Kullback–Leibler divergences between
them):(

N − 1
s − 1

)
distributions of the form (when i is picked)

Ber
(

1

2
− ε

N

s

)
⊗

s⊗
k=2

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0 and

s⊗
k=1

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0,

where δ0 denotes the Dirac mass at 0, and(
N − 1

s

)
distributions of the form (when i is not picked)

s⊗
k=1

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0 and

s⊗
k=1

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0.

Only the first set of distributions contributes to the
Kullback–Leibler divergence. By convexity of the Kul-
lback–Leibler divergence (Corollary 2.3), we thus get the
inequality

KL(Pi,Q) ≤
(N−1

s−1

)(N
s

) K̃ε,N,s = s

N
kl
(

1

2
− ε

N

s
,

1

2

)
,

where K̃ε,N,s denotes

KL

(
Ber

(
1

2
− ε

N

s

)
⊗

s⊗
k=2

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0,

s⊗
k=1

Ber
(

1

2

)
⊗

N⊗
k=s+1

δ0

)

and where the equality K̃ε,N,s = kl(1/2 − εN/s,1/2) is
again by independence. Finally, the lemma stated right af-
ter this proof shows that

(5.11) kl
(

1

2
− ε

N

s
,

1

2

)
≤ 4N2ε2

s2 .

Combining (5.7)–(5.11), we proved so far

∀ε ∈ (0, s/(2N)
)
,

sup
�1,...,�t

E[RT ] ≥ T ε

(
1 − 1

N
−
√

4NT ε2

s ln(N)

)

≥ T ε

(
1

2
− cε

)
,

where we used 1/N ≤ 1/2 and denoted c = 2
√

NT /√
s ln(N).
A standard optimization suggests the choice ε = 1/

(4c), which is valid, that is, is indeed < s/(2N) as re-
quired, as soon as T > N ln(N)/(16s). In that case,
we get a lower bound T ε/4, which corresponds to the√

T s ln(N)/N/32 part of the lower bound.
In case T ≤ N ln(N)/(16s), we have c ≤ N/(2s) and

the valid choice ε = s/(4N) leads to the part of the lower
bound given by T ε(1/2 − cε) ≥ T ε/4 = sT /(16N). �

LEMMA 5.3. For all p ∈ (0,1), for all ε ∈ (0,p),

kl(p − ε,p) ≤ ε2

p(1 − p)
.

PROOF. This result is a special case of the fact that the
KL divergence is upper bounded by the χ2-divergence.
We recall, in our particular case, how this is seen:

kl(p − ε,p)

= (p − ε) ln
(

1 − ε

p

)
+ (1 − p + ε) ln

(
1 + ε

1 − p

)
≤ (p − ε)

−ε

p
+ (1 − p + ε)

ε

1 − p

= ε2

p
+ ε2

1 − p
,

where we used ln(1 + u) ≤ u for all u > −1 to get the
stated inequality. �

6. OTHER APPLICATIONS, WITH N = 1 PAIR OF
DISTRIBUTIONS

Interestingly, Proposition 3.1 can be useful even for
N = 1 pair of distributions. Rewriting it slightly differ-
ently, we indeed have, for all distributions P,Q and all
events A with Q(A) ∈ (0,1),

P(A) ln
(

1

Q(A)

)
≤ KL(P,Q) + ln(2).

Solving for Q(A)—and not for P(A) as was previously
the case—we get

(6.1) Q(A) ≥ exp
(
−KL(P,Q) + ln(2)

P(A)

)
.

We applied here a classical technique in information the-
ory due to Haroutunian; see, for instance, Csiszár and
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Körner (1981), page 167. The inequality above also holds
in the case Q(A) = 1, as the right-hand side is the
exponential of a nonpositive quantity, and in the case
Q(A) = 0. Indeed, we either have P(A) > 0, which en-
tails, by the data-processing inequality (Lemma 2.1),

KL(P,Q) ≥ kl
(
P(A),Q(A)

)= +∞,

or P(A) = 0; that is, when Q(A) = 0, no matter the value
of P(A), the inequality features the exponential of −∞ in
its right-hand side.

Similarly and more generally, for all distributions P,Q

and all [0,1]-valued random variables Z, we have, by
Corollary 2.2 and the lower bound (3.3),

(6.2) EQ[Z] ≥ exp
(
−KL(P,Q) + ln(2)

EP[Z]
)
.

The bound (6.1) is similar in spirit to (a consequence
of) the Bretagnolle–Huber inequality, recalled and actu-
ally improved in Section 8.3; see details therein, and in
particular its consequence (8.4). Both bounds can indeed
be useful when KL(P,Q) is larger than a constant and
P(A) is close to 1.

Next, we show two applications of (6.1) and (6.2):
a simple proof of a large deviation lower bound for
Bernoulli distributions, and a distribution-dependent pos-
terior concentration lower bound.

6.1 A Simple Proof of Cramér’s Theorem for Bernoulli
Distributions

The next proposition is a well-known large deviation
result on the sample mean of independent and identically
distributed Bernoulli random variables. It is a particu-
lar case of Cramér’s theorem that dates back to Cramér
(1938), Chernoff (1952); see also Cerf and Petit (2011)
for further references and a proof in a very general con-
text. Thanks to Fano’s inequality (6.1), the proof of the
lower bound that we provide below avoids any explicit
change of measure (see the remark after the proof). We
are grateful to Aurélien Garivier for suggesting this proof
technique to us; see also strong connections with an ap-
proach followed by Hayashi (2017), Section 2.4.2.

PROPOSITION 6.1 (Cramér’s theorem for Bernoulli
distributions). Let θ ∈ (0,1). Assume that X1, . . . ,Xn

are independent and identically distributed random vari-
ables drawn from Ber(θ). Denoting by Pθ the underlying
probability measure, we have, for all x ∈ (θ,1),

lim
n→+∞

1

n
lnPθ

(
1

n

n∑
i=1

Xi > x

)
= −kl(x, θ).

PROOF. We set Xn
def= n−1∑n

i=1 Xi . For the conve-
nience of the reader, we first briefly recall how to prove
the upper bound, and then proceed with a new proof for
the lower bound.

Upper bound: By the Cramér–Chernoff method and the
duality formula for the Kullback–Leibler divergence be-
tween Bernoulli distributions (see, e.g., Boucheron, Lu-
gosi and Massart, 2013, pp. 21–24), we have, for all n ≥ 1,

Pθ (Xn > x) ≤ exp
(
−n sup

λ>0

{
λx − lnEθ

[
eλX1

]})
(6.3)

= exp
(−nkl(x, θ)

)
,

that is,

∀n ≥ 1,
1

n
lnPθ (Xn > x) ≤ −kl(x, θ).

Lower bound: Choose ε > 0 small enough such that
x + ε < 1. We may assume with no loss of general-
ity that the underlying distribution is Pθ = Ber(θ)⊗n. By
Fano’s inequality in the form (6.1) with the distributions
P = Px+ε and Q = Pθ , and the event A = {Xn > x}, we
have

Pθ (Xn > x) ≥ exp
(
−KL(Px+ε,Pθ ) + ln(2)

Px+ε(Xn > x)

)
.

