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ROS Regression: Integrating Regularization
with Optimal Scaling Regression
Jacqueline J. Meulman, Anita J. van der Kooij and Kevin L. W. Duisters

Abstract. We present a methodology for multiple regression analysis that
deals with categorical variables (possibly mixed with continuous ones), in
combination with regularization, variable selection and high-dimensional
data (P � N ). Regularization and optimal scaling (OS) are two important
extensions of ordinary least squares regression (OLS) that will be combined
in this paper. There are two data analytic situations for which optimal scal-
ing was developed. One is the analysis of categorical data, and the other
the need for transformations because of nonlinear relationships between pre-
dictors and outcome. Optimal scaling of categorical data finds quantifica-
tions for the categories, both for the predictors and for the outcome vari-
ables, that are optimal for the regression model in the sense that they maxi-
mize the multiple correlation. When nonlinear relationships exist, nonlinear
transformation of predictors and outcome maximize the multiple correlation
in the same way. We will consider a variety of transformation types; typ-
ically we use step functions for categorical variables, and smooth (spline)
functions for continuous variables. Both types of functions can be restricted
to be monotonic, preserving the ordinal information in the data. In combi-
nation with optimal scaling, three popular regularization methods will be
considered: Ridge regression, the Lasso and the Elastic Net. The resulting
method will be called ROS Regression (Regularized Optimal Scaling Re-
gression). The OS algorithm provides straightforward and efficient estima-
tion of the regularized regression coefficients, automatically gives the Group
Lasso and Blockwise Sparse Regression, and extends them by the possibil-
ity to maintain ordinal properties in the data. Extended examples are pro-
vided.

Key words and phrases: Lasso and Elastic Net regularization for nominal
and ordinal data, monotonic group Lasso, regularization for categorical high-
dimensional data, optimal scaling, linearization of nonlinear relationships,
monotonic step functions and splines.
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1. INTRODUCTION

Multiple regression investigates the relationship be-
tween an outcome (response) variable and a set of pre-
dictor variables, and can be used to estimate a model
for predicting future outcomes. Ordinary least squares
(OLS) regression is known for not performing well
with respect to both model complexity and prediction
accuracy, and breaks down under multicollinearity, for
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example, when the number of predictors is larger than
the number of observations. Regularization improves
prediction accuracy, and using L1-norm regularization
(through the Lasso or the Elastic Net), also decreases
the model complexity. When variables are categori-
cal and/or when relations among variables are not lin-
ear, standard OLS methods have to be further adjusted.
Usually, a categorical predictor is handled by replac-
ing it with a set of dummy variables. Nonlinear rela-
tions for continuous variables are usually dealt with by
replacing predictors by basis functions such as poly-
nomials. (For a state-of-the-art overview, see Hastie,
Tibshirani and Friedman, 2009.)

There are two separate yet equally important rea-
sons to replace OLS regression with optimal scaling re-
gression. In optimal scaling, each categorical predictor
variable is replaced by a set of quantifications. Instead
of creating dummy variables, optimal quantifications
are assigned directly to the categories of the predictor.
In case of continuous predictor variables, optimal scal-
ing deals with nonlinear relationships by transforming
the predictors, typically by smooth spline functions.
The basis of OS regression is the “one-variable-at-a-
time” approach, also known as “coordinate descent”,
originally used to find transformations of the data (De
Leeuw, Young and Takane, 1976; Friedman and Stuet-
zle, 1981; Gifi, 1990; Breiman and Friedman, 1985;
Buja, Hastie and Tibshirani, 1989; Hastie and Tibshi-
rani, 1990). A special property of optimal scaling is
that these quantifications and transformations can be
either monotonic or nonmonotonic with the originally
given coding of the categories. In addition, the same set
of quantifications and transformations can be applied
to the (possibly categorical) outcome.

Existing methods that apply regularization to cate-
gorical predictors by creating augmented data do not
give regularized coefficients for each predictor, but reg-
ularized coefficients for each dummy variable. To rem-
edy this, the Group Lasso (Yuan and Lin, 2006) and
Blockwise Sparse Regression (Kim, Kim and Kim,
2006) were proposed, regularizing a group or block in-
stead of the individual dummy respectively substitute
variables, by applying a norm restriction to the coeffi-
cients in the group or block. However, the Group Lasso
can only deal with nominal predictors, and does not ap-
ply to a categorical outcome variable. In contrast, Reg-
ularized Optimal Scaling (ROS) Regression, as pro-
posed in this paper, does not use sets of dummies, but
applies the above-mentioned quantification or optimal
transformation of predictor variables to give regular-
ized coefficients in a straightforward way. ROS regres-

sion can maintain the ordinal properties of ordinal pre-
dictors, and can deal with an ordered categorical out-
come. In addition, we can easily generalize from cate-
gorical to continuous variables, also allowing for mix-
tures of categorical and continuous variables (again,
without using dummy variables). It turns out that the
“one-variable-at-a-time” approach makes the computa-
tion of regularized coefficients for the Lasso and subse-
quently for the Elastic Net trivially simple, even when
the number of predictors is much larger than the num-
ber of observations.

