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Comment: “Models as Approximations I:
Consequences Illustrated with Linear
Regression” by A. Buja, R. Berk,
L. Brown, E. George, E. Pitkin,
L. Zhan and K. Zhang
Roderick J. Little

1. OVERVIEW

I congratulate Buja et al. on this ambitious and de-
tailed description of a vitally important topic in statis-
tics. The question of how to account for modeling un-
certainty is a fundamental problem of statistical infer-
ence. I found the Buja et al. papers both challenging
and thought-provoking, and I appreciate the opportu-
nity to participate in the discussion. I focus my remarks
on the first paper, since the second one largely concerns
generalizations that are not the focus of my remarks.

Buja et al. adopt a traditional frequentist perspec-
tive. In contrast, I approach the topic from a “calibrated
Bayesian” philosophy of statistical inference, where
the inference for a particular dataset is Bayesian, but
models are chosen to attempt to achieve good frequen-
tist operating statistics (Box, 1980, Rubin, 1984, 2019,
Little, 2006, 2011). I also comment on two aspects that
receive little attention in the Buja et al. papers, the role
of the selection mechanism in statistical modeling, and
the perspective of finite population sampling. In the
modeling approach to finite population inference, the
finite population is assumed to be sampled from an un-
derlying infinite “superpopulation,” so what Buja et al.
call the “population” I will call the “superpopulation.”
As an advocate of the calibrated Bayesian approach to
survey sampling (Little, 2004, 2012), the topic of Buja
et al. is pertinent because, as they note, the Bayesian
approach is fundamentally “model-trusting,” whereas
the competing design-based approach to survey infer-
ence is “model-skeptical” and “assumption-lean.”

In support of the calibrated Bayes position, I con-
trast the Buja et al. papers to Szpiro, Rice and Lumley
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(2010), henceforth SRL, an excellent paper that pro-
vides a justification of sandwich estimation of standard
errors from a Bayesian perspective. Buja et al. refer-
ence SRL, but do not compare it with their work.

2. SIMPLICITY, NOT MATHEMATISTRY

The Buja et al. papers seem to me quite mathemati-
cally formidable, despite the absence of formal regular-
ity conditions. The approach to relaxing assumptions
seems to me abstract—I am not looking forward to at-
tempting to explain to practitioners, struggling with the
interpretation of a regression coefficient in a logistic
regression, that the target slopes are actually projec-
tions on a nonparametric space. I argued in my Fisher
lecture (Little, 2013) that a primary advantage of the
Bayesian approach to statistics is its conceptual sim-
plicity. If, like me, you find the level of mathematical
sophistication in the Buja et al. papers challenging, I
recommend the fundamental simplicity of the Bayesian
perspective in SRL. That is not to say it is easy to im-
plement, but the difficulties lie in developing an appro-
priate Bayesian model that captures the important sci-
entific aspects of a problem without unnecessary “clut-
ter.” This is the “art” of statistics, and it distinguishes it
from the field of mathematics.

3. TERMINOLOGICAL TORTURE: “RANDOM” VS.
“FIXED” EFFECTS, AND “NONLINEARITY”

I have never resonated with the frequentist interpre-
tation of what is “random” and what is “fixed.” Effects
in analysis of variance are called “random” if they are
regarded as sampled from a population, and “fixed” if
they are not; in Buja et al., “fixed” regressors become
“random” under potential model misspecification. If X
is a treatment indicator, in what sense is it “random”?
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Whether randomly assigned or not, it is a “fixed” en-
tity, and it is not clear to me why treating it as random
is relevant for defining a treatment effect. As an aside,
a treatment effect in a randomized clinical trial can be
estimated by regression with fixed treatment indicator
under minimal assumptions, so the “model-trusting”
paradigm seems fine in that setting.

One of the reasons I gravitated to Bayes is that the
Bayesian usage of “fixed” and “random” is much more
straightforward and intuitive—a quantity is fixed if it
is known, and random (in the sense of being assigned a
distribution to quantify uncertainty) if unknown. From
the Bayesian perspective, known factors in an analy-
sis of variance are fixed, whether or not they can be
regarded as sampled from a population. A “random ef-
fects” model assigns a proper prior on group means,
leading to “borrowing of strength,” and a “fixed ef-
fects” model assigns a flat prior distribution on the
means, implying that no borrowing of strength is war-
ranted.

Another term I find problematic is “nonlinear,”
as in “the sandwich estimator of the standard er-
ror . . . is asymptotically correct even in the presence
of nonlinearity.” It is confusing enough that nonlin-
ear can mean nonlinear in the parameters or the vari-
ables, but it adds to the confusion to use the term
for model misspecification, given that nonlinear mod-
els are standard in some areas, such as pharmacoki-
netic/pharmacodynamic modeling. The authors’ term
“first-order model misspecification” in footnote 2 is
not ideal but is a big improvement.

4. ROBUST CALIBRATED BAYES, VIA TARGET
AND WORKING MODELS

The elements of Bayesian inference are (a) defining
the estimand; (b) formulating a useful working model;
(c) computing the posterior distribution of the estimand
under the model; and (d) diagnostic checks and sensi-
tivity analysis to assess the model and assess the per-
formance of the inference. As SRL make clear, the es-
timand might be a function of the parameters in the
model, rather than one of those parameters.

In a finite population setting, Little (2004, 2012) dis-
tinguishes a “target model” that determines the popula-
tion quantities of interest, and a “working model” that
is the basis for inference, and is used to predict survey
variables for the nonsampled and nonresponding units
in the population. The estimand is the population quan-
tity obtained from fitting the target model to the entire
population, using some agreed fitting principle such as

maximum likelihood. For example, if the target model
assumes that the mean of Y has a linear regression on
X, then a target finite population quantity might be the
slope of Y on X fitted to the entire population by least
squares. This quantity exists regardless of whether the
regression of Y on X is really linear, although its util-
ity for summarization is weakened if the regression is
highly nonlinear. The target finite population quantity
is a useful target for inference even if the main interest
is in “analytic” inference for the corresponding super-
population parameter, because a poor estimate of the
former is also a poor estimate of the latter.