Noting that KL(Px+ε,Pθ ) = nkl(x + ε, θ) we get

Pθ (Xn > x)

≥ exp
(
−nkl(x + ε, θ) + ln 2

Px+ε(Xn > x)

)
(6.4)

≥ exp
(
−nkl(x + ε, θ) + ln 2

1 − e−nkl(x,x+ε)

)
,

where the last bound follows from Px+ε(Xn > x) = 1 −
Px+ε(Xn ≤ x) ≥ 1 − e−nkl(x,x+ε) by a derivation similar
to (6.3) above. Taking the logarithms of both sides and
letting n → +∞ finally yields

lim inf
n→+∞

1

n
lnPθ (Xn > x) ≥ −kl(x + ε, θ).

We conclude the proof by letting ε → 0, and by combin-
ing the upper and lower bounds. �

Comparison with an historical proof. A classical proof
for the lower bound relies on the same change of measure
as the one used above, that is, that transports the measure
Ber(θ)⊗n to Ber(x + ε)⊗n. The bound (6.3), or any other
large deviation inequality, is also typically used therein.
However, the change of measure is usually carried out ex-
plicitly by writing

Pθ (Xn > x) = Eθ

[
1{Xn>x}

]
= Ex+ε

[
1{Xn>x}

dPθ

dPx+ε

(X1, . . . ,Xn)

]
= Ex+ε

[
1{Xn>x}e

−nK̂Ln
]
,
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where the empirical Kullback–Leibler divergence K̂Ln is
defined by

K̂Ln
def= 1

n
ln
(

dPx+ε

dPθ

(X1, . . . ,Xn)

)

= 1

n

n∑
i=1

(
1{Xi=1} ln

(
x + ε

θ

)

+ 1{Xi=0} ln
(

1 − (x + ε)

1 − θ

))
.

The empirical Kullback–Leibler divergence K̂Ln is then
compared to its limit kl(x + ε, θ) via the law of large
numbers. On the contrary, our short proof above bypasses
any call to the law of large numbers and does not perform
the change of measure explicitly, in the same spirit as for
the bandit lower bounds derived by Kaufmann, Cappé and
Garivier (2016) and Garivier, Ménard and Stoltz (2019).
Note that the different and more general proof of Cerf
and Petit (2011) also bypassed any call to the law of large
numbers thanks to other convex duality arguments.

6.2 Distribution-Dependent Posterior Concentration
Lower Bounds

In this section, we consider the same Bayesian setting
as the one described at the beginning of Section 5.1. In
addition, we define the global modulus of continuity be-
tween KL and � around θ ∈ 
 and at scale εn > 0 by

ψ(εn, θ, �)

def= inf
{
KL(Pθ ′,Pθ ) : �(θ ′, θ

)≥ 2εn, θ
′ ∈ 


};
the infimum is set to +∞ if the set is empty.

Next, we provide a distribution-dependent lower bound
for posterior concentration rates, that is, a lower bound
that holds true for every θ ∈ 
, as opposed2 to the min-
imax lower bound of Section 5.1. Theorem 6.2 below
indicates that, if the �-ball around θ with radius εn has
an expected posterior mass close to 1 uniformly over all
θ ∈ 
, then this posterior mass cannot be too close to 1
either. Indeed, inequality (6.5) provides a lower bound
on the expected posterior mass outside of this ball. The
term nψ(εn, θ, �) within the exponential is a way to quan-
tify how difficult it can be to distinguish between the two
product measures P ⊗n

θ ′ and P ⊗n
θ when �(θ ′, θ) ≥ 2εn.

THEOREM 6.2 (Distribution-dependent posterior con-
centration lower bound). Assume that the posterior dis-
tribution Pπ(·|X1:n) satisfies the uniform concentration

2Note, however, that we are here in a slightly different regime than in
Section 5.1, where we addressed cases for which the uniform posterior
concentration condition (6.6) was proved to be impossible at scale εn

(and actually took place at a slightly larger scale ε′
n).

condition

inf
θ∈


Eθ

[
Pπ

(
θ ′ : �(θ ′, θ

)
< εn|X1:n

)]−→ 1

as n → +∞.

Then, for all c > 1, for all n large enough, for all θ ∈ 
,

Eθ

[
Pπ

(
θ ′ : �(θ ′, θ

)
> εn|X1:n

)]
≥ 2−c exp

(−cnψ(εn, θ, �)
)
.

(6.5)

The conclusion can be stated equivalently as

lim inf
n→+∞ inf

θ∈


ln(Eθ [Pπ(θ ′ : �(θ ′, θ) > εn|X1:n)])
ln(2) + nψ(εn, θ, �)

≥ −1.

The above theorem is greatly inspired from Theorem 2.1
by Hoffmann, Rousseau and Schmidt-Hieber (2015). Our
Fano’s inequality (6.2), however, makes the proof more
direct: the change-of-measure carried out by Hoffmann,
Rousseau and Schmidt-Hieber (2015) is now implicit, and
no proof by contradiction is required. We also bypass one
technical assumption (see the discussion after the proof).

PROOF OF THEOREM 6.2. We fix c > 1. By the uni-
form concentration condition, there exists n0 ≥ 1 such
that, for all n ≥ n0,

(6.6) inf
θ�∈


Eθ�

[
Pπ

(
θ ′ : �(θ ′, θ�)< εn|X1:n

)]≥ 1

c
.

We now fix n ≥ n0 and θ ∈ 
. We consider any θ� ∈

 such that �(θ�, θ) ≥ 2εn. Using Fano’s inequality in
the form of (6.2) with the distributions P = P ⊗n

θ� and
Q = P ⊗n

θ , together with the [0,1]-valued random variable
Zθ = Pπ(θ ′ : �(θ ′, θ) > εn|X1:n), we get

Eθ [Zθ ] ≥ exp
(
−KL(P ⊗n

θ� ,P ⊗n
θ ) + ln 2

Eθ�[Zθ ]
)

= exp
(
−nKL(Pθ�,Pθ ) + ln 2

Eθ�[Zθ ]
)
.

(6.7)

By the triangle inequality and the assumption �(θ�, θ) ≥
2εn, we can see that {θ ′ : �(θ ′, θ) > εn} ⊇ {θ ′ : �(θ ′, θ�) <

εn}, so that

Eθ�[Zθ ] ≥ Eθ�

[
Pπ

(
θ ′ : �(θ ′, θ�)< εn|X1:n

)]≥ 1

c

by the uniform lower bound (6.6). Substituting the above
inequality into (6.7) then yields

Eθ [Zθ ] ≥ exp
(−c

(
nKL(Pθ�,Pθ ) + ln 2

))
.

To conclude the proof, it suffices to take the supremum of
the right-hand side over all θ� ∈ 
 such that �(θ�, θ) ≥
2εn, and to identify the definition of ψ(εn, θ, �). �

Note that, at first sight, our result may seem a little
weaker than Hoffmann, Rousseau and Schmidt-Hieber
(2015), Theorem 2.1, because we only define ψ(εn, θ, �)

in terms of KL instead of a general premetric d: in
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other words, we only consider the case d(θ, θ ′) =√
KL(Pθ ′,Pθ ). However, it is still possible to derive a

bound in terms of an arbitrary premetric d by comparing
d and KL after applying Theorem 6.2.