1.1 Related Methods

Since optimal scaling regression is a particular non-
linear generalization of OLS, we mention several re-
lated methods.

• Alternating Conditional Expectation (ACE, Breiman
and Friedman, 1985) allows for nonlinear transfor-
mations of both outcome and predictors, thereby be-
ing closely related to optimal scaling. ACE can han-
dle nominal variables, but it does not allow restric-
tions for ordinal categorical variables, as in optimal
scaling.

• Generalized Additive Models (GAM; Hastie and
Tibshirani, 1990) extend linear regression by allow-
ing nonlinear transformation of the predictors us-
ing scatterplot smoothers (GAM). When the predic-
tors are all continuous, optimal scaling methods are
equivalent to generalized additive models (GAMs).

• Multivariate Adaptive Regression Splines (MARS,
Friedman, 1991) extends linear regression by replac-
ing each predictor by a set of basis splines.

• Copula based regression (Sklar, 1959; Kolev and
Paiva, 2009; Trivedi and Zimmer, 2005) has be-
come a popular way of describing (nonlinear) de-
pendence between outcome and predictors in the fi-
nancial and actuarial field. It can be considered as
applying monotone transformations to both outcome
and predictors coupled with distributional assump-
tions, and is known to work best for continuous data
(Parsa and Klugman, 2011, Genest and Nešlehová,
2007). Since copula based regression is discussed
less frequently in the statistical literature than GAM
or GLM, an elaborate comparison with (regularized)
optimal scaling is included in Appendix A.

• Generalized linear models (GLM/GLIM,
Nelder and Wedderburn, 1972), such as logistic re-
gression, involve a different type of nonlinearity.
They handle nonnormal error terms in the linear re-
gression model through a link function, giving rise
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to a nonlinear relation between (expected) outcome
and the linear combination of predictors. Thus, an
important distinction with respect to optimal scal-
ing is the distributional assumption underlying these
methods and the fact that the nonlinearity is captured
in the link function.

Thus, some are quite similar in spirit to optimal scal-
ing, because they involve optimal transformations of
the predictors while the relation between transformed
predictors and outcome remains linear. An advantage
of these methods is that they are relatively insensitive
to misspecification given their lack of distributional as-
sumptions and abundant (semiparametric) flexibility.
In other words, instead of specifying functions before-
hand, these methods (including OS) allow the analysis
to reveal the appropriate functional form. Other non-
linear generalizations, however, are of a very different
type because they transform the relation between the
predictors and outcome, which relation (the link) be-
comes nonlinear.

1.2 Outline

In summary, we present a methodology for multi-
ple regression analysis that deals with categorical vari-
ables (possibly mixed with continuous ones), in com-
bination with regularization. ROS regression handles
highly correlated predictors, provides variable selec-
tion and can be used with high-dimensional data (P �
N ). Transformations of predictors and outcome can be
both nonmonotonic as well as monotonic.

The remainder of this paper is organized as follows.
Section 1 is concluded by a short example to illustrate
some of the introduced benefits of ROS regression. We
will use the well-known Marketing Data from Hastie,
Tibshirani and Friedman (2009), abbreviated HTF, and
compare our analysis with an approach analogue to the
analysis presented there. Section 2 gives a brief history
and description of the basic OS regression approach in-
cluding computational details. Section 3 presents three
illustrations: (a) a small example with simulated data
showing nonlinear relationships between predictor and
outcome, (b) the full analysis of the Marketing Data
with mixed nominal and ordinal predictors, and an or-
dinal outcome, and (c) an analysis of cervix cancer
data, with a mixture of ordinal and continuous predic-
tors and with an ordinal outcome. A variety of dif-
ferent models is fitted and the results are compared
through the use of diagnostics and cross-validation.
Section 4 describes the ROS Regression methodology
proposed in this paper, including a short literature re-
view that led to its development. This section contains

details on how regularization with Ridge, Lasso and
Elastic Net penalties is incorporated in optimal scal-
ing, and discusses selection of the Ridge and Lasso
penalties. In this section, it is also shown that ROS
regression in specific situations is equivalent to the
above-mentioned Group Lasso (Yuan and Lin, 2006)
and Blockwise Sparse Regression (Kim, Kim and Kim,
2006). Section 5 presents three different applications.
The first revisits the simulated data with nonlinear re-
lationships from Section 3, the second shows an ex-
tended analysis of data concerning the 50 states, and
the third shows an application in a high-dimensional
data setting (P � N ), with metabolomic data from
LC-MS (Liquid Chromatography Mass Spectrometry)
measurements of plasma lipids. The paper concludes
with a discussion and suggestions for further research.

