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Larry Brown’s Contributions to Parametric
Inference, Decision Theory and
Foundations: A Survey
James O. Berger and Anirban DasGupta

Abstract. This article gives a panoramic survey of the general area of para-
metric statistical inference, decision theory and foundations of statistics for
the period 1965–2010 through the lens of Larry Brown’s contributions to var-
ied aspects of this massive area. The article goes over sufficiency, shrinkage
estimation, admissibility, minimaxity, complete class theorems, estimated
confidence, conditional confidence procedures, Edgeworth and higher or-
der asymptotic expansions, variational Bayes, Stein’s SURE, differential in-
equalities, geometrization of convergence rates, asymptotic equivalence, as-
pects of empirical process theory, inference after model selection, unified
frequentist and Bayesian testing, and Wald’s sequential theory. A reasonably
comprehensive bibliography is provided.
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1. INTRODUCTION

In his expository article “An essay on statistical deci-
sion theory” (2000), Brown gives a panoramic picture
of the historic evolution of decision theory from the
times of Neyman and Pearson to the beginning of the
century, and argues with numerous examples, applica-
tions, and demonstrations that the spirit of decision the-
ory is pervasive in contemporary statistical research
(italics the present authors’). For a span of over half a
century, Larry Brown made cardinal and characteristi-
cally original contributions to most of these changing
aspects of decision theory.

Finite sample optimality theory was the dominating
theme of theoretical statistics from about the mid for-
ties to the mid sixties. Asymptotics have such a cen-
tral place in the development of statistical methods be-
cause it is rare that exact finite sample calculations can
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be done in closed form. But when they can be done,
the optimality results are generally very beautiful. This
paramount beauty of the optimality theory of paramet-
ric statistics has repeatedly come out in some of its
most delicate and elegant form in Brown’s work. It
has been deep, original, peerless and difficult. We will
summarize Brown’s most influential contributions to
this dynamic and fascinating evolution of decision the-
ory and the far-flung decision theoretic spirit.

Brown also continually strove to understand foun-
dational issues in statistics. While not a Bayesian, he
was continually trying to understand matters from the
Bayesian side, as a way to enhance frequentist statis-
tics. Perhaps the culmination of this was his founda-
tional work on the conditional frequentist perspective,
which spanned his entire career and demonstrated his
endless attempt to understand statistical foundations.
Since the article is arranged in a chronological, rather
than subject matter order, these foundational advances
are listed at the end of each section.

The article of Tony Cai in this volume details
Brown’s work on function estimation and other infi-
nite dimensional problems. We do not cover them in
this article.
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2. THE SIXTIES: SHRINKAGE, COVERAGE
PROBABILITIES, SUFFICIENCY

Brown was advised by algebraist Robert Dilworth
to work with Jack Kiefer at Cornell for his doctoral
work. He took Dilworth’s advice. Stein’s unexpected
result on the inadmissibility of the sample mean, which
is the MLE as well as the best invariant estimator,
for estimating three or more normal means was well
known when Brown started working with Kiefer. For
more general location parameter distributions, the sam-
ple mean is neither the MLE nor the best invariant es-
timator (Kagan, Linnik and Rao, 1973). By that time,
Stein had started to work (Stein, 1959, James and Stein,
1961) on generalizing both the normal case results as
well as the results of Blackwell (Blackwell, 1951) on
admissibility of the best invariant estimator of a lo-
cation parameter in the finite discrete case. Brown’s
association with Jack Kiefer as his doctoral advisor
led to the 1966 work (Brown, 1966) that set an ex-
ample for demonstration of universality and the abso-
luteness of a phenomenon, that almost like a law of
nature, for essentially any location parameter situation
and with any loss function, pathologies aside, there is
a dichotomy between admissibility and inadmissibil-
ity of the best invariant estimator in dimensions two
or less and dimensions three or more. The conditions
in Brown (1966) are moment conditions, as in Stein
(1959), where it was shown that the existence of a
third absolute moment is sufficient for minimaxity of
the best invariant estimator. Interestingly, similar mo-
ment conditions are also necessary to prove the ad-
missibility of the best invariant test for a location pa-
rameter; the principal reference is Lehmann and Stein
(1953). The article of Iain Johnstone in this volume
details the technical conditions and the main theorems
of Brown (1966), the pathological counterexamples, as
well as his principal motivation in presenting his re-
sults in such sweeping generality. The results in Brown
(1966) can be applied to scale parameter problems via
the usual logarithmic transformation; for example, it
can be proved that in the multivariate normal setting,
the best scale invariant estimator of |�| is admissible
under scaled quadratic loss (DasGupta, 1983). As for
estimation of the mean vector in the multivariate nor-
mal setting when the covariance matrix � is unknown,
but there is available an independent Wishart matrix
to estimate it, estimators that dominate the best invari-
ant estimator of the mean were given in Berger et al.
(1977).

While the Brown (1966) paper was clearly influ-
enced by Brown’s association with Jack Kiefer, we
can only speculate that another extremely difficult and
fundamentally important paper on sufficiency, Brown
(1964), was influenced by Eugene Dynkin. Through
its well-known connections to the Rao–Blackwell and
Lehmann–Scheffe theorems, sufficiency is an integral
component of the study of optimality for finite n, and
is, as such, a part of decision theory. If {P,P ∈ P}
is a family of probability measures on some mea-
surable space (�,A), a sub σ -field B of A is suffi-
cient if for ∀P ∈ P , and for each set A ∈ A, there
exists a single B-measurable function gA such that
gA = E(IA|B), a.e. P . In common usage, we generally
state it as saying that if T is a mapping from the orig-
inal space into some other measurable space (�′,A′),
then it is a sufficient statistic if B = BT = T −1(A′) is
a sufficient sub σ -field of A. Fisher (1923) stated and
variously, Halmos and Savage (1949), Bahadur (1954),
and others, gave the factorization theorem, which is the
standard result we present in a classroom situation. If
the family P is parametrizable by a one dimensional
Euclidean parameter θ , it is rare that a single real statis-
tic φ(X1,X2, . . . ,Xn) is sufficient for every n. It was
stated in Lehmann (1959) and was very much a part
of the statistical folklore that this will force the fam-
ily P to be a one parameter exponential family un-
der regularity conditions. In Brown (1964) and essen-
tially simultaneously in Barankin and Maitra (1963),
somewhat different versions of this fundamental re-
sult are proved. Brown (1964) gives two results es-
tablishing this implication, one global and another lo-
cal, depending on what one is willing to assume about
the shape of the sufficient statistic as a function. The
global theorem says the following. Suppose {f (x|θ)}
is a one parameter family of densities on an inter-
val I (possibly unbounded) in the real line, with each
f (x|θ) being mutually absolutely continuous with re-
spect to λ, Lebesgue measure on I . Suppose a statis-
tic φ(X1,X2, . . . ,Xn) is such that for every given
x3, . . . , xn, φ(x1, x2, x3, . . . , xn) is jointly continuous
in (x1, x2) for x1 ∈ I0 and x2 ∈ I for some set I0 of
a positive Lebesgue measure. If φ(X1,X2, . . . ,Xn) is
sufficient for all n, then the family {f (x|θ)} must be a
one parameter exponential family.

In the interesting but special case when the statis-
tic is a sample mean

∑n
i=1 ψ(Xi), where the function

ψ may not be continuous everywhere, Brown (1964)
shows that around each continuity point x0 of ψ , the
family {f (x|θ)} is locally a one parameter exponential
family, provided ψ is nondecreasing.



BROWN: PARAMETRIC INFERENCE, DECISION THEORY AND FOUNDATIONS 623

Various counterexamples, some new, and others ex-
plaining and interpreting counterexamples of Dynkin
(Dynkin, 1961) are given in the Brown (1964) paper.

Brown (2000) gives a historical account of how
Neyman viewed confidence interval procedures and
confidence levels as a part of decision theory, and
Brown agrees with this position. But Brown differed
from Neyman in one important foundational aspect;
throughout his career he was concerned with issues of
conditioning within frequentist statistics, whereas Ney-
man rarely mentioned the issue.

Brown’s first work on conditional frequentist infer-
ence was Brown (1967), which considered the widely
used t-test. In particular, he considered N(μ,σ 2) data,
x1, . . . , xn, with μ and σ 2 unknown, with the desire
to test H0 : μ = μ0 versus H1 : μ �= μ0 via the t-test at
Type I error level α, having corresponding rejection re-
gion Kα,μ0 . Brown considered conditioning on the set
of possible data C = {(x1, . . . , xn) : t ≤ c}, where t is
the t-statistic, and showed that α(C), the Type I error
conditional on C, satisfies

α(C) = Pr
(
Kα,μ0 | C,μ0, σ

2)
< a < α,

for some constant a and any values of μ0 and σ 2. (The
proof was a careful and difficult geometric calculation.)