In the case of the premetric d(θ, θ ′) = √
KL(Pθ ′,Pθ ),

we bypass an additional technical assumption used for
the the similar lower bound of Hoffmann, Rousseau and
Schmidt-Hieber (2015), Theorem 2.1, namely, that there
exists a constant C > 0 such that

sup
θ,θ ′

P ⊗n
θ ′
(
Ln

(
θ ′)−Ln(θ) ≥ CnKL(Pθ ′,Pθ )

)−→ 0

as n → +∞,

where the supremum is over all θ, θ ′ ∈ 
 satisfying
ψ(εn, θ, �) ≤ KL(Pθ ′,Pθ ) ≤ 2ψ(εn, θ, �), and where
Ln(θ) = ∑n

i=1 ln(dPθ/dm)(Xi) denotes the log-
likelihood function with respect to a common dominat-
ing measure m. Besides, we get an improved constant
in the exponential in (6.5), with respect to Hoffmann,
Rousseau and Schmidt-Hieber (2015), Theorem 2.1: by
a factor of 3C/c, which, since C ≥ 1 in most cases, is
3C/c ≈ 3C ≥ 3 when c ≈ 1. (A closer look at their proof
can yield a constant arbitrarily close to 2C, which is still
larger than our c by a factor of 2C/c ≈ 2C ≥ 2.)

7. REFERENCES AND COMPARISON TO THE
LITERATURE

We discuss in this section how novel (or not novel) our
results and approaches are. We first state where our main
innovation lie in our eyes, and then discuss the novelty or
lack of novelty through a series of specific points.

Main innovations in a nutshell. We could find no ref-
erence indicating that the alternative distributions Qi and
Qθ could vary and do not need to be set to a fixed alterna-
tive Q0, nor that arbitrary [0,1]-valued random variables
Zi or Zθ (i.e., not summing up to 1) could be consid-
ered. These two elements are encompassed in the reduc-
tion (4.3), which is to be considered our main new result.
The first application in Section 5 relies on such arbitrary
[0,1]-valued random variables Zθ (but in the second ap-
plication the finitely many Zi sum up to 1).

That the sets Ai considered in the reduction (3.1) form
a partition of the underlying measurable space or that
the finitely many random variables Zi sum up to 1 (see
Gushchin, 2003) were typical requirements in the liter-
ature until recently, with one exception. Indeed, Chen,
Guntuboyina and Zhang (2016) noted in spirit that the re-
quirement of forming a partition was unnecessary, which
we too had been aware of as early as Stoltz (2007), where
we also already mentioned the fact that in particular the
alternative distribution Q had not to be fixed and could
depend on i or θ .

Generalization to f -divergences (not a new result).
Gushchin (2003) generalized Fano-type inequalities with
the Kullback–Leibler divergence to arbitrary f -
divergences, in the case where finitely many [0,1]-valued
random variables Z1 + · · · + ZN = 1 are considered;
see also Chen, Guntuboyina and Zhang (2016). Most of
the literature focuses, however, on Fano-type inequalities
with the Kullback–Leibler divergence, like all references
discussed below.

On the two-step methodology used (not a new result).
The two-step methodology of Section 4, which simply
notes that Bernoulli distributions are the main case to
study when establishing Fano-type inequalities, was well
known in the cases of disjoint events or [0,1]-valued
random variables summing up to 1. This follows at var-
ious levels of clarity from references that will be dis-
cussed in details in this section for other matters (Han
and Verdú, 1994, Gushchin, 2003, and Chen, Guntuboy-
ina and Zhang, 2016) and other references (Zhang, 2006,
Section D, and Harremoës and Vajda, 2011, which is fur-
ther discussed at the beginning of Section 8). In particular,
the conjunction of a Bernoulli reduction and the use of a
lower bound on the kl function was already present in Han
and Verdú (1994).

Other, more information-theoretic statements and proof
techniques of Fano’s inequalities for finitely many hy-
potheses as in Proposition 3.1 can be found, for example,
in Cover and Thomas (2006), Theorem 2.11.1, Yu (1997),
Lemma 3, or Ibragimov and Has’minskiı̆ (1981), Chap-
ter VII, Lemma 1.1; they resort to classical formulas on
the Shannon entropy, the conditional entropy and the mu-
tual information.

On the reductions to Bernoulli distributions. Reduc-
tion (4.3) is new at this level of generality, as we indicated,
but all other reductions were known, though sometimes
proved in a more involved way. Reduction (3.1) and (4.1)
were already known and used by Han and Verdú (1994),
Theorems 2, 7 and 8. Reduction (4.2) is stated in spirit
by Chen, Guntuboyina and Zhang (2016) with a constant
alternative Qθ ≡ Q; see also a detailed discussion and
comparison below between their approach and the general
approach we took in Section 4. We should also mention
that Duchi and Wainwright (2013) provided preliminary
(though more involved) results towards the continuous re-
duction (4.2). Finally, as already mentioned, a reduction
with random variables like (4.3) was stated in a special
case in Gushchin (2003), for finitely many [0,1]-valued
random variables with Z1 + · · · + ZN = 1.

On the lower bounds on the kl function (not really a new
result). The inequalities (4.4) are folklore knowledge.
The first inequality in (4.5) can be found in Guntuboyina
(2011); the second inequality is a new (immediate) con-
sequence. The inequalities (4.7) are a consequence, which
we derived on our own, of a refined Pinsker’s inequality
stated by Ordentlich and Weinberger (2005).
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In-depth discussion of two articles. We now discuss
two earlier contributions and indicate how our results
encompass them: the “generalized Fano’s inequality”
of Chen, Guntuboyina and Zhang (2016) and the version
of Fano’s inequality by Birgé (2005), which was designed
to also cover the case where N = 2.

7.1 On the “Generalized Fano’s Inequality” of Chen,
Guntuboyina and Zhang (2016)

The Bayesian setting considered therein is the follow-
ing; it generalizes the setting of Han and Verdú (1994),
whose results we discuss in a remark after the proof of
Proposition 7.1.

A parameter space (
,G) is equipped with a prior
probability measure ν. A family of probability distribu-
tions (Pθ )θ∈
 on a measurable space (�,F), some out-
come space (X ,E), for example, X = Rn, and a random
variable X : (�,F) → (X ,E) are considered. We denote
by Eθ the expectation under Pθ . Of course we may have
(�,F) = (X ,E) and X be the identity, in which case Pθ

will be the law of X under Pθ .
The goal is either to estimate θ or to take good actions:

we consider a measurable target space (A,H), that may
or may not be equal to 
. The quality of a prediction or
of an action is measured by a measurable loss function
L : 
 ×A → [0,1]. The random variable X is our obser-
vation, based on which we construct a σ(X)-measurable
random variable â with values in A. Putting aside all mea-
surability issues (here and in the rest of this subsection),
the risk of â in this model equals

R(â) =
∫


Eθ

[
L(θ, â)

]
dν(θ)

and the Bayes risk in this model is the smallest such pos-
sible risk,

RBayes = inf
â

R(â),

where the infimum is over all σ(X)-measurable random
variables with values in A.

Chen, Guntuboyina and Zhang (2016) call their main
result (Corollary 5) a “generalized Fano’s inequality”; we
state it and prove it below not only for {0,1}-valued loss
functions L as in the original article, but for any [0,1]-
valued loss function. The reason behind this extension is
that we not only have the reduction (4.2) with events, but
we also have the reduction (4.3) with [0,1]-valued ran-
dom variables. We also feel that our proof technique is
more direct and more natural.

