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Comment: Models Are Approximations!
Anthony C. Davison, Erwan Koch and Jonathan Koh

Abstract. This discussion focuses on areas of disagreement with the papers,
particularly the target of inference and the case for using the robust ‘sand-
wich’ variance estimator in the presence of moderate mis-specification. We
also suggest that existing procedures may be appreciably more powerful for
detecting mis-specification than the authors’ RAV statistic, and comment on
the use of the pairs bootstrap in balanced situations.
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1. INTRODUCTION

The authors of these papers have thought hard about
fundamental issues in modelling, and although we dis-
agree with their main conclusions, their work repays
study. As the basic issues are posed most simply in the
first article, we shall largely confine our discussion to
it, referring to the articles as Paper 1 and Paper 2, or
jointly as the Papers. Like the authors, we avoid tech-
nical issues, assuming the existence of all necessary
derivatives, moments and matrix inverses.

One dictionary definition of ‘model’ is ‘a simplified
description, especially a mathematical one, of a system
or process’. This clearly implies that the model is not
the reality, and in any application it is essential to en-
sure that the inevitable simplification is not so radical
that the model becomes useless for its intended pur-
pose. Although the key issue in choosing a model is the
goal of modelling, this varies so much that universal
prescriptions are dangerous. Two classical goals are to
summarise and to predict, but if it is to be useful for ei-
ther, a statistical model should not traduce key aspects
of the data. This entails careful data exploration in ad-
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vance of modelling, and, after fitting models, the use
of diagnostics of their fit, often graphical procedures,
typically supplemented with test statistics when the vi-
sual evidence is equivocal. If a divergence between the
model and data is found, then its likely impact on the
conclusions needs to be assessed, and the benefit of
dealing with it weighed against the cost of doing so.
A crucial aspect is the range of validity of the model,
which depends on its relationship to available theory,
relevant previous experience and so forth—both sum-
mary and prediction will be more secure when infer-
ence is broadly based.

It is useful to separate model specification into pri-
mary and secondary aspects. Primary aspects relate to
the major questions to be answered, whereas secondary
aspects involve assumptions needed to answer the ma-
jor questions but not crucial in themselves. In many
cases, variation in a mean response due to changes in
an explanatory variable is primary, whereas assump-
tions about the response variance or the error distri-
bution are secondary: they affect uncertainty assess-
ment for primary aspects, but are not in themselves
usually central to the questions of interest—though, as
mentioned above, there are no universal nostrums; co-
variances are key in Panaretos, Kraus and Maddocks
(2010), for example.

The authors argue that if the data are generated by
a nonlinear model and a linear model is fitted, then
‘regressors are not ancillary, hence can’t be treated as
fixed’. Since one is never certain that a correct model
has been fitted, this implies that regressors should al-
ways be treated as random. If correct, this astonish-
ingly broad conclusion would run counter to at least a

584

http://www.imstat.org/sts/
https://doi.org/10.1214/19-STS746
https://doi.org/10.1214/18-STS693
https://doi.org/10.1214/18-STS694
http://www.imstat.org
mailto:Anthony.Davison@epfl.ch
mailto:Erwan.Koch@epfl.ch
mailto:Jonathan.Koh@epfl.ch


COMMENT 585

century of statistical practice. We regard it as incorrect,
however, for several reasons, the first of which relates
to the goal of analysis. In our view, the appropriate es-
timand in most settings is not the best population linear
approximation touted in the Papers, β(P ), but the ‘X-
conditional parameter’

β(X) = argmin
β∈Rp+1

E
{
(Y − Xβ)2 | X}

= (
XTX

)−1
XTE(Y | X),

which depends only on the conditional distribution of
the response given the explanatory variable X, and
not on the distribution of X. Dependence of the tar-
get of inference β(X) on the explanatory variables X

might seem odd if we think in classical terms of a
perfectly specified model, but on deeper reflection it
makes sense, because the fitted model can only pro-
vide an approximation to the true mean response in the
design region X : the validity of any model is uncheck-
able outside X based on the data alone. For this reason,
textbooks stress that one should avoid extrapolating a
fitted regression, and, if extrapolation is essential, then
its results should be treated with extreme caution.