For robust inference, the working model does not
need to assume a linear regression of Y on X; mini-
mally, I would argue that it needs to incorporate sur-
vey design features that are not necessarily part of the
target model. One situation where this is important is
in the context of probability samples where the selec-
tion probabilities are not constant, leading to sampling
weights defined as the inverse of the probability of se-
lection. The role of sampling weights in regression is
a controversial topic, with social scientists often ignor-
ing them and survey samplers using them to weight the
units. My own view is that sampling weights need to be
incorporated into the working model, though as predic-
tors of nonsampled values rather than as weights for the
sampled units. A flexible specification of the regression
on the weights provides inference with a form of dou-
ble robustness. This idea is pursued in the context of
sampling weights in Zheng and Little (2005) and in the
context of nonresponse weights in Little and An (2004)
and Zhang and Little (2009).

SRL apply a similar approach to target and work-
ing models in their superpopulation regression setting.
Specifically, their working model for a regression of Y

on X is normal with a mean φ(x) and variance σ 2(x)

that are highly “nonparametric,” that is do not make
strong assumptions about the form of the regression
function; perhaps “many-parametric” is a better term.
They define the target parameter based on the least
squares fit of the simpler target model—the linear re-
gression of Y on X—to the superpopulation, as in their
equation (3). This approach is a bit more abstract than
my approach for a finite population, but still seems to
me a lot simpler than the Buja et al. definition of slopes
as projections on a non-parametric space.

Since Bayes inference is conditioned on the choice
of working model, the Bayesian approach to “model-
robust” inference is to make the model robust, rather
than changing the interpretation of the estimand as in
Buja et al. This could involve a flexible mean and vari-
ance function in the regression model, as in SRL’s
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equation (3), or more flexible distributional assump-
tions, for example, replacing normality of errors by a
longer-tailed distribution, or a Dirichlet process prior.
The degree of complexity of the model should depend
on the sample size, with simpler models being pre-
ferred for small sample sizes, and more complex ones
for large sample sizes. The asymptotic considerations
that dominate frequentist arguments have a role, but
are limited by the fact that we don’t know how large
asymptotic is in many real applications.

5. CONDITIONING AND ANCILLARITY

Buja et al. emphasize the lack of ancillarity of X

when the regression model is misspecified. I agree
(isn’t it obvious?) that arguments about whether statis-
tics are sufficient or ancillary assume the validity of the
model; the “Achilles heel” of otherwise impressive ar-
guments in favor of the likelihood principle (Birnbaum,
1962) is that we don’t know the true model, and work-
ing models are all to some degree misspecified. How-
ever, from my calibrated Bayesian perspective, ancil-
larity is irrelevant for the inference itself, because the
posterior distribution conditions on all the data; ques-
tions of ancillarity are secondary, in that they relate to
the reference set for assessing operating characteristics
of the inference, but not the inference itself.

Concerning conditioning, one of the virtues of Bayes
is that it emphasizes clarity about what is being con-
ditioned in a probability statement (e.g., Little, 2013).
The estimand either conditions on X as, for example,
when prediction given X is the objective, or it does not,
as in equation (3) of SRL. The posterior distribution of
the estimand conditions on X, because it conditions on
all the data.

6. THE ROLE OF THE SELECTION MECHANISM

Rubin (1974, 1976, 1978) highlights the importance
of the sample selection mechanism in the robustness
of model inferences by incorporating the mechanism
as part of the model. Buja et al. state a key random
sampling assumption (italics mine):

“In fact, it may rely on no more than the as-
sumption that the rows (yi, xi) of the data
matrix . . . are i.i.d. samples from a joint
multivariate distribution subject to some
technical conditions.”

I add italics because this assumption, routine in
much of mathematical statistics, is both crucial—in
some respects it trumps all the other assumptions in

the statistical model—and often very questionable.
If, as is usual, units are not selected by simple ran-
dom sampling, this is an assumption, and if violated
then estimates under model-trusting or model-robust
paradigms—are subject to unknown biases. Units are
rarely selected by random sampling from a population,
as with “found data” not subject to a statistical design
for data collection, or clinical trials where participants
are volunteers, not randomly selected from the target
population for a drug. In finite population sampling,
the assumption of a simple random sample is extreme
and rare, because of limitations in the sampling frame
or nonresponse. Concerning nonresponse, the random
sampling assumption translates to missing completely
at random (Rubin, 1976), an assumption that is rarely
satisfied.

The conditioning on x’s in the “model-trusting”
paradigm requires only simple random sampling of the
y’s given the x’s, which is a weaker assumption since it
does not require that the x’s are themselves randomly
sampled. So, arguably the “model-robust” approach
trades weakening the model assumptions for strength-
ening the random sampling assumption, which is often
highly questionable.

7. CONCLUSION

To conclude with a point of agreement, the authors
make a good case for using the estimate of the RAV as
a diagnostic for potential model misspecification. This
usage accords with my “calibrated Bayesian” philos-
ophy, which allows for frequentist notions of model
checking (Rubin, 1984); since the two variance esti-
mates are based on contrasting perspectives on model
misspecification, comparing them seems a good idea.

I applaud Buja et al. for thought-provoking work on
a topic of great importance, even though ultimately I
cling to my Bayesian “model-trusting” paradigm, al-
beit with flexible, well-calibrated working models that
can earn my trust.
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