As an example, Brown shows that if n = 2, α = 0.5,
and c = 1.414, then α(C) ≤ 1/3. It is perplexing that
one can find sets which, when conditioned upon, yield
Type I errors smaller than 1/3 for all values of the pa-
rameters, when the unconditional coverage is 1/2. But
Brown admits that this is a puzzle, saying “In view of
the well-known optimum properties of the t-test it is
not clear that the results of this note can possibly lead
to any practically useful new procedures. (It is not even
clear that any remotely reasonable test procedures exist
for this problem which do not have conditional proper-
ties similar to those described here.)” We do not be-
lieve he is referring to the technical issues inherent in
this problem, or to issues of generalization, but rather
to the difficulty of rationally determining appropriate
conditioning sets (in advance) for this problem. Thus
we see Brown beginning to struggle with the issue of
frequentist conditioning, in a technically very challeng-
ing problem, but a situation for which philosophical
clarity is lacking.

3. THE SEVENTIES: ADMISSIBILITY IN
ESTIMATION AND SEQUENTIAL TESTING,

FOUNDATIONS

The famous paper connecting admissibility, recur-
rence of diffusions, and boundary value problems was

written in 1971. Although the paper was published
when he was at Cornell, it was in the works for some
time before then, and he had the basic structure already
in place while he was still at Berkeley. The paper of
Iain Johnstone in this volume discusses this paper in
detail. The ’71 paper is famous for at least three rea-
sons. Potential theory is connected to recurrence of dif-
fusions. Brown (1971) imports a shocking new connec-
tion, statistical admissibility, by all means apparently
completely unrelated, and makes a triangle with three
vertices. Second, it gives fully verifiable sufficient con-
ditions for admissibility, which have been successfully
employed in numerous Bayesian contexts, for exam-
ple, Berger (1976), Berger and Strawderman (1996).
Third, the paper is an analytical masterpiece. The con-
nections demonstrated in the 1971 paper in the nor-
mal case were examined and established in various
other settings, for example, Poisson means (Johnstone,
1984, Johnstone and Lalley, 1984). Eaton (1992) gave
a very interesting equivalence in all quadratically reg-
ular problems between almost admissibility of formal
Bayes procedures with respect to σ -finite improper
prior measures ν and the recurrence of a symmetric
Markov chain. It is interesting that Eaton’s Markov
chain is on the parameter space. If ν supports every set
with a nonempty interior and if all procedures with a fi-
nite risk function have a continuous risk function, then
the almost part of the admissibility connection drops.
Exponential families are good examples. The connec-
tions between Brown (1971) and Eaton (1992) are not
yet well understood. Another difficult and fundamen-
tal paper in this same period is Brown and Purves
(1973), which gives necessary or sufficient conditions
for the existence of a Borel measurable function φ(x)

such that for all x,f (x,φ(x)) = infy f (x, y), where
f is a Borel measurable function on a product space
X × Y in R2. The conditions are used to give an ex-
ample where pointwise minimization of the posterior
expected loss does not give a measurable Bayes esti-
mator.

While at Rutgers University, Brown wrote a se-
quence of papers characterizing sequential admissi-
ble tests and more or less characterizing, in particu-
lar, SPRTs that are admissible in terms of their stop-
ping boundaries. In the i.i.d. (or independent) situa-
tion, Wald’s SPRT (Wald, 1945) stops and rejects if
the likelihood ratio is too large, and stops and accepts
if the likelihood ratio is too small, and continues sam-
pling otherwise. This works out to a test of the form for
which the continuation region is an ≤ Sn ≤ bn, where
Sn,n ≥ 1 is a sequence of partial sums, and an, bn are
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suitable real sequences. Suppose the risk of a test is
measured by the probability of taking the wrong ac-
tion plus a constant c times the expected sample size
of the test before termination; c is thought of as the
cost of sampling one unit. Sobel (1953) and Brown,
Cohen and Strawderman (1979) had established that
the so called monotone tests form an essentially com-
plete class in this risk structure. Essentially, a mono-
tone test accepts with probability zero at any stage that
the likelihood ratio is too large, rejects with probability
zero if the likelihood ratio is too small, and continues
sampling with probability zero if the likelihood ratio
is too small or too large. It is shown in Brown, Cohen
and Samuel-Cahn (1983) that the Bayes tests, a much
smaller subclass of the class of monotone tests, forms a
complete class. It is important to note the difference of
this phenomenon from admissibility in the fixed sam-
ple size setting.

It stands to reason that if cost of sampling is too
high, one should not sample for too long. Indeed, in the
exponential family setting, Brown and Cohen (1981)
show that any test with lim sup(bn − an) = ∞ is inad-
missible. Thus, admissible tests must have a bounded
continuation region. Brown, Cohen and Samuel-Cahn
(1983) show that all admissible tests must satisfy bn −
an ≤ b̄(c) for a suitable function b̄(c) = O(c−1/2) as
c → 0. In particular, all admissible SPRTs are charac-
terized.

During this time Brown again returned to the issue
of conditioning in frequentist statistics, in the paper
Brown (1978). This was motivated by Kiefer (1977),
which sought to develop a formal theory of frequentist
conditioning through decision theory. A key compo-
nent of Kiefer’s work was that it allowed statements
of conditional confidence level of the form C(S, θ),
which depended on the unknown parameter θ as well
as the conditioning set of possible data S. Brown
viewed such statements as being of limited practi-
cal usefulness, and suggested using, instead, C∗(S) =
infθ C(S, θ). He considered admissibility and mini-
maxity (of three types) for decision problems involv-
ing such conditional confidence statements. For cer-
tain situations where θ is dichotomous, he solved these
decision problems, obtaining the optimal conditional
confidence procedures. Brown did not follow this work
up, however, perhaps realizing that the case of dichoto-
mous θ was so difficult that more complex situations
would not be tractable.

4. FROM PERSUASIVE TO CONFIRMED: THE
HEURISTICS AND DIFFERENTIAL INEQUALITIES

PAPERS

The two papers Brown (1979) and Brown (1988)
are thematically connected. The latter is directly con-
nected to Stein’s unbiased risk estimate (SURE, Stein
(1981)), and the first one is indirectly connected to the
SURE theme. The paper of Iain Johnstone in this vol-
ume gives the technical details related to these two pa-
pers. The common premise of both of these papers is to
approximate the difference in the exact risk functions
of two procedures X + g(X) and X + g(X) + λ(X)

by a differential operator R0(λ) or the expectation of
it. Sometimes the operator is defined on the parameter
space, and sometimes on the sample space. X + g(X)

will be inadmissible if the operator can be made uni-
formly nonpositive by a suitable choice of a function
in some function class. Treating R0 itself as the risk,
a variational formula for Bayes risk is derived, and the
form of the Bayes procedure is obtained as the min-
imizer of this functional. The existence of a solution
to R0(λ) ≤ 0 is then connected to whether or not the
function g is one of the above described Bayes forms.
In other words, a starting estimator is conjectured to
be admissible if it is admissible with respect to the R0
risk only if it is of the Bayes form for the R0 risk. In
some special but important cases, the implication is if
and only if (see, e.g., (7.2) in Brown, 1988). See the
paper of Iain Johnstone in this volume.

The approaches laid out in both papers have the pur-
pose of taking a hard new problem, and use Brown
(1979) or Brown (1988) to predict the admissibility sta-
tus of a given procedure or a given class of procedures.
One then turns the prediction into a proof by some suit-
able direct argument. If this seems too optimistic, it is
not. Brown gives a collection of examples of a wide va-
riety where this two step agenda, predict and confirm,
succeeds. Some of Brown’s examples are stated in Iain
Johnstone’s paper in this volume.

5. THE EIGHTIES: FOUNDATIONS, BAYESIAN
AVENUES, COMPLETE CLASS THEOREMS

The Stein–Blyth method (see Diaconis and Stein,
1982, Berger, 1985, Rukhin, 1995) having been the
principal tool for proving the admissibility of a spe-
cific estimator, anyone interested in admissibility au-
tomatically uses priors as an essential tool. Further-
more, there is often a link between all admissible esti-
mators and all Bayes or extended Bayes estimators. In
Brown (1966), dominating estimators, are not arrived
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at from an intrinsically Bayesian spirit. They derive
more from the spirit of pure shrinkage, without relating
shrinkage to Bayes (or empirical Bayes, etc.). In Brown
(1971), greater technical use of priors is made. Further-
more, Brown (1971) derives results directly pertinent
to Bayes, for example, the Brown identity for the Bayes
risk. In contrast, in the eighties, we see the evidence
of a growing natural interest in Bayes as a practical
tool in a number of papers of Brown. One example is
the discussion paper Brown (1982) on robust Bayesian
analysis. In a number of other very influential papers,
Bayes is still used as a tool. Primary among them is the
highly original Brown and Hwang (1982) paper, and
the Brown (1981) paper.