We only deal with Kullback–Leibler divergences, but
the result and proof below readily extend to f -
divergences.

PROPOSITION 7.1. In the setting described above,
the Bayes risk is always larger than

RBayes

≥ 1 +
((

inf
Q

∫



KL(Pθ ,Q)dν(θ)

)
+ ln

(
1 + inf

a∈A

∫



L(θ, a)dν(θ)

))
/(

ln
(

1 − inf
a∈A

∫



L(θ, a)dν(θ)

))
,

where the infimum in the numerator is over all probability
measures Q on (�,F).

PROOF. We fix â and an alternative Q. The combina-
tion of (4.3) and (4.5), with Zθ = 1 − L(θ, â), yields

1 −
∫


Eθ

[
L(θ, â)

]
dν(θ)

≤
∫

 KL(Pθ ,Q)dν(θ) + ln(2 − qâ)

ln(1/qâ)
,

(7.1)

where EQ denotes the expectation with respect to Q and

qâ = 1 −
∫


EQ

[
L(θ, â)

]
dν(θ).

As q → 1/ ln(1/q) and q → ln(2 − q)/ ln(1/q) are
both increasing, taking the supremum over the σ(X)-
measurable random variables â in both sides of (7.1) gives

1 − RBayes

≤
∫

 KL(Pθ ,Q)dν(θ) + ln(2 − q�)

ln(1/q�)
,

(7.2)

where

q� = sup
â

qâ = 1 − inf
â

∫


EQ

[
L(θ, â)

]
dν(θ)

= 1 − inf
a∈A

∫



L(θ, a)dν(θ),

(7.3)

as is proved below. Taking the infimum of the right-hand
side of (7.2) over Q and rearranging concludes the proof.

It only remains to prove the last inequality of (7.3) and
actually, as constant elements a ∈ A are special cases of
random variables â, we only need to prove that

inf
â

∫


EQ

[
L(θ, â)

]
dν(θ)

≥ inf
a∈A

∫



L(θ, a)dν(θ).

(7.4)

Now, each â that is σ(X)-measurable can be rewritten
â = a(X) for some measurable function a : X → A; then,
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by the Fubini–Tonelli theorem,∫


EQ

[
L(θ, â)

]
dν(θ)

=
∫
X

(∫



L
(
θ, a(x)

)
dν(θ)

)
dQ(x)

≥
∫
X

(
inf
a∈A

∫



L(θ, a)dν(θ)

)
dQ(x),

which proves (7.4). �
REMARK 2. As mentioned by Chen, Guntuboyina

and Zhang (2016), one of the major results of Han and
Verdú (1994), namely, their Theorem 8, is a special case
of Proposition 7.1, with 
 = A and the loss function
L(θ, θ ′) = 1{θ �=θ ′}. The (opposite of the) denominator in
the lower bound on the Bayes risk then takes the simple
form

− ln
(

1 − inf
θ ′∈


∫



L
(
θ, θ ′)dν(θ)

)
= − ln

(
sup
θ∈


ν
({θ})) def= H∞(ν),

which is called the infinite-order Rényi entropy of the
probability distribution ν. Han and Verdú (1994) only
dealt with the case of discrete sets 
 but the extension
to continuous 
 is immediate, as we showed in Section 4.

7.2 Comparison to Birgé (2005): An Interpolation
Between Pinsker’s and Fano’s Inequalities

The most classical version of Fano’s inequality, that is,
the right-most side of (7.6) below, is quite impractical
for small values of N (cf. Birgé, 2005), and even use-
less when N = 2, the latter case being straightforward
to deal with by several well-known tools, for example,
by Pinsker’s inequality. One of the main motivations of
Birgé (2005) was therefore to get an inequality that would
be useful for all N ≥ 2. His inequality is stated next; it
only deals with events A1, . . . ,AN forming a partition of
the underlying measurable space. As should be clear from
its proof this assumption is crucial. (See Appendix D for
a pointer to an extended version of this article where a
proof following the methodology described in Section 4
is provided.)

THEOREM 7.2 (Birgé’s lemma). Given an underlying
measurable space (�,F), for all N ≥ 2, for all proba-
bility distributions P1, . . . ,PN , for all events A1, . . . ,AN

forming a partition of �,

min
1≤i≤N

Pi (Ai) ≤ max
{
cN,

K

ln(N)

}

where K = 1

N − 1

N∑
i=2

KL(Pi ,P1)

and where (cN)N≥2 is a decreasing sequence, where each
term cN is defined as the unique c ∈ (0,1) such that

−(c ln(c) + (1 − c) ln(1 − c))

c
+ ln(1 − c)

= ln
(

N − 1

N

)
.

(7.5)

We have, for instance, c2 ≈ 0.7587 and c3 ≈ 0.7127,
while lim cN = 0.63987.

However, a first drawback of the bound above lies in
the K term: one cannot pick a convenient Q as in the
bounds (7.6)–(7.7) below. A second drawback is that the
result is about the minimum of the Pi (Ai), not about
their average. In contrast, the versions of Fano’s inequal-
ity based the kl lower bounds (4.5), (4.4) and (4.7) respec-
tively lead to the following inequalities, stated in the set-
ting of Theorem 7.2 and by picking constant alternatives
Q:

1

N

N∑
i=1

Pi (Ai)

≤
1
N

infQ
∑N

i=1 KL(Pi ,Q) + ln(2 − 1
N

)

ln(N)
(7.6)

≤
1
N

infQ
∑N

i=1 KL(Pi ,Q) + ln(2)

ln(N)
,

and

1

N

N∑
i=1

Pi (Ai)

≤ 1

N
+
√√√√ 1

N
infQ

∑N
i=1 KL(Pi ,Q)

max{ln(N),2} .

(7.7)

The middle term in (7.6) was derived—with a different
formulation—by Chen, Guntuboyina and Zhang (2016),
see Proposition 7.1 above.

Discussion. We note that unlike the right-most side
of (7.6), both the middle term in (7.6) and the bound (7.7)
yield useful bounds for all N ≥ 2, and in particular, for
N = 2. Even better, (7.7) implies both Pinsker’s inequal-
ity and, lower bounding the maximum by ln(N), a bound
as useful as Theorem 7.2 or Proposition 3.1 in case of a
partition. Indeed, in practice, the additional additive 1/N

term and the additional square root do not prevent from
obtaining the desired lower bounds, as illustrated in Sec-
tion 5.2.

Therefore, our inequality (7.7) provides some interpo-
lation between Pinsker’s and Fano’s inequalities: it simul-
taneously deals with all values N ≥ 2.
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8. PROOFS OF THE LOWER BOUNDS ON kl STATED
IN SECTION 4.2 (AND PROOF OF AN IMPROVED

BRETAGNOLLE–HUBER INEQUALITY)

We prove in this section the convexity inequalities (4.5)
and (4.6) as well as the refined Pinsker’s inequality and
its consequence (4.7). Using the same techniques and
methodology as for establishing these bounds, we also im-
prove in passing the Bretagnolle–Huber inequality.

