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Comment on Models as Approximations,
Parts I and II, by Buja et al.
Jerald F. Lawless

Abstract. I comment on the papers Models as Approximations I and II, by
A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zhao and
K. Zhang.
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Buja et al. provide an interesting and valuable dis-
cussion of certain aspects of regression methodology.
They deal with the common setting where covariates
(regressors) X are random, and not fixed values as-
signed as part of an experimental plan. A central theme
in the papers is that standard model-based inference
procedures assume the correctness of a family of mod-
els for the conditional distribution of a response vari-
able Y , given X, but models never represent exactly
the true distribution. For the sake of discussion, I will
refer to this as model misspecification. In Part I, the
authors focus on the conditional mean function μ(x) =
E(Y |X = x) and models of the form μ(x) = x′β; more
generally one can consider models F(y|x; θ) for the
conditional distribution function of Y , indexed by a pa-
rameter θ . They consider the consequences of model
misspecification, which are summarized in points (1)
to (10) at the start of Section 14 in Part I. The fact
that models are approximations to reality, and the con-
sequences of misspecification, are widely known and
recognized in good statistical practice but I agree with
the authors that they are given insufficient attention in
most teaching of statistics.

I’ll begin with brief comments on the mathematical
results central to the paper, with some rephrasing and
standard notation. Suppose a (working) family of mod-
els is indexed by a parameter θ and that θ̂n denotes an
estimator based on a random sample of n pairs (Y,X)

that is consistent for θ when the model is correct. It is
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well known that when the assumed model is not cor-
rect, θ̂n converges in probability to some θ∗ as n → ∞
under mild conditions. Buja et al. focus on the fact that
θ∗ is a functional θ(PYX) of the true distribution PYX

of (Y,X). They derive and use versions of the well-
known result that

√
n(θ̂ −θ∗) is asymptotically normal

with mean zero and covariance matrix of the form � =
A−1(θ∗)B(θ∗)A−T (θ∗). In the regression setting of
Part I White’s variance estimator (2), though first intro-
duced by him as a “heteroscedasticity-consistent” esti-
mator, is noted to be consistent for � more generally.
They term such estimators “model-robust” and stress
that “model-trusting” variance estimators, for example,
based on A−1(θ∗) for maximum likelihood estimators,
should not be used. I would make two points here.
First, robust variance estimators like (2) are widely
used and not as obscure as the authors suggest: they can
be obtained by using the fact if ψi(θ) = ψ(Yi,Xi; θ)

denotes an estimating function component for obser-
vation i and Ai(θ) the corresponding negative Jacobian
matrix (see Part II, Section 7.2), then since the ψi(θ

∗)
are i.i.d., the component matrices in � can be estimated
as sample averages with n−1 ∑n

i=1 Ai(θ̂n) for A(θ∗)
and n−1 ∑n

i=1 ψi(θ̂n)ψi(θ̂n)
T for B(θ∗). This gives

(2) for the OLS estimating function. Second, “model-
trusting” variance estimates can be used in the random
X setting; they should however be used cautiously in
situations where one has sufficient confidence in the
working model.

Buja et al. explore some of the consequences of mis-
specified models. In fact, they want to avoid models,
though the parameter estimates are based on a speci-
fication of some kind. Points they emphasize are that
one should focus on θ(PYX) and that the distribu-
tion of X is an important consideration in doing this.
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I agree about the importance of PX and also with
their points on the usefulness of comparing robust and
model-trusting variance estimates. I also agree with
their emphasis of the x–y bootstrap. The detailed anal-
ysis of the effects of nonlinearity on estimates from lin-
ear models, and on regression “error” and residuals, is
useful in understanding effects of nonlinearity and also
the behavior of specification tests based on compari-
son of robust and model-trusting covariance matrices.
Part II has a number of ideas that are valuable at least
qualitatively. One is the definition of a well-specified
functional which, as they mention, has important con-
nections to causal inference and the integration of in-
formation. An idea with more obvious quantitative ap-
plication is the examination of the effects of alternative
distributions for X, using reweighting or otherwise. I’ll
come back to some of these points as I discuss a few
important issues for regression analysis.

Buja et al. wish to avoid models, and ask what es-
timates represent when no model is assumed. The an-
swer that they are functionals of the (true) data distri-
bution is a familiar one in nonparametric statistics, but
there the focus is on interpretable functionals such as
means, standard deviations or quantiles. In the present
setting, the crucial question is what θ∗ = θ(PYX) and
related estimators represent when models that produce
an estimator are misspecified. “Assumption-lean” ap-
proaches have many applications, but do not obvi-
ate the importance and usefulness of models. Model-
ing plays an important role in scientific discovery and
progress. Buja et al. comment in Section 9 of Part II
that “Regression is the attempt to describe the condi-
tional response distribution PY |X .” Such descriptions
are most useful when they involve models that can be
applied and compared across studies or populations.
Assumptions about the form of certain distributions or
processes, guided by background knowledge, help in
deciding what features to examine and in developing
scientific interpretations. Models need not be viewed
as “true” to be useful; they are approximations to real-
ity and careful checks on the adequacy of models is a
key aspect of good statistical practice. Models provide
best approximations in a certain sense and Buja et al.
note that the definition of best involves the distribution
of X. Indeed, since the usefulness of a model in a spe-
cific setting will depend on the range and distribution
of covariates, a definition without this property would
not be very helpful. The roles of models have been ex-
tensively discussed and I will not repeat additional ar-
guments here, but in addition to references in the paper

see, for example, Cox (1990), Breiman (2001) and dis-
cussants, Shmueli (2010) and references in these pa-
pers.