Brown (1981) gives a method to completely charac-
terize all admissible procedures in any problem with
a finite sample space, with suitable smoothness con-
ditions on the loss functions etc. The technique is to
write a sequence of restrictions of the original sam-
ple space, together with an associated modification for
the corresponding parameter space. If a procedure is
Bayes with respect to some prior in each subproblem,
it is called totally Bayes. The totally Bayes procedures
form a complete class in the original problem, and any
unique (with respect to the sequence of priors) totally
Bayes procedure is admissible in the original problem.
This paper extends the stepwise Bayes algorithm in
Hsuan (1979) and is concretely usable to prove that
a certain procedure in a finite sample space problem
is admissible. One example is Meeden et al. (1989).
In addition, it proves the admissibility of the MLE in
the multinomial problem, which was previously proved
by using the Cramér–Rao inequality (Olkin and Sobel,
1979). It also reproduces the results in Johnson (1971)
and Skibinsky and Rukhin (1989). The paper of Iain
Johnstone in this volume lists and explains the other
complete class theorems proved by Brown and various
coauthors in different papers written in this same pe-
riod.

Brown and Hwang (1982) is a remarkably insightful
paper for several reasons. First, it, for the first time,
brings out the role of the asymptotic flatness of the
prior density in determining the admissibility status
of a generalized Bayes estimator. Second, it gives, for
the first time, a Blyth-based proof of Karlin’s theorem
(Karlin, 1958) on admissibility of linear estimators of
the mean in a one parameter exponential family. Third,
it gives a unified proof of admissibility of subclasses of
dominating estimators in the multiparameter case, for
example, the admissible ones among the Clevenson–
Zidek estimators (Clevenson and Zidek, 1975) of mul-

tiple Poisson means. Fourth, the paper succeeds in ap-
plying Blyth’s theorem by using a sequence of com-
pactly supported priors.

In the multiparameter exponential family setting
with θp×1 as the natural parameter, suppose δg(X) is
the generalized Bayes estimator of the mean parame-
ter for a prior density g(θ) with squared error as loss.
Take g to be a continuous function so that it has a finite
maximum on all compact sets. Suppose g satisfies∫

‖θ‖>2

g(θ)

‖θ‖2 log2(‖θ‖) dθ < ∞,

and that g has finite Fisher information. The leading
theorem in Brown and Hwang (1982) says that then
δg(X) is admissible. It is important to note that in the
above, ‖θ‖ denotes the Euclidean norm, for in cer-
tain papers that followed Brown and Hwang (1982),
the definition of the norm needed to be changed. The
approximating sequence required for applying Blyth’s
method is gn(θ) = g(θ)h2

n(θ), where

hn(θ) = 1I‖θ‖≤1+
(

1− log(‖θ‖)
logn

)
I1≤‖θ‖≤n+0I‖θ‖≥n.

Thus, for each n, gn is compactly supported. The
method of Brown and Hwang (1982) is adapted with a
new norm ‖θ‖ in DasGupta and Sinha (1984) to prove
parallel admissibility results for generalized Bayes es-
timators of k linear combinations of the components of
the mean vector for some k, typically smaller than p.
The case k = 1 was previously studied in Cohen (1965)
for the normal case using different methods.

The Brown identities (Brown, 1971) were put to sig-
nificant use in Brown and Hwang (1982). It is interest-
ing that the Brown identities also help answer certain
natural questions in frequentist Bayesian asymptotics.
In regular finite dimensional problems with smooth
priors, under natural conditions on the support of the
prior, the posterior mean will be asymptotically point-
wise close to the MLE, and the two have the same
asymptotic distribution. The Brown identities can be
used to derive the asymptotic distribution of their dif-
ference. Thus, suppose X1,X2, . . . are i.i.d. N(θ,1),
and that θ has a prior density g(θ) which is three
times differentiable, and that g′′, g(3) are bounded. Let
ν(θ) = g′(θ)

g(θ)
. Let θ0 be fixed (consider this as the true

value), and assume that ν′(θ0) �= 0 (notice that ν(θ0)

can be zero, for example, if θ0 = 0 and g(θ) is a sym-
metric unimodal function). Then, under Pθ0 ,√

n
[
n
(
E(θ |X1, . . . ,Xn) − X̄

) − ν(θ0)
]

L⇒ N
(
0,

[
ν′(θ0)

]2)
(see, e.g., DasGupta, 2008).
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At the end of the eighties, Brown again returned
to the foundational issue of frequentist conditioning,
work that appeared in Brown (1990) as part of his ear-
lier Wald Lectures.

A widely accepted “principle” of statistics is that, if
there is an ancillary statistic S(x) (i.e., a statistic whose
distribution does not depend on the unknown param-
eter θ ), then one should perform statistical inference
conditional on S(x). There did, however, exist famous
examples where conditioning on ancillary statistics re-
sults in inadmissible procedures, if one uses apparently
natural frequentist criteria.

EXAMPLE. In the famous Cox example, depend-
ing on the flip of a fair coin, one observes either X ∼
N(θ,1) or Y ∼ N(θ,4), and wishes to test H0 : θ = 0
versus H1 : θ �= 0. If one were to condition on the an-
cillary coin flip and use, say, an α = 0.05 level test for
either X or Y , one has a testing procedure with lower
power than optimal. But, conditionally, one can recog-
nize there is a problem; for example, the conditional
α = 0.05 tests are Bayes with respect to different prior
distributions on θ which implies their unconditional in-
admissibility.

The brilliance of Brown’s paper is that he found a
host of fascinating examples where conditioning on
ancillary statistics led to unconditional inadmissibil-
ity, and one could not conditionally detect the problem
(e.g., the same priors are utilized always), the simplest
of which is the following.

EXAMPLE. For i = 1, . . . , n, we are interested in
estimating α, based on independent data Yi = α +
Xiβ + εi, εi ∼ N(0,1), where the covariates Xi arise
from a normal distribution with mean zero and given
covariance matrix. The covariates Xi are ancillary, so
one “should” condition on them in performing the in-
ference. But Brown shows that:

• α̂, the least squares estimate of α (which does effec-
tively condition on the covariates), is uncondition-
ally inadmissible under squared error loss, if the di-
mension of β is 2 or more;

• α̂ is admissible if the Xi are fixed;
• α̂ would arise as the Bayes estimate using the im-

proper prior density π(α,β) = 1, no matter what the
Xi are, so there is no conditional hint of an inadmis-
sibility problem.

There are a lot of mysteries here, and no one (in-
cluding a stellar group of discussants of the paper) has
come up with an explanation or solution that has been
generally accepted as being satisfactory to both condi-
tionalists and frequentists.

6. THE EXPONENTIAL FAMILY MONOGRAPH

The exponential family monograph (Brown, 1986) is
a major contribution toward statistical, geometric and
probabilistic unification of scattered results on com-
mon statistical distributions under the common um-
brella of the regular and curved exponential families.
The monograph can be used to give a semester’s course
or longer on the standard optimality theory of paramet-
ric statistical inference, covering maximum likelihood
estimation, UMVUEs, Bayes, minimax and admissible
procedures, UMP tests, and similar, unbiased, and in-
variant tests. A particular asset of the monograph is the
exercises, many of which are nonstandard, but interest-
ing, and apply the theory to popular models or prob-
lems.

The first three chapters describe in detail and with
proofs essentially all the standard analytic and proba-
bilistic properties of exponential families. The curved
exponential families are given a unified treatment
through consideration of a property called steepness.
A number of examples are nonstandard, and so are a
number of the proofs. The approach taken is to unify
the analytic and probabilistic properties with the ge-
ometry of the family and the parametrization. Apart
from parametrization by either the natural parameters
or the mean parameters, a mixed parametrization is in-
troduced and analyzed. The standard theory of testing
of composite hypotheses is also presented here. These
are the problems where UMP tests do not exist, and
reductions to unbiasedness, Neyman structure, invari-
ance, or almost invariance are needed. It is good to see
that the Hunt–Stein theorem, very hard to find in texts,
is covered.

Chapter 4 forms the core of standard decision theory
in the exponential families, introducing SURE, varia-
tional identities known as the Brown identities, meth-
ods for proving admissibility, and generalized Bayes
estimators and their analytic properties. Chapter 5 and
Chapter 6 cover the likelihood theory in a nonstandard
way. Existence and uniqueness of the MLE is treated
as a problem in convex duality and augmentation of
the original family to aggregate families in which the
set of MLEs is always nonempty. Relationships to the
elements of the set of MLEs to the minimal sufficient
statistic is examined theoretically and by examples.

Chapter 7 treats the exponential decay of probabili-
ties of a sequence of sets as the distance of the set from
the mean increases suitably, or when the set is fixed,
but the mean parameter is moving away from it suit-
ably. These are analyzed as large deviation problems.
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The exponential decay is then connected to powers of
tests in various problems.

The appendix gives a complete treatment of limits
of Bayes procedures and the necessity of admissible
procedures being such limits.