A related basic issue is that β(P ) is inestimable from
any finite dataset unless the true regression relation-
ship is linear, whereas β(X) can be estimated unbias-
edly. This suggests that β(X), not β(P ), should be the
target in regression analysis—in which case X must
be treated as fixed, because it determines the best ap-
proximation for the values of the explanatory variables
actually available to the investigator. As mentioned
above, the appropriate model depends on the goal of
the analysis: if the objective is to provide an approxi-
mation useful in the region X in which values of X are
known, then β(X) is relevant, and not β(P ). Of course,
as more data become available X changes, and with it
X and the target of estimation, β(X); this is natural,
because a larger sample should allow a better approx-
imation to a broader reality, even though β(P ) itself
remains inestimable.

2. DIAGNOSTICS

The authors ‘emphasize that diagnostics should be
part of every regression analysis’. When diagnostic
procedures are used correctly, large divergences be-
tween an assumed model and the underlying data
should be detected and the fit improved so that the
only remaining divergences between the fitted model
and the data are on the borderline of detectability, or
are irrelevant to the main goal of the analysis. Thus di-

vergences between the assumed and true models that
can easily be detected are not of interest.

This train of thought implies that in the canonical
decomposition in equation (5) of Paper 1 it is realis-
tic to suppose that η(X) = n−1/2g(X) and that het-
eroscedasticity is of the general form var(y | X) =
σ 2 exp{n−1/2h(X)}, where g(X) and h(X) are of or-
der one in probability, Op(1). In large samples, such
departures are not certain to be detected and, therefore,
may perturb the residuals from the linear fit, whereas
situations such as those shown in Figure 1 of Paper
1 should be detected using standard techniques and
thus can be mitigated by fitting a more complex model.
Since the Papers argue that the sandwich standard er-
ror is needed to offset the effects of mis-specification,
it seems worthwhile to see how it performs under mis-
specification on the borderline of detectability.

To assess this, we performed an experiment with

X1, . . . ,Xn
iid∼U(0,10), conditional on which

Yj = β0 + β1Xj + n−1/2γX1.7
j

+ exp
(
n−1/2δXj

)
εj , j = 1, . . . , n,

(1)

with δ ≥ 0 and ε1, . . . , εn
iid∼N (0,1) independent of

γ
iid∼N (μγ , σγ ). As n increases this model has non-

linearity and heteroscedasticity on the border of de-
tectability for fixed values of μγ , σγ and δ. Resid-
uals for example datasets from this model, shown
in the right-hand panels of Figure 1, suggest mis-
specification of a homoscedastic linear model without
this being blatantly obvious, precisely the setting in
which using a ‘robustified’ standard error may seem
worthwhile. Here, a cautious data analyst, wary of
data-dredging, would likely decide not to elaborate the
model. Is it worthwhile to follow the advice in the Pa-
pers and use the sandwich standard error, in hope of
guarding against the effects of mis-specification?

For each of 20,000 simulated datasets of sizes n =
50, 100 and 200, we computed the classical and the
sandwich standard errors, Sc and Ss, for the ordinary
least squares estimates of β0 and β1. The correspond-
ing ‘true’ values, St, were estimated by computing the
standard deviations of the estimates based on the sim-
ulations. Figure 2 shows boxplots of the ratios Sc/St
and Ss/St for four different configurations: no mis-
specification, nonlinearity, heteroscedasticity and both
nonlinearity and heteroscedasticity. In all boxplots, the
means of both the classical and sandwich standard er-
rors converge to the ‘true’ value. Although the sand-
wich standard error is on average slightly closer to the
‘true’ value for small n, its variability is so large com-
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FIG. 1. Two mis-specified datasets of size n = 200 drawn from model (1) (left) and plot of residuals against fitted values for a straight-line
regression fit (right), with loess lines (red). Top panels, (δ,μγ ,σγ ) = (0.6,0.7,0.1), and bottom panels, (δ,μγ ,σγ ) = (0.2,0.7,0.1).

pared to the classical standard error that, in all cases,
the latter has lower relative root mean square error. It
is straightforward to check that the ratio Ss/St equals
1 + Op(n−1) in such cases, as is suggested by the
boxplots; the term of order n−1 depends on the mis-
specification but disappears in large samples.

These very limited simulations suggest that the clas-
sical standard error is preferable to its sandwich coun-
terpart when mis-specification is not obvious. Further
investigation is of course warranted, but if the results
here are representative then it appears that the sand-
wich standard error should be avoided unless one has
decided to fit a visibly incorrect model.