The main advantage of the Bernoulli reductions of Sec-
tion 4.1 is that we could then capitalize in Section 4.3
(and also in Section 6) on any lower bound on the
Kullback–Leibler divergence kl(p, q) between Bernoulli
distributions. In the same spirit, our key argument be-
low to prove the refined Pinsker’s inequality and the
Bretagnolle–Huber inequality (which hold for arbitrary
probability distributions) is in both cases an inequality
between the Kullback–Leibler divergence and the total
variation distance between Bernoulli distributions. This
simple but deep observation was made in great generality
by Harremoës and Vajda (2011).

8.1 Proofs of the Convexity Inequalities (4.5)
and (4.6)

PROOF. Inequality (4.6) follows from (4.5) by noting
that the function q ∈ (0,1) → ln(2 − q)/ ln(1/q) is dom-
inated by q ∈ (0,1) → 0.21 + 0.79q .

Now, the shortest proof of (4.5) notes that the dual-
ity formula for the Kullback–Leibler divergence between
Bernoulli distributions—already used in (6.3)—ensures
that, for all p ∈ [0,1] and q ∈ (0,1],

kl(p, q) = sup
λ∈R

{
λp − ln

(
q
(
eλ − 1

)+ 1
)}

≥ p ln
(

1

q

)
− ln(2 − q)

for the choice λ = ln(1/q). �
An alternative, longer but more elementary proof uses a

direct convexity argument, as in Guntuboyina (2011), Ex-
ample II.4, which already included the inequality of inter-
est in the special case when q = 1/N ; see also Chen, Gun-
tuboyina and Zhang (2016). We deal separately with p =
0 and p = 1, and thus restrict our attention to p ∈ (0,1) in
the sequel. For q ∈ (0,1), as p → kl(p, q) is convex and
differentiable on (0,1), we have

∀(p,p0) ∈ (0,1)2,

kl(p, q) − kl(p0, q) ≥ ln
(

p0(1 − q)

(1 − p0)q

)
︸ ︷︷ ︸

∂
∂p

kl(p0,q)

(p − p0).(8.1)

The choice p0 = 1/(2 − q) is such that

p0

1 − p0
= 1

1 − q
thus ln

(
p0(1 − q)

(1 − p0)q

)
= ln

(
1

q

)

and

kl(p0, q) = 1

2 − q
ln
(

1/(2 − q)

q

)

+ 1 − q

2 − q
ln
(

(1 − q)/(2 − q)

1 − q

)

= 1

2 − q
ln
(

1

q

)
+ ln

(
1

2 − q

)
.

Inequality (8.1) becomes

∀p ∈ (0,1),

kl(p, q) − 1

2 − q
ln
(

1

q

)
+ ln(2 − q)

≥
(
p − 1

2 − q

)
ln
(

1

q

)
,

which proves as well the bound (4.5).

8.2 Proofs of the Refined Pinsker’s Inequality and of
Its Consequence (4.7)

The next theorem is a stronger version of Pinsker’s
inequality for Bernoulli distributions, that was proved3

by Ordentlich and Weinberger (2005). Indeed, note that
the function ϕ defined below satisfies minϕ = 2, so that
the next theorem always yields an improvement over the
most classical version of Pinsker’s inequality: kl(p, q) ≥
2(p − q)2.

We provide below an alternative elementary proof for
Bernoulli distributions of this refined Pinsker’s inequality.
The extension to the case of general distributions, via the
contraction-of-entropy property, is stated at the end of this
section.

THEOREM 8.1 (A refined Pinsker’s inequality by
Ordentlich and Weinberger, 2005). For all p,q ∈ [0,1],

kl(p, q) ≥ ln((1 − q)/q)

1 − 2q
(p − q)2 def= ϕ(q)(p − q)2,

where the multiplicative factor ϕ(q) = (1−2q)−1 ln((1−
q)/q) is defined for all q ∈ [0,1] by extending it by conti-
nuity as ϕ(1/2) = 2 and ϕ(0) = ϕ(1) = +∞.

The proof shows that ϕ(q) is the optimal multiplicative
factor in front of (p − q)2 when the bounds needs to hold
for all p ∈ [0,1]; the proof also provides a natural expla-
nation for the value of ϕ.

PROOF OF THEOREM 8.1. The stated inequality is
satisfied for q ∈ {0,1} as kl(p, q) = +∞ in these cases
unless p = q . The special case q = 1/2 is addressed at

3We also refer the reader to Kearns and Saul (1998), Lemma 1, and
Berend and Kontorovich (2013), Theorem 3.2, for dual inequalities
upper bounding the moment-generating function of the Bernoulli dis-
tributions.
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FIG. 1. Plots of ϕ [left] and x ∈ (0,1) → ϕ(x) − ln(1/x) [right].

the end of the proof. We thus fix q ∈ (0,1) \ {1/2} and
set f (p) = kl(p, q)/(p − q)2 for p �= q , with a continu-
ity extension at p = q . We exactly show that f attains
its minimum at p = 1 − q , from which the result (and its
optimality) follow by noting that

f (1 − q) = kl(1 − q, q)

(1 − 2q)2 = ln((1 − q)/q)

1 − 2q
= ϕ(q).

Given the form of f , it is natural to perform a second-
order Taylor expansion of kl(p, q) around q . We have

∂

∂p
kl(p, q) = ln

(
p(1 − q)

(1 − p)q

)
and

∂2

∂2p
kl(p, q) = 1

p(1 − p)

def= ψ(p),

(8.2)

so that Taylor’s formula with integral remainder reveals
that for p �= q ,

f (p) = kl(p, q)

(p − q)2 = 1

(p − q)2

∫ p

q

ψ(t)

1! (p − t)1 dt

=
∫ 1

0
ψ
(
q + u(p − q)

)
(1 − u)du.

This rewriting of f shows that f is strictly convex (as ψ

is so). Its global minimum is achieved at the unique point
where its derivative vanishes. But by differentiating under
the integral sign, we have, at p = 1 − q ,

f ′(1 − q) =
∫ 1

0
ψ ′(q + u(1 − 2q)

)
u(1 − u)du = 0;

the equality to 0 follows from the fact that the function
u → ψ ′(q + u(1 − 2q))u(1 − u) is antisymmetric around
u = 1/2 (essentially because ψ ′ is antisymmetric itself
around 1/2). As a consequence, the convex function f

attains its global minimum at 1 − q , which concludes the
proof for the case where q ∈ (0,1) \ {1/2}.

It only remains to deal with q = 1/2: we use the con-
tinuity of kl(p, ·) and ϕ to extend the obtained inequality
from q ∈ [0,1] \ {1/2} to q = 1/2. �

We now prove the second inequality of (4.7). A picture
is helpful; see Figure 1.

COROLLARY 8.2. For all q ∈ (0,1], we have ϕ(q) ≥
2 and ϕ(q) ≥ ln(1/q). Thus, for all p ∈ [0,1] and q ∈
(0,1),

p ≤ q +
√

kl(p, q)

max{ln(1/q),2} .

Slightly sharper bounds are possible, like ϕ(q) ≥ (1 +
q)(1+q2) ln(1/q) or ϕ(q) ≥ ln(1/q)+2.5q , but we were
unable to exploit these refinements in our applications.

General refined Pinsker’s inequality. The following re-
sult, which improves on Pinsker’s inequality, is due to
Ordentlich and Weinberger (2005). Our approach through
Bernoulli distributions enables to derive it in an elemen-
tary (and enlightening) way: by combining Theorem 8.1
and the data-processing inequality (Lemma 2.1).