7. THE NINETIES: MINIMAX AND BAYES RISKS
LOWER BOUNDS, FOUNDATIONS, NOVEL

CRAMÉR–RAO USES, ASYMPTOTIC
EQUIVALENCE

Brown used the Cramér–Rao inequality in ingenious
ways in a number of different problems to arrive at
useful results at the end. Brown and Farrell (1990)
made clever uses of the Cramér–Rao inequality to ob-
tain calculable lower bounds on the asymptotic mini-
max risk for estimating the value at a given point of
a locally Lipshitz density on the real line. One ma-
jor family of problems for which Brown made novel
use of the Cramér–Rao inequality is to obtain lower
bounds on Bayes risks for general (possibly smooth)
priors, and hence lower bounds on the minimax risk
by applying the Bayes risk bounds to least favorable
(or nearly so) priors. Among the most well known is
Brown and Gajek (1990). We will describe one other
unrelated problem where Brown made a very novel use
of the Cramér–Rao inequality following our descrip-
tion of the Brown and Gajek (1990) work.

Let X ∼ f (x|θ), θ ∈ I , a possibly unbounded inter-
val in the real line, δ(X) any estimator with a finite
variance and bias b(θ), g(θ) a prior density and an ab-
solutely continuous function. Suppose the family has
finite nonzero Fisher information I (θ) = V −1(θ). Let

C =
∫

(Vg)(θ) dθ, D =
∫ [(Vg)′(θ)]2

g(θ)
dθ.

Then, for estimation with squared error loss, the Bayes
risk of δ with respect to g satisfies

B(g, δ) ≥ C2

C + D
+ Q,

where Q is a nonnegative real valued functional of b(θ)

and its derivative b′(θ). In particular, B(g, δ) ≥ C2

C+D
,

which is the Borovkov–Sakhanienko (1980) lower
bound, proved using different methods. The Brown–
Gajek bounds generalize to weighted squared error
losses.

The lower bound is attained in exponential families
with conjugate priors. For an interesting application,
consider the Bickel–Levit prior for a bounded normal
mean

g(θ) = 1

m
cos2

(
πθ

2m

)
, |θ | ≤ m.

Then the Brown–Gajek bound produces

B(g) ≥ m2

m2 + π2 ,

where B(g) is the Bayes risk of the associated Bayes
estimator; see Bickel (1981) for a treatment and asymp-
totic expansion of B(g). In fact, the Brown–Gajek the-
orem gives a better closed form bound on B(g). Other
examples, including a binomial log-odds example are
worked out in Brown and Gajek (1990).

Bayes risk lower bounds are also obtained in Brown
et al. (2006) by using a new normal distribution ex-
pectation identity, which they call the heat equation
identity. The paper of Iain Johnstone in this volume
gives a discussion of some of the results in this paper.
They derive a Bayes risk differential identity which
can be used to derive Bayes risk lower bounds. Sup-
pose X ∼ N(μ, t) and μ has a prior distribution G.
Let m(x) = mt,G(x) denote the marginal density of
X and r(t,G) the Bayes risk of the Bayes estima-
tor under G. Then the article derives the identity
d
dt

r(t,G) = 1 − 2tI (m) − t2 d
dt

I (m), where I (m) de-
notes the Fisher information of the marginal. On inte-
grating this differential identity, one obtains Bayes risk
lower bounds.

Minimax lower bounds using the Cramér–Rao in-
equality and other techniques (notably the hardest
linear subproblem technique of Donoho, Liu and
MacGibbon, 1990) are derived in several subsequent
papers of Brown, including Brown and Low (1991).

The article Donoho, Liu and MacGibbon (1990)
opened up a very new line of minimax decision the-
ory problems, techniques, and connections to hitherto
mostly unfamiliar applied mathematics constructs. Per-
haps this article marked a noticeable shift in Brown’s
research efforts from admissibility to minimaxity, and
indirectly, to more Bayesian ideas. Consider the prob-
lem of estimating with squared error loss an infinite
dimensional normal mean with the model

Xi = θi + εi, i = 1,2, . . . ,

where εi are i.i.d. N(0, σ 2) and the vector θ lies in
the infinite dimensional hyperrectangle

∏∞
i=1[−τi, τi].

The exact minimax estimate or the minimax risk
RN(σ) cannot be found in analytical form. It is a non-
linear estimate. In contrast, the linear minimax esti-
mate is easily found to be

θ̂L,i = 1

1 + σ 2

τ 2
i

Xi.
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The linear minimax risk RL(σ) is easily found by
the coordinatewise sum of the corrdinate linear mini-
max risks. It is shown in Donoho, Liu and MacGibbon
(1990) that RL(σ)

RN(σ)
≤ 1.25. It should be mentioned that

this result is partially computer aided. Donoho, Liu and
MacGibbon (1990) then go on to show that the 1.25
upper bound on the inefficiency of the linear minimax
estimate also holds for all quadratically convex param-
eter spaces, not just hyperrectangles. Thus, if the nor-
mal mean vector lies in an lp ball with p > 2 or in an
ellipsoid, the 1.25 upper bound still holds.

Brown and Liu (1993) develop lower bounds on the
minimax risk in a signal plus noise model

x(t) = sθ (t) + σW(t), 0 ≤ t ≤ T ,

where 0 ≤ θ ≤ L, the signal sθ (t) is a step func-
tion sθ (t) = SI0≤t−θ≤K , and W(t) denotes a Wiener
process on [0, T ]. Interest is in minimax estimation
of θ on the basis of the signal received {x(t)}Tt=0.
Lower bounds on the Bayes risk (which also give lower
bounds on the minimax risk) are provided for a fully
uniform prior as well as discrete priors supported at
multiples of K . These lower bounds are derived by us-
ing a variety of techniques, including an often adopted
two-point trick in minimax theory (see Tsybakov, 2004
or Korostelev and Korosteleva, 2011). In the interesting
case where K is held fixed and L → ∞, it is proved
that the minimax risk is ∼ L2/4, and so is the Bayes
risk of the discrete prior Bayes estimate. The conver-
gence rate is pinned down by an asymptotic expansion.
It is shown that the MLE is not minimax efficient and
its efficiency is 3/4.

Earlier, Brown (1982) made yet another novel use of
the Cramér–Rao inequality to prove the i.i.d. case CLT
for a subclass of random variables with finite variance.
Thus, suppose X1,X2, . . . is an i.i.d. sequence with
mean zero, unit variance, finite and nonzero Fisher in-
formation I (X) = ∫ f ′2

f
dx, where f (x), the density of

X1 is assumed absolutely continuous. A well-known
variational property is that Fisher information is min-
imized at normal distributions; thus, I (X) ≥ 1, with
equality for a normal with variance one. It is shown
in Brown (1982) that the sequence of Fisher informa-
tions of the normalized partial sums, I (Sn), is a strictly
decreasing sequence converging to one. This is used
to prove that the integrals of enough functions also
converge, and hence Sn converges weakly to N(0,1).
Proofs of the CLT based on entropy, instead of Fisher
information, were given in Barron (1986) and Johnson
(2004).

Another elegant article in this period is Liu and
Brown (1993). The article explains in a unified way
why in many specific examples of nonparametric esti-
mation or parametric estimation with a singularity, no
unbiased estimators or unbiased estimators with a finite
variance can exist. In particular, it is shown that if the
second moment of an estimator sequence is Hellinger-
continuous, then it cannot be locally unbiased at any
singular point of the parameter space.

In the nineties, we also see the beginning of a large
body of work on asymptotic equivalence of two se-
quences of decision problems in two different se-
quences of spaces, but with the same parameter space.
Equivalence holds in a very wide sense. Risks or rates
attainable in one problem are attainable in the equiva-
lent problem. If a minimax procedure is obtainable in
one problem, it leads to a minimax procedure in the
equivalent problem.

Asymptotic equivalence is defined in terms of Le
Cam’s metric for the distance between two (sequences
of) experiments (Le Cam, 1986), say, �(Pn,1,Pn,2).
Two sequences of experiments are equivalent if
�(Pn,1,Pn,2) → 0 as n → ∞. If two sequences of
experiments are equivalent, then any risk profile attain-
able in one problem is also attainable in the other prob-
lem. Thus, given a sequence of decision rules δn,1 in
the first problem, there is a sequence of decision rules
δn,2 in the second problem such that the respective risk
functions of the two sequences of decision rules are
close to each other uniformly in θ and uniformly over
all loss functions with a bounded L∞ norm.

Brown and Low (1996) shows asymptotic equiv-
alence of nonparametric regression and white noise.
Theorem 4.1 in Brown and Low (1996) shows that
in this setting, the equivalence is constructive. More
specifically, Corollary 4.1 shows how to construct a
sequence of procedures in nonparametric regression
that is equivalent in risk to a given sequence of pro-
cedures in the white noise problem. In more or less
the same time, Nussbaum (1996) showed asymptotic
equivalence of density estimation and white noise. In
later work on asymptotic equivalence, Brown and Zhao
(2003) show equivalence of the infinite dimensional lo-
cation estimation problem and nonparametric regres-
sion, and Brown et al. (2004) show equivalence of
Gaussian white noise with drift, density estimation,
and a Poisson process with a variable intensity.