3. NEW OR OLD DIAGNOSTICS?

The RAV test is intended to provide a generic test
for covariates whose standard errors may be incorrect.
However, the efficiency loss due to using the sand-
wich standard error can be 50% under ideal conditions
(Hinkley and Wang, 1991), and smaller but still appre-
ciable under mild mis-specification (Figures 2 and 3),

leading one to question the power of a RAV-based test
compared to existing tests for mis-specification. To as-
sess this for the simple model (1), we compared RAV
with the Cook and Weisberg (1983) test for variance
heteroscedasticity and Tukey’s ‘one degree of freedom
for nonadditivity’ (Tukey, 1949), respectively. We took
the power 1.7 in (1) so that the Tukey test is not on
its home ground. There is a huge literature on regres-
sion diagnostics, references to which can be found in
any relevant textbook, and we made no effort to seek
optimal diagnostics, merely using two well-established
tools that should be known to every rookie data analyst.

Table 1 shows that RAV has much lower power than
these standard tests. The same is true even in cases of
both nonlinearity and heteroscedasticity, so one might
question the value of RAV if it can detect only the most
blatant problems, such as in the sketches in Paper 1.

If the RAV is used regardless, then its construction
as a ratio of variances suggests that in finite samples
a chi-squared or F approximation to its null distribu-



COMMENT 587

FIG. 2. Boxplots of the relative classical and sandwich standard errors Sc/St and Ss/St for the least squares estimator of intercept,
β̂0. Results are for 20,000 simulated datsets with sample sizes n = 50, 100 and 200 in four configurations: no mis-specification (top left);
nonlinearity (top right); heteroscedasticity (bottom left); nonlinearity and heteroscedasticity (bottom right). In all cases the mis-specifications
are on the border of detectability. The relative root mean square errors (RMSE) of the standard errors are shown below the boxplots.

tion would be vastly better than appealing to its lim-
iting normality, and this is borne out by the plots in
Appendix F of Paper 1.

4. PAIRS BOOTSTRAP

Paper 1 states that ‘Many results are . . . not new . . . ’
This applies in particular to the relation between the
sandwich variance and the pairs bootstrap, an account
of which is given in Davison and Hinkley (1997), Sec-
tions 2.7, 6.2, 6.3. For the convenience of the reader,
we summarise the key elements below.

The argument rests on the infinitesimal jackknife ex-
pansion of a statistical functional t (F ), where F repre-
sents a distribution. When F represents the distribution

of z = (x, y), with scalar y and p × 1 vector x, the co-
efficient corresponding to a linear regression of y on x

can be written as

(2) t (F ) =
{∫

xxTF(dx,dy)

}−1 ∫
xyF(dx,dy);

in the notation of the Papers, t (F ) = β(P ). The in-
finitesimal jackknife stems from the functional Taylor
series expansion (Fernholz, 1983)

t (G) = t (F ) +
∫

Lt(z;F)G(dz)

+ 1

2

∫∫
Qt(z1, z2;F)G(dz1)G(dz2)

+ · · · ,

(3)
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FIG. 3. As for Figure 2, but for the slope estimator β̂1.

where the first derivative of t at F , the influence func-
tion (Hampel, 1974, Hampel et al., 1986), is defined
by

Lt(z;F) = ∂t{(1 − ε)F + εHz}
∂ε

∣∣∣∣
ε=0

,

with Hz the step function jumping from zero to one
at z. The second derivative is

Qt(z1, z2;F)

= ∂2t{(1 − ε1 − ε2)F + ε1Hz1 + ε2Hz2}
∂ε1∂ε2

∣∣∣∣
ε1=ε2=0

,

TABLE 1
Empirical power (%) for tests at the 5% nominal level of the Cook and Weisberg (1983) and RAV tests with (δ,μγ ,σγ ) = (0.6,0,0), and
for the Tukey (1949) and RAV tests with (δ,μγ ,σγ ) = (0,0.7,0.1), for 1000 samples of sizes 50, 100 and 200. 10,000 permutations were

used for RAV

Sample size 50 100 200 50 100 200

Cook & Weisberg 61 64 67 Tukey 44 46 46
RAV 7.3 7.0 6.1 RAV 7.7 5.7 5.6
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with higher-order derivatives defined similarly. It can
be checked that

E
{
Lt(Z;F)

} =
∫

Lt(z;F)F(dz) = 0,

E
{
Qt

(
Z,Z′;F )} =

∫
Qt

(
z, z′;F )

F(dz)F
(
dz′) = 0,

where Z,Z′iid∼F , and that for the least squares parame-
ter (2) (Hinkley, 1977),

Lt(z;F) =
{∫

x′x′TF
(
dz′)}−1

x
{
y − xTt (F )

}
.