THEOREM 8.3. Let P and Q be two probability dis-
tributions on the same measurable space (�,F). Then

∀A ∈ F,
∣∣P(A) −Q(A)

∣∣≤√
KL(P,Q)

ϕ(Q(A))
,

where ϕ ≥ 2 is defined in the statement of Theorem 8.1. In
particular, the total variation distance between P and Q

is bounded as

sup
A∈F

∣∣P(A) −Q(A)
∣∣≤√

KL(P,Q)

infA∈F ϕ(Q(A))
.
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8.3 An Improved Bretagnolle–Huber Inequality

The Bretagnolle–Huber inequality was introduced by
Bretagnolle and Huber (1978, 1979). The multiplicative
factor e−1/e ≥ 0.69 in our statement (8.3) below is a slight
improvement over the original 1/2 factor. For all p,q ∈
[0,1],

1 − |p − q| ≥ e−1/ee−kl(p,q)

thus q ≥ p − 1 + e−1/ee−kl(p,q).
(8.3)

It is worth to note that Bretagnolle and Huber (1978) also
proved the inequality

|p − q| ≤
√

1 − exp
(−kl(p, q)

)
,

which improves as well upon the Bretagnolle–Huber in-
equality with the 1/2 factor, but which is neither better
nor worse than (8.3).

Now, via the data-processing inequality (Lemma 2.1),
we get from (8.3)

1 − sup
A∈F

∣∣P(A) −Q(A)
∣∣≥ e−1/ee−KL(P,Q).

The left-hand side can be rewritten as infA∈F {P(A) +
Q(Ac)}, where Ac denotes the complement of A. There-
fore, the above inequality is a lower bound on the test
affinity between P and Q. For the sake of compari-
son to (6.1), we can restate the general version of the
Bretagnolle–Huber inequality as: for all A ∈ F ,

(8.4) Q(A) ≥ P(A) − 1 + e−1/ee−KL(P,Q).

We now provide a proof of (8.3); note that our improve-
ment was made possible because we reduced the proof to
very elementary arguments in the case of Bernoulli distri-
butions.

PROOF. The case where p ∈ {0,1} or q ∈ {0,1} can
be handled separately; we consider (p, q) ∈ (0,1)2 in
the sequel. The derivative of the function x ∈ (0,1) →
x ln(x/(1 − q)) equals 1 + ln(x) − ln(1 − q), so that the
function achieves its minimum at x = (1 − q)/e, with
value −(1 − q)/e ≥ −1/e. Therefore,

−kl(p, q) = −p ln
(

p

q

)
− (1 − p) ln

(
1 − p

1 − q

)

≤ −p ln
(

p

q

)
+ 1

e

= p

(
ln
(

q

p

)
+ 1

e

)
+ (1 − p)

1

e
.

Therefore, using the convexity of the exponential,

e−kl(p,q) ≤ p exp
(

ln
(

q

p

)
+ 1

e

)
+ (1 − p)e1/e

= (
q + (1 − p)

)
e1/e,

which shows that

1 − (p − q) ≥ e−1/ee−kl(p,q).

By replacing q by 1 − q and p by 1 − p, we also get

1 − (q − p) = 1 − (
(1 − p) − (1 − q)

)
≥ e−1/ee−kl(1−p,1−q)

= e−1/ee−kl(p,q).

This concludes the proof, as 1 − |p − q| is equal to the
smallest value between 1 − (p − q) and 1 − (q − p).

�

APPENDIX A: ON THE SHARPNESS OF FANO-TYPE
INEQUALITIES OF SECTION 4

The reductions of Section 4.1 are sharp in the sense that
they can hold with equality (they cannot be improved at
this level of generality).

For the Kullback–Leibler divergence, they lead to in-
equalities of the form kl(p, q) ≤ K . We are interested
in upper bounds on p. We introduce the generalized in-
verse of kl in its second argument: for all q ∈ [0,1] and
all y ≥ 0,

kl(·, q)(−1)(y)
def= sup

{
p ∈ [0,1] : kl(p, q) ≤ y

};
when q ∈ (0,1), it is thus equal to the largest root q of the
equation kl(p, q) = y if y ≤ ln(1/q) or to 1 otherwise.
From kl(p, q) ≤ K the best general upper bound on p is

p ≤ kl(·, q)(−1)(K).

This formulation should be reminiscent of Birgé (2005),
Theorem 2, but has one major practical drawback: it is un-
readable, and this is why we considered the lower bounds
of Section 4.2.

Question is now how sharp these lower bounds on kl
are. Bounds (4.4) and (4.5) are of the form

p ≤ kl(p, q)

ln(1/q)
+ ε(q),

where the ε(q) quantity vanishes when q → 0. Now, in
the applications, q is typically small and the main term
kl(p, q)/ ln(1/q) is of the order of a constant. Therefore,
the lemma below explains that up to the ε quantity, the
bounds (4.4) and (4.5) of Section 4.2 are essentially opti-
mal.

The bound (4.7) therein is of the form

p ≤
√

kl(p, q)

ln(1/q)
+ ε(q),

but given the discussion above, it can also be considered
optimal in spirit, as in the applications q is typically small
and the main term kl(p, q)/ ln(1/q) is of the order of a
constant.
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LEMMA A.1. For all q ∈ (0,1) and p ∈ [0,1], when-
ever p ≥ q , we have

kl(p, q) ≤ p ln
(

1

q

)
, thus p ≥ kl(p, q)

ln(1/q)
.

PROOF. We note that when p ≥ q , we have (1 −
p)/(1 − q) ≤ 1, so that

kl(p, q) = p ln
(

1

q

)
+ p ln(p)︸ ︷︷ ︸

≤0

+ (1 − p) ln
(

1 − p

1 − q

)
︸ ︷︷ ︸

≤0

≤ p ln
(

1

q

)
,

hence the first inequality. �

APPENDIX B: FROM BAYESIAN POSTERIORS TO
POINT ESTIMATORS

We recall below a well-known result that indicates how
to construct good point estimators from good Bayesian
posteriors (Section B.1 below). One theoretical benefit is
that this result can be used to convert known minimax
lower bounds for point estimation into minimax lower
bounds for posterior concentration rates (Section B.2 be-
low). This technique is thus a—less direct—alternative to
the method we presented in Section 5.1.

B.1 The Conversion

The following statement is a nonasymptotic variant of
Theorem 2.5 by Ghosal, Ghosh and van der Vaart (2000);
see also Proposition 3 in Chapter 12 by Le Cam (1986),
as well as Section 5 by Hoffmann, Rousseau and Schmidt-
Hieber (2015).

We consider the same setting as in Section 5.1 and as-
sume in particular that the underlying probability measure
is given by Pθ = P ⊗n

θ , that is, that (X1, . . . ,Xn) is the
identity random variable.

PROPOSITION B.1 (From Bayesian posteriors to point
estimators). Let n ≥ 1, δ > 0 and θ ∈ 
. Let θ̂n =
θ̂n(X1, . . . ,Xn) be any estimator satisfying, Pθ -almost
surely,

Pπ

(
θ ′ : �(θ ′, θ̂n

)
< εn|X1:n

)
≥ sup

θ̃∈


Pπ

(
θ ′ : �(θ ′, θ̃

)
< εn|X1:n

)− δ.
(B.1)

Then,

Pθ

(
Pπ

(
θ ′ : �(θ ′, θ

)≥ εn|X1:n
)≥ 1 − δ

2

)
≥ Pθ

(
�(θ̂n, θ) ≥ 2εn

)
.