Brown had two papers on the foundational condi-
tional frequentist paradigm during this decade. The
first, Hwang and Brown (1991), considers a frequen-
tist confidence set C(x) for θ having unconditional
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coverage probability 1 − α, but considers reporting an
estimated coverage probability [1 − α(x)] (following
Kiefer, 1977), which has frequentist long run validity
as long as

Eθ

[
1 − α(X)

] ≥ 1 − α (and are ideally equal).

The very nice suggestion in this paper is to set up
another decision problem to evaluate the “conditional
accuracy” of [1 − α(x)], by considering how close
[1 − α(x)] is to the oracle I (θ ⊇ C(x)), using a loss
function such as

L
([

1 − α(x)
]
, θ

) = ([
1 − α(x)

] − I
(
θ ⊇ C(x)

))2
.

This has become the standard method of evaluating es-
timated coverage probabilities.

The final Brown paper on conditional frequentist
inference was Berger, Brown and Wolpert (1994).
Brown’s many later papers on post model selection in-
ference could be classified as conditional frequentist
inference papers, but the motivation was quite differ-
ent; it had become common place to simply condition
on the selected model and then perform frequentist in-
ference, but these later papers showed how this could
potentially be very wrong.

In Berger, Brown and Wolpert (1994), the basic
problem of testing H0 : θ = θ0 versus H1 : θ = θ1,
based on data x from density f (x | θ), was considered.
This had long been perceived as a problem in which
frequentists and Bayesians could not agree on the an-
swer, but the paper dramatically showed that this is not
so.

Note that the usual likelihood ratio (also the Bayes
factor) of H0 to H1 is

B(x) = f (x | θ0)

f (x | θ1)
.

The conditional frequentist testing paradigm that was
implemented chose a conditioning statistic S =
max{p0,p1}, where pi is the p-value from testing Hi

against the other hypothesis; the motivation is that p-
values are acknowledged as providing a measure of
“strength of evidence” against a hypothesis, and S is
thus conditioning on sets of the same strength of evi-
dence in the rejection and acceptance regions.

The resulting conditional frequentist test (compute
Type I and Type II frequentist error probabilities, con-

ditional on S) is shown to be given by

T C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if B(x) ≤ c,

reject H0 and report Type I CEP

α(x) = B(x)/
(
1 + B(x)

);
if B(x) > c,

accept H0 and report Type II CEP

β(x) = 1/
(
1 + B(x)

)
,

where c is the critical value at which the two p-values
are equal.

These conditional error probabilities, α(x) and β(x),
are highly data-dependent, in that the conditioning is
on S, which is typically just a two-point set, the small-
est conditioning set that a frequentist could possibly
use.

But the question remained as to whether this extent
of conditioning was reasonable. The greatest surprise
in the paper was that α(x) and β(x) are exactly equal
to the objective Bayesian posterior probabilities of H0
and H1, respectively, assuming that the hypotheses are
given equal prior probabilities of 1/2. Having condi-
tional frequentists and objective Bayesians report the
same error probabilities is, in some sense, the holy grail
of (objectivist) statistics and doing so in a problem—
in which it was thought that Bayesians and frequen-
tists could not reconcile—was a major breakthrough in
foundational (and methodological) statistics.

It is interesting that Brown did not further explicitly
work on the frequentist conditional viewpoint. Perhaps
he was satisfied with this major discovery that had it
all.

8. NEW CENTURY: EDGEWORTH EXPANSIONS,
INFERENCE AFTER MODEL SELECTION, THE ICM

ADDRESS

In a sequence of articles around 2000, Brown, with
coauthors, made a comprehensive examination of the
coverage probability as well as the expected width of
the widely used Wald confidence interval for the mean
parameter in discrete and continuous one parameter ex-
ponential families, specifically the important binomial
p case. It was well recognized that the Wald interval
for p has poor coverage near p = 0 (or 1), and also
even for moderate p if n was small (see, e.g., Agresti
and Coull, 1998, Blyth and Still, 1983, Ghosh, 1979).
Brown, Cai and DasGupta (2001, 2002), show that the
coverage properties of the Wald interval are far more
poor and erratic than anyone understood, even for p

near 0.5 and for n as large as 200. They show, by a
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two term asymptotic expansion of the coverage prob-
ability as well as the expected width, that the score
interval is considerably superior to the Wald interval,
and so are the Jeffreys prior interval and the Agresti-
Coull interval. For example, Brown, Cai and DasGupta
(2002) show that the coverage probabilities γs(n,p)

and γW(n,p) of the score and the Wald confidence in-
terval satisfy

γs(n,p) − γW(n,p)

= 1

4np(1 − p)

[
z3 + z5(1 − 2p)2

3

]
+ osc.

(
1√
n

)
,

where z is the standard normal percentile at level 1−α,
and osc.( 1√

n
) is an O( 1√

n
) oscillatory term arising

from the discreteness of binomial distributions. The os-
cillatory term is inevitable for all nonrandomized inter-
vals in this problem. Looking at the continuous 1

n
term,

we see that the coefficient is positive. This gives a re-
markable theoretical explanation for why in numerical
work one sees the score interval to have better coverage
probabilities than the Wald interval.

There is similarly a preference order between the
score and the Wald interval if one compares condi-
tional coverage probabilities. Suppose βs(n,p) and
βW(n,p) are respectively the conditional probability
that the score interval would cover p when the Wald
interval does not, and the conditional probability that
the Wald interval would cover p when the score inter-
val does not. Then, assuming without loss of generality
that p ≥ 1

2 , one has

βs(n,p) − βW(n,p)

= 1

np(1 − p)

z3(3 + (2p − 1)2z2))φ(z)

12(1 − �(z))
+ osc.,

where, again, osc. is an O( 1√
n
) oscillatory term. Notice

that the coefficient of the continuous 1
n

term is positive,
suggesting that the score interval is preferable from this
perspective too.

If one takes into account parsimony of the interval as
measured by width, and ease of computation, then they
recommend that the score interval be used, and use of
the Wald interval for p be stopped. Brown, Cai and
DasGupta (2003) unify the results for the one parame-
ter exponential family with a quadratic variance func-
tion (Morris, 1982). These sequence of papers give an
example where asymptotic expansion explains empir-
ical and anecdotal evidence with remarkable accuracy
for even moderate n. These results of Brown have been
widely reported and accepted by leading texts; see, for

example, Bickel and Doksum (2016), and Lehmann
and Romano (2008).

A practically important issue also of foundational in-
terest is studied in Berk, Brown and Zhao (2009) and
Berk et al. (2013). In many methodological studies, the
true model generating the data is not known when the
data arrive. Exploratory analysis or more formal model
selection procedures are used to select a model, and
at that point the selected model is treated as the true
model and susbsequent analysis is performed. For ex-
ample, in an original regression model, certain coeffi-
cients may be dropped after use of the AIC or the BIC
to select one model from a set of linear models, and the
selected submodel is treated as if it was the true model
to begin with. However, inference after model selec-
tion changes the operating characteristics of the statis-
tical procedures and their sampling distributions. The
sampling distributions become very messy, and often,
or typically, cannot be written down (Pötscher, 1991,
Leeb and Pötscher, 2008). Even the meaning of the
post model selection parameters is ambiguous. Berk,
Brown and Zhao (2009) and Berk et al. (2013) serve as
extremely readable expositions to this very interesting
and in some sense new area of inference and founda-
tions. The latter article also gives concrete post model
selection procedures in some concrete regression prob-
lems that are frequentistly valid.

Brown (1971) was universally considered as a deep
and unimagined connection between two seemingly
unrelated problems. In Brown (2002), the paper that
Brown read as his invited address at the 24th ICM
(International Congress of Mathematicians, Beijing,
2002), another equally deep and beautiful connection
was presented. This time the connection made was be-
tween his asymptotic equivalence results and the fa-
mous Hungarian CLT which gave a strong approxima-
tion with an error bound for the sequence of normalized
empirical processes for an i.i.d. sequence in one dimen-
sion. Here is a more formal description of the Hungar-
ian CLT, often referred to as the KMT coupling (Kom-
lös, Major and Tusnädy, 1975, 1976). It is useful to re-
call the KMT coupling result. Suppose X1,X2, . . . is an
i.i.d. sequence of real valued random variables with the
CDF F(x). For given n ≥ 1, let Fn(x) = 1

n

∑n
i=1 IXi≤x .

Define the process αn(t) = √
n(Fn(t) − F(t)),−∞ <

t < ∞. Let B(t) denote a Brownian bridge on [0,1].
Then, on a suitable common probability space, one
can define α̃n(t), n ≥ 1, and a sequence of Brownian
bridges Bn(t), n ≥ 1, such that:
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(a)
{
α̃n(t), n ≥ 1

} L= {
αn(t), n ≥ 1

}
(equality in law), and for suitable C1,C2, λ,

(b)

P
(

sup
−∞<t<∞

∣∣α̃n(t) − Bn

(
F(t)

)∣∣

> n−1/2(C1 logn + z)
)

≤ C2e
−λz,

for any n and any z,
(c)

sup
−∞<t<∞

∣∣α̃n(t) − Bn

(
F(t)

)∣∣ = O

(
logn√

n

)
, a.s.