Discussions of statistical methodology should be
framed according to the objectives. A primary dis-
tinction is between situations where the objectives are
scientific discovery or understanding, and situations
where the objective is automated decision making. In
the latter case, some procedures use predictive models
but may not be concerned about interpretability, and
others may employ algorithms that do not use a model.
Some of the disagreements in the literature concerning
the use of models (e.g., see Breiman, 2001 and discus-
sants) arise because objectives are not clearly stated.
Shmueli (2010) has recently discussed this; he refers
to explanatory versus predictive objectives, noting that
in some settings a good predictive model may not be
transparent or easily interpreted. Buja et al. do not dis-
cuss this directly, but their points on interpretability,
misspecification and “well specification” mainly ad-
dress scientific understanding.

Let us suppose that we are interested in the condi-
tional mean function E(Y |x) = μ(x) and perhaps also
the conditional standard deviation function σ(x). It is
crucial in considering these functions of x that we think
carefully about the range and distribution of X in the
population of interest, and relationships between indi-
vidual covariates Xj in X. As the paper stresses, this is
important for the interpretation of parameter estimates
and for assessing the adequacy of models in specific
settings. It hardly needs saying, for example, that a lin-
ear model may be adequate over a limited range for x
but be quite unsatisfactory over a broader range. Other
things that guide how we study μ(x) include rough
ideas about standard deviation to mean ratios σ(x):
μ(x), scientific knowledge, and the type and amount of
data available. Exploratory data analysis and alternat-
ing bouts of model fitting and assessment are used in
many settings, and create difficulties for formal infer-
ences concerning covariate effects and “final” models.

The papers aim to develop a model-free theory for
regression, but do not say much about how regression
analysis should be done. They do however consider
two tools for understanding relationships between Y

and covariates, based on RAV ratios of robust to model-
trusting standard errors for individual regression coef-
ficients βj and, in Part II, on covariate reweighting.
These seem useful for model assessment, but it would
be good to see comparisons on real data with other
techniques, including residual analysis, nonparametric
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or weakly parametric estimation of μ(x) and calibra-
tion checks. Comprehensive model assessment is dif-
ficult in settings involving many covariates, and test-
ing and sensitivity analysis based on model expansion
are key tools. Assessment of prediction error for mod-
els is useful even if our main objectives are scientific
understanding and explanation; models with small pre-
diction error engender confidence in the relevance and
interpretation of parameter estimates. The authors pre-
fer to avoid models and discuss how estimates β̂j for
individual covariates can indicate directions of asso-
ciation for responses and adjusted covariates, though
association here means linear association. The connec-
tion with weighted averages of case-wise slopes will
sometimes be helpful but exactly when seems unclear
in the absence of more information about the nature of
μ(x). The relationship between a covariate and Y is af-
fected by associational and causal relationships among
the covariates, and difficulties in assessing the impor-
tance of a covariate are well known. Shmueli (2010)
and others argue that different approaches to model-
ing and assessment of importance are needed for ex-
planatory versus predictive purposes. For scientific un-
derstanding, qualitative assessments using paradigms
of causal inference or conditional independence offer
some help, but do not in themselves look at strengths
of associations or effects. When the objective is under-
standing, I find it difficult to envision truly comprehen-
sive analysis without considering both response mod-
els and covariate distributions.

The importance of the X-distribution for causal anal-
ysis is noted in Part II, Section 3.4. A related discus-
sion concerns the transportability of inferences from
one population or group to another. Numerous authors
have noted that inferences or models for conditional
distributions such as F(y|x) are generally more trans-
portable than inferences about marginal effects or dis-
tributions; for example, see Keiding and Louis (2016)
and discussion of the paper. In Buja et al.’s terms,
“well-specified” functionals and their estimates are
more transportable than functionals that are not well
specified. A major reason for differences in transporta-
bility is that marginal distributions or distributions that
condition on just a specified covariate involve averages

over the covariate distribution; these distributions rou-
tinely vary from population to population, even if the
conditional distributions are (approximately) the same.
This is a factor in the failure of results from both ran-
domized intervention studies and observational studies
to hold up in other settings. It also makes the compar-
ison of “causal” effects across different studies chal-
lenging; the same issue applies to meta-analysis. Still
another problem occurs with attempts to use data from
an external data base or study to augment (improve es-
timation in) the analysis of a specific study. Chatterjee
et al. (2016) and Han and Lawless (2019) show that
differences in the covariate distributions in the specific
study and the external data can result in substantial bias
in the augmented estimates of regression coefficients.
Several of Buja et al.’s points are important here and,
in particular, the need for careful consideration of the
X-distribution.

Model misspecification is a key source of erroneous
inferences and of failures in prediction and decision-
making, and this paper is a welcome contribution. It
seems to me that the insights from the authors’ model-
free theory are also found using standard results con-
cerning working models and estimation theory under
model misspecification. Nevertheless, I grant the au-
thors their point of view, and thank them for drawing
attention to the importance of model misspecification
and to the distribution PX in regression settings.
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