(B.2)

This result implies that if θ̂n is a center of a ball
that almost maximizes the posterior mass—see assump-
tion (B.1)—and if the posterior mass concentrates around

θ at a rate ε′
n < εn—so that the left-hand side of (B.2) van-

ishes by Markov’s inequality—then θ̂n is (2εn)-close to θ

with high probability. Therefore, at least from a theoret-
ical viewpoint, a good posterior distribution can be con-
verted into a good point estimator, by defining θ̂n based on
Pπ(·|X1:n) such that (B.1) holds, that is, by taking an ap-
proximate argument of the supremum. A measurable such
θ̂n exists as soon as 
 is a separable topological space
and the function θ̃ → Pπ(θ ′ : �(θ ′, θ̃ ) < εn|x1:n) is lower-
semicontinuous for m⊗n-almost every x1:n ∈ X n (see the
end of the proof of Corollary B.2 for more details).

PROOF. Denote by B�(θ, ε)
def= {θ ′ ∈ 
 : �(θ ′, θ) < ε}

the open �-ball of center θ and radius ε. By the triangle
inequality we have the following inclusions of events:{

�(θ̂n, θ) ≥ 2εn

}
⊆ {

B�(θ̂n, εn) ∩ B�(θ, εn) = ∅
}

⊆ {
Pπ

(
B�(θ̂n, εn)|X1:n

)
+ Pπ

(
B�(θ, εn)|X1:n

)≤ 1
}

(B.3)

⊆
{
Pπ

(
B�(θ, εn)|X1:n

)≤ 1 + δ

2

}
=
{

1 − Pπ

(
θ ′ : �(θ ′, θ

)
< εn|X1:n

)≥ 1 − δ

2

}
=
{
Pπ

(
θ ′ : �(θ ′, θ

)≥ εn|X1:n
)≥ 1 − δ

2

}
,

where (B.3) follows from the lower bound Pπ(B�(θ̂n, εn)|
X1:n) ≥ Pπ(B�(θ, εn)|X1:n) − δ, which holds by assump-
tion (B.1) on θ̂n. This concludes the proof. �

B.2 Application to Posterior Concentration Lower
Bounds

We explained above that a good posterior distribution
can be converted into a good point estimator. As noted
by Ghosal, Ghosh and van der Vaart (2000) this conver-
sion can be used the other way around: if we have a lower
bound on the minimax rate of estimation, then Proposi-
tion B.1 provides a lower bound on the minimax pos-
terior concentration rate, as formalized in the following
corollary. Assumption (B.4) below corresponds to an in-
probability minimax lower bound.

COROLLARY B.2. Let n ≥ 1. Consider the setting of
Section 5.1, with underlying probability measure Pθ =
P ⊗n

θ when the unknown parameter is θ . Assume that 


is a separable topological space and that θ̃ → �(θ ′, θ̃ ) is
continuous for all θ ′ ∈ 
. Assume also that for some ab-
solute constant c < 1, we have

(B.4) inf
θ̂nest.

sup
θ∈


Pθ

(
�(θ̂n, θ) ≥ 2εn

)≥ 1 − c,
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where the infimum is taken over all estimators θ̂n. Then,
for all priors π ′ on 
,

inf
θ∈


Eθ

[
Pπ ′

(
θ ′ : �(θ ′, θ

)
< εn|X1:n

)]
≤ 1 + c

2
< 1.

(B.5)

PROOF. Let δ > 0 be a parameter that we will later
take arbitrarily small. Fix any estimator θ̂n satisfying (B.1)
for the prior π ′, that is, that almost maximizes the poste-
rior mass on an open ball of radius εn. (See the end of
the proof for details on why such a measurable θ̂n exists.)
Then, Proposition B.1 used for all θ ∈ 
 entails that

sup
θ∈


Pθ

(
Pπ ′

(
θ ′ : �(θ ′, θ

)≥ εn|X1:n
)≥ 1 − δ

2

)
≥ sup

θ∈


Pθ

(
�(θ̂n, θ) ≥ 2εn

)
≥ 1 − c,

where the last inequality follows from the assumption
(B.4). Now we use Markov’s inequality to upper bound
the left-hand side above and obtain

2

1 − δ
sup
θ∈


Eθ

[
Pπ ′

(
θ ′ : �(θ ′, θ

)≥ εn|X1:n
)]

≥ sup
θ∈


Pθ

(
Pπ ′

(
θ ′ : �(θ ′, θ

)≥ εn|X1:n
)≥ 1 − δ

2

)
≥ 1 − c.

Letting δ → 0 and dividing both sides by 2 yields

1 − inf
θ∈


Eθ

[
Pπ ′

(
θ ′ : �(θ ′, θ

)
< εn|X1:n

)]≥ 1 − c

2
.

Rearranging terms concludes the proof of (B.5). We now
address the technical issue mentioned at the beginning of
the proof.

Why a measurable θ̂n exists. Note that it is possible to
choose θ̂n satisfying (B.1) with π ′ in a measurable way as
soon as 
 is a separable topological space and

ψ : θ̃ ∈ 
 −→ Pπ ′
(
θ ′ : �(θ ′, θ̃

)
< εn|x1:n

)
is lower-semicontinuous for m⊗n-almost every x1:n ∈X n,
and thus Pθ -almost surely for all θ ∈ 
. The reason is
that, in that case, it is possible to equate the supremum
of ψ over 
 to a supremum on a countable subset of 
.
Next, and thanks to the continuity assumption on �, we
prove that the desired lower-semicontinuity holds true for
all x1:n ∈ X n (not just almost all of them).

To that end, we show the lower-semicontinuity at any
fixed θ� ∈ 
. Consider any sequence (θ̃i)i≥1 in 
 con-
verging to θ�. For all x1:n ∈ X n, by Fatou’s lemma applied
to the well-defined probability distribution Pπ ′(·|x1:n), we

have

lim inf
i→+∞ Pπ ′

(
θ ′ : �(θ ′, θ̃i

)
< εn|x1:n

)
= lim inf

i→+∞Eπ ′
[
1{�(θ ′,θ̃i )<εn}|x1:n

]
(B.6)

≥ Eπ ′
[
lim inf
i→+∞ 1{�(θ ′,θ̃i )<εn}︸ ︷︷ ︸

= 1 if �(θ ′, θ�) < εn

|x1:n
]

≥ Pπ ′
(
θ ′ : �(θ ′, θ�)< εn|x1:n

)
,

where in (B.7) we identify that the lim inf equals 1 as soon
as �(θ ′, θ�) < εn by continuity of θ̃ → �(θ ′, θ̃ ) at θ̃ = θ�.
�

APPENDIX C: ON JENSEN’S INEQUALITY

Classical statements of Jensen’s inequality for convex
functions ϕ on C ⊆ Rn either assume that the underly-
ing probability measure is supported on a finite number of
points or that the convex subset C is open. In the first case,
the proof follows directly from the definition of convexity,
while in the second case, it is a consequence of the exis-
tence of subgradients. In both cases, it is assumed that the
function ϕ under consideration only takes finite values. In
this article, Jensen’s inequality is applied several times to
nonopen convex sets C, like C = [0,1]2 or C = [0,+∞)

and/or convex functions ϕ that can possibly be equal to
+∞ at some points.