The ICM paper (Brown, 2002) describes how a con-
struction of the KMT coupling can be done by using
an explicit construction of the mappings that establish
the asymptotic equivalence of two properly chosen se-
quences of experiments.

9. VIEWPOINTS ON STATISTICS AND ITS FUTURE

The research of Brown was influenced by the times.
He worked on traditional finite sample optimality and
decision theory when it was a leading doctrine of statis-
tics. In the late eighties, Brown started to move away
from admissibility, at least in his published research.
Much of the most important work in the early nineties
has a pronounced Bayes or minimax flavor, often in an
interrelated way. Brown (1994, 1998) are lively exposi-
tory articles on the conceptual role that minimaxity has
played in the development and evaluation of statistical
procedures. In the mid nineties, as problems with many
parameters and sequence models start to emerge as the
important problems, we see Brown’s research move
toward oracle inequalities (see, e.g., Donoho et al.,
1996), asymptotic or rate minimaxity, and asymptotic
equivalence. Even later, he starts to work on fully infi-
nite dimensional problems. Brown’s research evolved
synergistically with decision theory.

Although decision theory formed the continuing ba-
sis of Brown’s research, he was also intimately con-
nected with other foundations of statistics. His continu-
ing efforts in pushing the boundaries of the conditional
frequentist paradigm is perhaps the best illustration. He
solved many problems in this paradigm but his curios-
ity drove him to discover intensely deep issues in the
paradigm that it may take generations to solve.

Although Brown was obviously primarily a theoreti-
cal researcher, he was also an artful applied statistician.
He did well-known applied work, often Bayesian or

empirical Bayesian, on sports predictions and queue-
ing problems; he was one of the principal statisticians
in the 2000 US census. The article of Linda Zhao in
this volume details his applied work.

Brown was sympathetic to applications and the need
for applications of statistical research and statistical
theory. He did not work actively on the bootstrap,
but was knowledgable about it. He did serious work
on multiple comparisons and multiple testing. He did
much work on financial time series models. He knew
and valued the utility of simulations. In An essay on
statistical decision theory (Brown, 2000), he says:
“These simulation results can provide important prac-
tical validation of an asymptotic result or of a persua-
sive heuristic model. However, they do not have the
intellectual force of a mathematical proof. That is, in a
complex situation, I may be able to convince you with
simulations that procedure A is better than procedure
B, but rarely, if ever, can I prove it that way. . . . Hence,
the decision-theoretic challenge of finding a methodol-
ogy for converting the simulational power of the com-
puter into a tool able to deliver the persuasive force of
a mathematical proof.”

Brown believed that in spite of the clear and obvious
trend toward stripping mathematics away from statis-
tics, statistics will remain a fundamentally mathemat-
ical subject. He was always an optimist. In A Conver-
sation with Larry Brown (DasGupta, 2005), he says:
“Statistics has been and will remain useful, if anything,
in more contexts than ever before. I do see a red flag
on the horizon within the discipline. There seems to be
a danger of fragmentation. Branches of statistics, . . . ,
could become essentially independent subjects without
a link through the fundamental core to other fragments
of the field. . . . I hope that statistics becomes useful
in more and more areas with enough commonality that
we still exist as a discipline with a unifying core.”

ACKNOWLEDGMENTS

We are extremely grateful to the anonymous review-
ers and the Editor for their very careful reading of our
first manuscript and for their thoughtful suggestions on
improving it. We are also very very grateful to Agniva
Chowdhury for helping us very significantly with final
formatting of this article.

Research partially supported by NSF Grant DMS-
1407775 and ELS-PU 90014395.

REFERENCES

AGRESTI, A. and COULL, B. A. (1998). Approximate is better
than “exact” for interval estimation of binomial proportions.
Amer. Statist. 52 119–126. MR1628435

http://www.ams.org/mathscinet-getitem?mr=1628435


632 J. O. BERGER AND A. DASGUPTA

BAHADUR, R. R. (1954). Sufficiency and statistical decision func-
tions. Ann. Math. Stat. 25 423–462. MR0063630

BARANKIN, E. W. and MAITRA, A. P. (1963). Generalization
of the Fisher–Darmois–Koopman–Pitman theorem on sufficient
statistics. Sankhya, Ser. A 25 217–244. MR0171342

BARRON, A. R. (1986). Entropy and the central limit theorem.
Ann. Probab. 14 336–342. MR0815975

BERGER, J. O. (1976). Admissible minimax estimation of a multi-
variate normal mean with arbitrary quadratic loss. Ann. Statist.
4 223–226. MR0397940

BERGER, J. O. (1985). Statistical Decision Theory and Bayesian
Analysis, 2nd ed. Springer Series in Statistics. Springer, New
York. MR0804611

BERGER, J. O., BROWN, L. D. and WOLPERT, R. L. (1994).
A unified conditional frequentist and Bayesian test for fixed
and sequential simple hypothesis testing. Ann. Statist. 22 1787–
1807. MR1329168

BERGER, J. O. and STRAWDERMAN, W. E. (1996). Choice of hi-
erarchical priors: Admissibility in estimation of normal means.
Ann. Statist. 24 931–951. MR1401831

BERGER, J., BOCK, M. E., BROWN, L. D., CASELLA, G. and
GLESER, L. (1977). Minimax estimation of a normal mean vec-
tor for arbitrary quadratic loss and unknown covariance matrix.
Ann. Statist. 5 763–771. MR0443156

BERK, R., BROWN, L. D. and ZHAO, L. (2009). Statistical infer-
ence after model selection. J. Quant. Criminol. 26 217–236.

BERK, R., BROWN, L., BUJA, A., ZHANG, K. and ZHAO, L.
(2013). Valid post-selection inference. Ann. Statist. 41 802–837.
MR3099122

BICKEL, P. J. (1981). Minimax estimation of the mean of a normal
distribution when the parameter space is restricted. Ann. Statist.
9 1301–1309. MR0630112

BICKEL, P. J. and DOKSUM, K. A. (2016). Mathematical
Statistics—Basic Ideas and Selected Topics. Vol. 2, 2nd ed.
Texts in Statistical Science Series. CRC Press, Boca Raton, FL.
MR3287337

BLACKWELL, D. (1951). On the translation parameter problem for
discrete variables. Ann. Math. Stat. 22 393–399. MR0043418

BLYTH, C. R. and STILL, H. A. (1983). Binomial confidence in-
tervals. J. Amer. Statist. Assoc. 78 108–116. MR0696854

BOROVKOV, A. A. and SAKHANENKO, A. I. (1980). Estimates
for averaged quadratic risk. Probab. Math. Statist. 1 185–195.
MR0626310

BROWN, L. (1964). Sufficient statistics in the case of indepen-
dent random variables. Ann. Inst. Statist. Math. 35 1456–1474.
MR0216611

BROWN, L. D. (1966). On the admissibility of invariant estimators
of one or more location parameters. Ann. Inst. Statist. Math. 37
1087–1136. MR0216647

BROWN, L. (1967). The conditional level of Student’s t test. Ann.
Inst. Statist. Math. 38 1068–1071. MR0214210

BROWN, L. D. (1971). Admissible estimators, recurrent diffusions,
and insoluble boundary value problems. Ann. Inst. Statist. Math.
42 855–903. MR0286209

BROWN, L. D. (1978). A contribution to Kiefer’s theory of
conditional confidence procedures. Ann. Statist. 6 59–71.
MR0471160

BROWN, L. D. (1979). A heuristic method for determining admis-
sibility of estimators—with applications. Ann. Statist. 7 960–
994. MR0536501

BROWN, L. D. (1981). A complete class theorem for statistical
problems with finite sample spaces. Ann. Statist. 9 1289–1300.
MR0630111

BROWN, L. D. (1982). A proof of the central limit theorem moti-
vated by the Cramér–Rao inequality. In Statistics and Probabil-
ity: Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krish-
naiah and J. K. Ghosh, eds.) 141–148. North-Holland, Amster-
dam. MR0659464

BROWN, L. D. (1983). Comments on “The Robust Bayesian View-
point” by Berger, J. O.. In Robustness of Bayesian Analyses (J.
B. Kadane, ed.) 126–133. Elsevier, Amsterdam.

BROWN, L. D. (1986). Fundamentals of Statistical Exponential
Families with Applications in Statistical Decision Theory. Insti-
tute of Mathematical Statistics Lecture Notes—Monograph Se-
ries (S. S. Gupta, ed.) 9. IMS, Hayward, CA. MR0882001

BROWN, L. D. (1988). The differential inequality of a statistical
estimation problem. In Statistical Decision Theory and Related
Topics, IV, Vol. 1 (West Lafayette, Ind., 1986) (S. S. Gupta and
J. O. Berger, eds.) 299–324. Springer, New York. MR0927109

BROWN, L. D. (1990). The 1985 Wald Memorial Lectures. An
ancillarity paradox which appears in multiple linear regression.
Ann. Statist. 18 471–538. MR1056325

BROWN, L. D. (1994). Minimaxity, more or less. In Statistical De-
cision Theory and Related Topics, V (West Lafayette, IN, 1992)
(S. S. Gupta and J. O. Berger, eds.) 1–18. Springer, New York.
MR1286291

BROWN, L. D. (1998). Minimax Theory, in Encyclopedia of Bio-
statistics (P. Armitage and T. Colton, eds.). Wiley, New York.