For statistical applications, G is replaced by the em-
pirical distribution function F̂ placing masses 1/n on
the elements of a random sample Z1, . . . ,Zn from F .
Then the first-order approximation

t (F̂ )
.= t (F ) +

∫
Lt(z;F)F̂ (dz)

= t (F ) + n−1
n∑

j=1

Lt(Zj ;F)

yields

E
{
t (F̂ )

} .= t (F ),

var
{
t (F̂ )

} .= n−1 var
{
Lt(Z;F)

}

= n−1
∫

L2
t (z;F)F(dz).

Higher-order approximations appear on including fur-
ther terms from (3).

In the bootstrap setting, G is replaced by the empiri-
cal distribution function of a bootstrap sample, F̂ ∗, and
F is replaced by F̂ , giving a first-order approximation
to the bootstrap statistic of the form

t
(
F̂ ∗) .= t (F̂ ) +

∫
Lt(z; F̂ )F̂ ∗(dz)

= t (F̂ ) + n−1
n∑

j=1

f ∗
j Lt (zj ; F̂ ),

where f ∗
j is the number of times that zj appears

in the bootstrap sample, and the joint distribution of
(f ∗

1 , . . . , f ∗
n ) is multinomial with denominator n and

mean vector (1, . . . ,1). It is easy to check that the
bootstrap variance of t (F̂ ∗), conditional on the origi-
nal sample z1, . . . , zn, is approximately

(4) var∗
{
t
(
F̂ ∗)} = n−2

n∑
j=1

L2
t (zj ; F̂ ) + O∗

p

(
n−3/2)

,

with an obvious modification for the m out of n boot-
strap. The error term relates to the bootstrap approxi-
mation. The right-hand side of (4) typically underesti-
mates the bootstrap variance (Efron and Stein, 1981).

In the case of the least squares parameter (2),

Lt

{
(xj , yj ); F̂ } = n

(
XTX

)−1
xj

(
yj − xT

j β̂
)
,

where β = (XTX)−1XTy is the ordinary least squares
estimate, so, with D̂ = diag{(yj − xT

j β̂)2 : j = 1,

. . . , n} (Hinkley, 1977, Fox, Hinkley and Larntz, 1980),

var∗
{
t
(
F̂ ∗)} = (

XTX
)−1

XTD̂X
(
XTX

)−1

+ O∗
p

(
n−3/2);(5)

this is the sandwich variance estimate for the least
squares estimator. The downward bias of D̂ can be
reduced by using modified residuals, but in any case
the familiar trade-off between efficiency and robust-
ness rears its ugly head, as mentioned above and in
Hinkley and Wang (1991).

Nowhere above is it supposed that the data stem from
a linear model, homoscedastic or not, but simply that
the zj = (xj , yj ) (j = 1, . . . , n) have been sampled in-
dependently at random from F . If t (F ) is to be useful,
however, it should be roughly linear in X, and, as dis-
cussed above, sensible data analysis will ensure that
this is the case by eliminating obvious discrepancies
between the fitted model and the data.

5. DESIGNED EXPERIMENTS

In a designed experiment, the design matrix X is
chosen in advance of observing the responses y, but the
fitted model will rarely be perfect. Yet X was chosen
deliberately: does it make sense to regard it as random
because the model might be inadequate? In this setting,
the design is an experimental ancillary (Kalbfleisch,
1975), and so is correctly treated as fixed.

Bootstrapping pairs in designed settings may lead
to certain parameters being inestimable in most re-
samples. As an example, consider Darwin’s data on
self- and cross-fertilised Zea mays plants (Fisher, 1935,
Table 1). When a model with 15 parameters for the
matched pairs and a fertilisation effect is fitted, all
16 parameters are estimable only in around 9% of re-
samples, and the ‘model-trusting’ and ‘model-robust’
standard errors for the fertilisation effect, both equal
to 1.22, substantially underestimate the corresponding
bootstrap standard error, 1.66. Related discussion is
given in Example 6.5 of Davison and Hinkley (1997).
This example is extreme, but the repetition of rows
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in the resampled design matrix can greatly change its
eigenvalues in many other situations, both designed
and observational: bootstrapping is not a panacea. In
particular, subsetting of bootstrap output may be nec-
essary to ensure that the conclusions based on the re-
samples are relevant to the data actually observed.
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