The restriction of C being open is easy to drop when the
dimension equals n = 1, that is, when C is an interval; it
was dropped, for example, by Ferguson (1967), pages 74–
76, in higher dimensions, thanks to a proof by induction
to address possible boundary effects with respect to the
arbitrary convex set C. Let B(Rn) denote the Borel σ -
field of Rn.

LEMMA C.1 (Jensen’s inequality for general convex
sets; Ferguson, 1967). Let C ⊆ Rn be any nonempty
convex Borel subset of Rn and ϕ : C → R be any convex
Borel function. Then, for all probability measures μ on
(Rn,B(Rn)) such that μ(C) = 1 and

∫ ‖x‖dμ(x) < +∞,
we have ∫

x dμ(x) ∈ C and

ϕ

(∫
x dμ(x)

)
≤
∫
C

ϕ(x)dμ(x),

(C.1)

where the integral of ϕ against μ is well defined in R ∪
{+∞}.

Our contribution is the following natural extension.

LEMMA C.2. The result of Lemma C.1 also holds for
any convex Borel function ϕ : C →R∪ {+∞}.
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We rephrase this extension in terms of random vari-
ables. Let C ⊆ Rn be any nonempty convex Borel sub-
set of Rn and ϕ : C → R ∪ {+∞} be any convex Borel
function. Let X be an integrable random variable from
any probability space (�,F,P) to (Rn,B(Rn)), such that
P(X ∈ C) = 1. Then

E[X] ∈ C and ϕ
(
E[X])≤ E

[
ϕ(X)

]
,

where E[ϕ(X)] is well defined in R∪ {+∞}.
PROOF. We first check that ϕ− = max{−ϕ,0} is μ-

integrable on C, so that the integral of ϕ against μ is well
defined in R∪ {+∞}. To that end, we will prove that ϕ is
lower bounded on C by an affine function: ϕ(x) ≥ aTx +
b for all x ∈ C, where (a, b) ∈ R2, from which it follows
that ϕ−(x) ≤ ‖a‖‖x‖ + ‖b‖ for all x ∈ C and thus∫

C
ϕ−(x)dμ(x) ≤

∫
C

(‖a‖‖x‖ + ‖b‖)dμ(x)

= ‖a‖
∫
C

‖x‖dμ(x) + ‖b‖ < +∞.

So, it only remains to prove the affine lower bound. If
the domain {ϕ < +∞} is empty, any affine function is
suitable. Otherwise, {ϕ < +∞} is a nonempty convex
set, so that its relative interior R is also nonempty (see
Rockafellar, 1970, Theorem 6.2); we fix x0 ∈ R. But, by
Rockafellar (1970), Theorem 23.4, the function ϕ admits
a subgradient at x0, that is, there exists a ∈ Rn such that
ϕ(x) ≥ ϕ(x0) + aT (x − x0) for all x ∈ C. This concludes
the first part of this proof.

In the second part, we show the inequality (C.1) via
a reduction to the case of real-valued functions. Indeed,
note that if μ(ϕ = +∞) > 0 then the desired inequality
is immediate. We can thus assume that μ(ϕ < +∞) = 1.
But, using Lemma C.1 with the nonempty convex Borel
subset C̃ = {ϕ < +∞} and the real-valued convex Borel
function ϕ̃ : C̃ →R defined by ϕ̃(x) = ϕ(x), we get, since
μ(C̃) = 1, ∫

x dμ(x) ∈ C̃ and

ϕ̃

(∫
x dμ(x)

)
≤
∫
C̃

ϕ̃(x)dμ(x).

Using the facts that ϕ̃(x) = ϕ(x) for all x ∈ C̃ and that
μ(C \ C̃) = 1 − 1 = 0 entails (C.1). �

We now complete our extension by tackling the condi-
tional form of Jensen’s inequality.

LEMMA C.3 (A general conditional Jensen’s inequal-
ity). Let C ⊆ Rn be any nonempty convex Borel sub-
set of Rn and ϕ : C → R ∪ {+∞} be any convex Borel
function. Let X be an integrable random variable from
any probability space (�,F,P) to (Rn,B(Rn)), such that

P(X ∈ C) = 1. Then, for every sub-σ -field G of F , we
have, P-almost surely,

E[X|G] ∈ C and ϕ
(
E[X|G])≤ E

[
ϕ(X)|G],

where E[ϕ(X)|G] is P-almost-surely well defined in R ∪
{+∞}.

PROOF. The proof follows directly from the uncondi-
tional Jensen’s inequality (Lemma C.2 above) and from
the existence of regular conditional distributions. More
precisely, by Theorems 2.1.15 and 5.1.9 of Durrett (2010),
applied to the case where (S,S) = (Rn,B(Rn)), there ex-
ists a regular conditional distribution of X given G. That
is, there exists a function K : � × B(Rn) → [0,1] such
that:

(P1) for every B ∈ B(Rn), the mapping ω ∈ � →
K(ω,B) is G-measurable and P(X ∈ B|G) = K(·,B) P-
a.s.;

(P2) for P-almost all ω ∈ �, the mapping B →
K(ω,B) is a probability measure on (Rn,B(Rn)).

Moreover, as a consequence of (P1):

(P1’) for every Borel function g : Rn → R such that
g(X) is P-integrable or such that g is nonnegative,∫

g(x)K(·,dx) = E
[
g(X)|G] P-a.s.

Now, given our assumptions and thanks to (P1) and
(P1’):

(P3) by P(X ∈ C) = 1 we also have K(·,C) = P(X ∈
C|G) = 1 P-a.s.;

(P4) since X is P-integrable, so is
∫ ‖x‖K(·,dx) =

E[‖X‖|G], which is therefore P-a.s. finite.

We apply Lemma C.2 with the probability measures
μω = K(ω, ·), for those ω for which the properties stated
in (P2), (P3) and (P4) actually hold; these ω are P-almost
all elements of �. We get, for these ω,∫

xK(ω,dx) ∈ C and

ϕ

(∫
xK(ω,dx)

)
≤
∫
C

ϕ(x)K(ω,dx),

where the integral in the right-hand side is well defined in
R ∪ {+∞}. Thanks to (P1’), and by decomposing ϕ(X)

into ϕ−(X), which is integrable (see the beginning of the
proof of Lemma C.2), and ϕ+(X), which is nonnegative,
we thus have proved that P-a.s.,

E[X|G] ∈ C and ϕ
(
E[X|G])≤ E

[
ϕ(X)|G],

which concludes the proof. �
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APPENDIX D: EXTENDED VERSION OF THIS
ARTICLE

An extended version of this article is available on
ArXiv (Gerchinovitz, Ménard and Stoltz, 2018,
arXiv:1702.05985) and features the following additional
appendices.

APPENDIX E

Proofs of the data-processing inequality (Lemma 2.1)
and of the joint convexity of Divf (Corollary 2.3).

APPENDIX F

Additional material on the Fano-type inequalities of
Section 4, namely:

• A sharper lower bound on divf for the Hellinger dis-
tance.

• Finding a good constant alternative Q.

APPENDIX G

On Birgé’s lemma, namely:

• A proof of Theorem 7.2.
• Two other statements of this lemma (the original one

and a simplification of it).
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