BROWN, L. D. (2000). An essay on statistical decision theory. J.
Amer. Statist. Assoc. 95 1277–1281. MR1825275

BROWN, L. D., ed. (2002). An analogy between statistical equiv-
alence and stochastic strong limit theorems. Invited address at
the International Congress of Mathematicians, Beijing, August,
2002.

BROWN, L. D., CAI, T. T. and DASGUPTA, A. (2001). Interval
estimation for a binomial proportion. Statist. Sci. 16 101–133.
MR1861069

BROWN, L. D., CAI, T. T. and DASGUPTA, A. (2002). Confidence
intervals for a binomial proportion and asymptotic expansions.
Ann. Statist. 30 160–201. MR1892660

BROWN, L. D., CAI, T. T. and DASGUPTA, A. (2003). Inter-
val estimation in exponential families. Statist. Sinica 13 19–49.
MR1963918

BROWN, L. D. and COHEN, A. (1981). Inadmissibility of
large classes of sequential tests. Ann. Statist. 9 1239–1247.
MR0630106

BROWN, L. D., COHEN, A. and SAMUEL-CAHN, E. (1983). A
sharp necessary condition for admissibility of sequential tests—
necessary and sufficient conditions for admissibility of SPRTs.
Ann. Statist. 11 640–653. MR0696075

BROWN, L. D., COHEN, A. and STRAWDERMAN, W. E. (1979).
Monotonicity of Bayes sequential tests. Ann. Statist. 7 1222–
1230. MR0550145

BROWN, L. D. and FARRELL, R. H. (1990). A lower bound for
the risk in estimating the value of a probability density. J. Amer.
Statist. Assoc. 85 1147–1153. MR1134513

BROWN, L. D. and GAJEK, L. (1990). Information inequalities for
the Bayes risk. Ann. Statist. 18 1578–1594. MR1074424

BROWN, L. D. and HWANG, J. T. (1982). A unified admissibility
proof. In Statistical Decision Theory and Related Topics, III,

http://www.ams.org/mathscinet-getitem?mr=0063630
http://www.ams.org/mathscinet-getitem?mr=0171342
http://www.ams.org/mathscinet-getitem?mr=0815975
http://www.ams.org/mathscinet-getitem?mr=0397940
http://www.ams.org/mathscinet-getitem?mr=0804611
http://www.ams.org/mathscinet-getitem?mr=1329168
http://www.ams.org/mathscinet-getitem?mr=1401831
http://www.ams.org/mathscinet-getitem?mr=0443156
http://www.ams.org/mathscinet-getitem?mr=3099122
http://www.ams.org/mathscinet-getitem?mr=0630112
http://www.ams.org/mathscinet-getitem?mr=3287337
http://www.ams.org/mathscinet-getitem?mr=0043418
http://www.ams.org/mathscinet-getitem?mr=0696854
http://www.ams.org/mathscinet-getitem?mr=0626310
http://www.ams.org/mathscinet-getitem?mr=0216611
http://www.ams.org/mathscinet-getitem?mr=0216647
http://www.ams.org/mathscinet-getitem?mr=0214210
http://www.ams.org/mathscinet-getitem?mr=0286209
http://www.ams.org/mathscinet-getitem?mr=0471160
http://www.ams.org/mathscinet-getitem?mr=0536501
http://www.ams.org/mathscinet-getitem?mr=0630111
http://www.ams.org/mathscinet-getitem?mr=0659464
http://www.ams.org/mathscinet-getitem?mr=0882001
http://www.ams.org/mathscinet-getitem?mr=0927109
http://www.ams.org/mathscinet-getitem?mr=1056325
http://www.ams.org/mathscinet-getitem?mr=1286291
http://www.ams.org/mathscinet-getitem?mr=1825275
http://www.ams.org/mathscinet-getitem?mr=1861069
http://www.ams.org/mathscinet-getitem?mr=1892660
http://www.ams.org/mathscinet-getitem?mr=1963918
http://www.ams.org/mathscinet-getitem?mr=0630106
http://www.ams.org/mathscinet-getitem?mr=0696075
http://www.ams.org/mathscinet-getitem?mr=0550145
http://www.ams.org/mathscinet-getitem?mr=1134513
http://www.ams.org/mathscinet-getitem?mr=1074424


BROWN: PARAMETRIC INFERENCE, DECISION THEORY AND FOUNDATIONS 633

Vol. 1 (West Lafayette, Ind., 1981) 205–230. Academic Press,
New York. MR0705290

BROWN, L. D. and LIU, R. C. (1993). Bounds on the Bayes and
minimax risk for signal parameter estimation. IEEE Trans. In-
form. Theory 39 1386–1394.

BROWN, L. D. and LOW, M. G. (1991). Information inequality
bounds on the minimax risk (with an application to nonpara-
metric regression). Ann. Statist. 19 329–337. MR1091854

BROWN, L. D. and LOW, M. G. (1996). Asymptotic equivalence
of nonparametric regression and white noise. Ann. Statist. 24
2384–2398. MR1425958

BROWN, L. D. and PURVES, R. (1973). Measurable selections of
extrema. Ann. Statist. 1 902–912. MR0432846

BROWN, L. D. and ZHAO, L. (2003). Direct asymptotic equiva-
lence of nonparametric regression and the infinite-dimensional
location problem. Preprint Univ. Pennsylvania, Philadelphia,
PA.

BROWN, L. D., CARTER, A. V., LOW, M. G. and ZHANG, C.-
H. (2004). Equivalence theory for density estimation, Poisson
processes and Gaussian white noise with drift. Ann. Statist. 32
2074–2097. MR2102503

BROWN, L., DASGUPTA, A., HAFF, L. R. and STRAWDER-
MAN, W. E. (2006). The heat equation and Stein’s iden-
tity: Connections, applications. J. Statist. Plann. Inference 136
2254–2278. MR2235057

CLEVENSON, M. L. and ZIDEK, J. V. (1975). Simultaneous es-
timation of the means of independent Poisson laws. J. Amer.
Statist. Assoc. 70 698–705. MR0394962

COHEN, A. (1965). Estimates of linear combinations of the param-
eters in the mean vector of a multivariate distribution. Ann. Inst.
Statist. Math. 36 78–87. MR0172399

DASGUPTA, A. (1983). Bayes and minimax estimation in one and
multiparameter families. Ph.D. thesis, Indian Statistical Insti-
tute.

DASGUPTA, A. (2005). A conversation with Larry Brown. Statist.
Sci. 20 193–203. MR2183449

DASGUPTA, A. (2008). Asymptotic Theory of Statistics and
Probability. Springer Texts in Statistics. Springer, New York.
MR2664452

DASGUPTA, A. and SINHA, B. K. (1986). Estimation in the multi-
parameter exponential family: Admissibility and inadmissibility
results. Statist. Decisions 4 101–130. MR0848322

DIACONIS, P. and STEIN, C. (1982). Lecture notes on statistical
decision theory. Dept. Statistics, Stanford Univ., Stanford, CA.

DONOHO, D. L., LIU, R. C. and MACGIBBON, B. (1990). Min-
imax risk over hyperrectangles, and implications. Ann. Statist.
18 1416–1437. MR1062717

DONOHO, D. L., JOHNSTONE, I. M., KERKYACHARIAN, G. and
PICARD, D. (1996). Density estimation by wavelet threshold-
ing. Ann. Statist. 24 508–539. MR1394974

DYNKIN, E. B. (1961). Necessary and sufficient statistics for
a family of probability distributions. In Select. Transl. Math.
Statist. and Probability, Vol. 1 17–40. IMS and Amer. Math.
Soc., Providence, RI. MR0116407

EATON, M. L. (1992). A statistical diptych: Admissible
inferences—recurrence of symmetric Markov chains. Ann.
Statist. 20 1147–1179. MR1186245

FISHER, R. A. (1923). On the mathematical foundations of theo-
retical statistics. Philos. Trans. R. Soc. Lond. Ser. A 222 309–
368.

GHOSH, B. K. (1979). A comparison of some approximate con-
fidence intervals for the binomial parameter. J. Amer. Statist.
Assoc. 74 894–900. MR0556485

HALMOS, P. R. and SAVAGE, L. J. (1949). Application of the
Radon–Nikodym theorem to the theory of sufficient statistics.
Ann. Math. Stat. 20 225–241. MR0030730

HSUAN, F. C. (1979). A stepwise Bayesian procedure. Ann. Statist.
7 860–868. MR0532249

HWANG, J. T. and BROWN, L. D. (1991). Estimated confi-
dence under the validity constraint. Ann. Statist. 19 1964–1977.
MR1135159

JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss.
In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I
361–379. Univ. California Press, Berkeley, CA. MR0133191

JOHNSON, B. MCK. (1971). On the admissible estimators for cer-
tain fixed sample binomial problems. Ann. Inst. Statist. Math.
42 1579–1587. MR0418300

JOHNSON, O. (2004). Information Theory and the Central Limit
Theorem. Imperial College Press, London. MR2109042

JOHNSTONE, I. (1984). Admissibility, difference equations and re-
currence in estimating a Poisson mean. Ann. Statist. 12 1173–
1198. MR0760682

JOHNSTONE, I. and LALLEY, S. (1984). On independent statistical
decision problems and products of diffusions. Z. Wahrsch. Verw.
Gebiete 68 29–47. MR0767442

KAGAN, A. M., LINNIK, Y. V. and RAO, C. R. (1973). Character-
ization Problems in Mathematical Statistics. Wiley, New York.
MR0346969

KARLIN, S. (1958). Admissibility for estimation with quadratic
loss. Ann. Inst. Statist. Math. 29 406–436. MR0124101

KIEFER, J. (1977). Conditional confidence statements and con-
fidence estimators. J. Amer. Statist. Assoc. 72 789–827.
MR0518611

KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approxi-
mation of partial sums of independent RV’s and the sample DF.
I. Z. Wahrsch. Verw. Gebiete 32 111–131. MR0375412

KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1976). An approxi-
mation of partial sums of independent RV’s, and the sample DF.
II. Z. Wahrsch. Verw. Gebiete 34 33–58. MR0402883

KOROSTELEV, A. and KOROSTELEVA, O. (2011). Mathemati-
cal Statistics. Graduate Studies in Mathematics, Asymptotic
Minimax Theory 119. Amer. Math. Soc., Providence, RI.
MR2767163

LE CAM, L. (1986). Asymptotic Methods in Statistical Deci-
sion Theory. Springer Series in Statistics. Springer, New York.
MR0856411

LEEB, H. and PÖTSCHER, B. M. (2008). Can one estimate the
unconditional distribution of post-model-selection estimators?
Econometric Theory 24 338–376. MR2422862

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley,
New York. MR0107933

LEHMANN, E. L. and ROMANO, J. P. (2008). Testing Statistical
Hypotheses. Springer, New York.

LEHMANN, E. L. and STEIN, C. M. (1953). The admissibility of
certain invariant statistical tests involving a translation parame-
ter. Ann. Math. Stat. 24 473–479. MR0056249

LEVIT, B. Y. (1987). On bounds for the minimax risk. In Proba-
bility Theory and Mathematical Statistics, Vol. II (Vilnius, 1985)
203–216. VNU Sci. Press, Utrecht. MR0901534

http://www.ams.org/mathscinet-getitem?mr=0705290
http://www.ams.org/mathscinet-getitem?mr=1091854
http://www.ams.org/mathscinet-getitem?mr=1425958
http://www.ams.org/mathscinet-getitem?mr=0432846
http://www.ams.org/mathscinet-getitem?mr=2102503
http://www.ams.org/mathscinet-getitem?mr=2235057
http://www.ams.org/mathscinet-getitem?mr=0394962
http://www.ams.org/mathscinet-getitem?mr=0172399
http://www.ams.org/mathscinet-getitem?mr=2183449
http://www.ams.org/mathscinet-getitem?mr=2664452
http://www.ams.org/mathscinet-getitem?mr=0848322
http://www.ams.org/mathscinet-getitem?mr=1062717
http://www.ams.org/mathscinet-getitem?mr=1394974
http://www.ams.org/mathscinet-getitem?mr=0116407
http://www.ams.org/mathscinet-getitem?mr=1186245
http://www.ams.org/mathscinet-getitem?mr=0556485
http://www.ams.org/mathscinet-getitem?mr=0030730
http://www.ams.org/mathscinet-getitem?mr=0532249
http://www.ams.org/mathscinet-getitem?mr=1135159
http://www.ams.org/mathscinet-getitem?mr=0133191
http://www.ams.org/mathscinet-getitem?mr=0418300
http://www.ams.org/mathscinet-getitem?mr=2109042
http://www.ams.org/mathscinet-getitem?mr=0760682
http://www.ams.org/mathscinet-getitem?mr=0767442
http://www.ams.org/mathscinet-getitem?mr=0346969
http://www.ams.org/mathscinet-getitem?mr=0124101
http://www.ams.org/mathscinet-getitem?mr=0518611
http://www.ams.org/mathscinet-getitem?mr=0375412
http://www.ams.org/mathscinet-getitem?mr=0402883
http://www.ams.org/mathscinet-getitem?mr=2767163
http://www.ams.org/mathscinet-getitem?mr=0856411
http://www.ams.org/mathscinet-getitem?mr=2422862
http://www.ams.org/mathscinet-getitem?mr=0107933
http://www.ams.org/mathscinet-getitem?mr=0056249
http://www.ams.org/mathscinet-getitem?mr=0901534


634 J. O. BERGER AND A. DASGUPTA

LIU, R. C. and BROWN, L. D. (1993). Nonexistence of informa-
tive unbiased estimators in singular problems. Ann. Statist. 21
1–13. MR1212163

MEEDEN, G., GHOSH, M., SRINIVASAN, C. and VARDEMAN, S.
(1989). The admissibility of the Kaplan–Meier and other max-
imum likelihood estimators in the presence of censoring. Ann.
Statist. 17 1509–1531. MR1026297

MORRIS, C. N. (1982). Natural exponential families with
quadratic variance functions. Ann. Statist. 10 65–80.
MR0642719

NUSSBAUM, M. (1996). Asymptotic equivalence of density esti-
mation and Gaussian white noise. Ann. Statist. 24 2399–2430.
MR1425959

OLKIN, I. and SOBEL, M. (1979). Admissible and minimax esti-
mation for the multinomial distribution and for k independent
binomial distributions. Ann. Statist. 7 284–290. MR0520240

PÖTSCHER, B. M. (1991). Effects of model selection on inference.
Econometric Theory 7 163–185. MR1128410

RUKHIN, A. L. (1995). Admissibility: Survey of a concept in
progress. Int. Stat. Rev. 63 95–115.

SINHA, B. K. and GUPTA, A. D. (1984). Admissibility of gen-
eralized Bayes and Pitman estimates in the nonregular family.
Comm. Statist. Theory Methods 13 1709–1721. MR0742524

SKIBINSKY, M. and RUKHIN, A. L. (1989). Admissible estimators
of binomial probability and the inverse Bayes rule map. Ann.
Inst. Statist. Math. 41 699–716. MR1039400

SOBEL, M. (1953). An essentially complete class of decision func-
tions for certain standard sequential problems. Ann. Math. Stat.
24 319–337. MR0056899

STEIN, C. (1959). The admissibility of Pitman’s estimator of a sin-
gle location parameter. Ann. Inst. Statist. Math. 30 970–979.
MR0109392

STEIN, C. M. (1981). Estimation of the mean of a multivariate
normal distribution. Ann. Statist. 9 1135–1151. MR0630098

TSYBAKOV, A. B. (2004). Introduction à L’estimation Non-
paramétrique. Mathématiques & Applications (Berlin) [Math-
ematics & Applications] 41. Springer, Berlin. MR2013911

WALD, A. (1945). Sequential tests of statistical hypotheses. Ann.
Math. Stat. 16 117–186. MR0013275

http://www.ams.org/mathscinet-getitem?mr=1212163
http://www.ams.org/mathscinet-getitem?mr=1026297
http://www.ams.org/mathscinet-getitem?mr=0642719
http://www.ams.org/mathscinet-getitem?mr=1425959
http://www.ams.org/mathscinet-getitem?mr=0520240
http://www.ams.org/mathscinet-getitem?mr=1128410
http://www.ams.org/mathscinet-getitem?mr=0742524
http://www.ams.org/mathscinet-getitem?mr=1039400
http://www.ams.org/mathscinet-getitem?mr=0056899
http://www.ams.org/mathscinet-getitem?mr=0109392
http://www.ams.org/mathscinet-getitem?mr=0630098
http://www.ams.org/mathscinet-getitem?mr=2013911
http://www.ams.org/mathscinet-getitem?mr=0013275

	Introduction
	The Sixties: Shrinkage, Coverage Probabilities, Sufﬁciency
	The Seventies: Admissibility in Estimation and Sequential Testing, Foundations
	From Persuasive to Conﬁrmed: The Heuristics and Differential Inequalities Papers
	The Eighties: Foundations, Bayesian Avenues, Complete Class Theorems
	The Exponential Family Monograph
	The Nineties: Minimax and Bayes Risks Lower Bounds, Foundations, Novel Cramér-Rao Uses, Asymptotic Equivalence
	New Century: Edgeworth Expansions, Inference After Model Selection, the ICM Address
	Viewpoints on Statistics and Its Future
	Acknowledgments
	References