1.3 An Introductory, Abbreviated Example

To illustrate the optimal scaling approach to categor-
ical data, we use the Marketing Data, as described in
Hastie, Tibshirani and Friedman (2009), pages 492–
494. The data consist of an ordinal (ordered) outcome
variable (Annual Income) (y), having 9 levels and 13
predictor variables (xk) for 8993 customers in a San
Francisco shopping mall. The predictor set consists of
a mixture of ordinal (ordered) and nominal (unordered)
categorical variables. For a standard regression anal-
ysis (a), we follow a procedure similar as was de-
scribed in HTF: observations with missing data were
removed, leaving 6876 objects. Then each ordinal pre-
dictor was cut at its median and coded by one dummy
variable; each categorical predictor with Ck categories
was coded by Ck −1 dummy variables. This resulted in
a 6876×35 matrix of 6876 observations on 35 dummy
variables (predictors). The ordinal outcome variable
(annual income) was treated as a numerical variable
with nine different values. The result of this analysis
can be found in the first row of Table 1. We give the
apparent prediction error (APE), the mean squared er-
ror obtained for the total sample, and the estimated ex-
pected prediction error (ÊPE), the mean squared error
obtained by some hold-out method, in this example 10-
fold cross-validation.

For the optimal scaling regression analysis (b), we
analyze the 6876 observations directly, choosing a
nominal scaling level for the unordered categorical pre-
dictors, and an ordinal scaling level for the ordered pre-
dictors. The outcome variable (Annual Income) with
nine categories was given an ordinal scaling level as
well. The ordinal scaling level results in optimal quan-
tifications, and these are used in the computation of the
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TABLE 1
Results for two different regression analyses of the HTF (2009) Marketing Data. APE gives the apparent prediction error (the mean of the
squared differences between the linear combination of (transformed) predictors and the (transformed outcome)), and ÊPE the estimate of

the expected prediction error with associated standard error (s.e.), obtained by 10-fold cross-validation

Observed Data Outcome Ordinal Predictors Ordinal Predictors Nominal APE ÊPE (s.e.)

Standard Treatment (a) numeric (y) binary (xk) dummies (xk) 0.534 0.539 (0.010)
Optimal Scaling (b) ordinal (y) ordinal (xk) nominal (xk) 0.483 0.492 (0.011)

MSE. (Details are given in Section 2.) The results for
the two analyses are compared in Table 1.

It is clear that incorporating optimal transformations
for both the ordered and the unordered categorical vari-
ables is beneficial in terms of prediction accuracy (as
estimated in 10-fold cross-validation); the decrease in
the estimate of the expected prediction error in analy-
sis (b) compared to analysis (a) is more than 9% (0.539
versus 0.492). The associated standard errors are com-
parable (0.010 and 0.011), even though 40% more pa-
rameters were fitted in the transformation of the pre-
dictors (49 versus 35). We will show how the opti-
mal transformations are obtained in Section 2, and will
present them in Figures 2 and 3 in Section 3.

2. OPTIMAL SCALING REGRESSION

In this section, the optimal scaling methodology is
treated in detail. After some background, the OS loss
function is defined for general transformations. Then,
focusing on transformations of categorical variables as
running example, computational details are provided.
Explanations of other transformation possibilities and
an algorithmic overview are included in Appendix B.

2.1 Background

The nonlinear transformation process has been de-
noted by various names in the literature: in psycho-
metrics it was called Optimal Scaling (a term origi-
nally coined by Bock, 1960), Nishisato (1980, 1994)
called it dual scaling, Buja (1990) reintroduced the
older term optimal scoring (also used in Hastie, Tib-
shirani and Buja, 1994), and when the (predictor and
outcome) variables are all categorical, the term quan-
tification is used (Gifi, 1990). Quantification is also one
of the key terms in the data analysis framework devel-
oped by Hayashi (1952). In the psychometric literature,
nonlinear regression with optimal scaling has been ex-
tensively explored, starting with Kruskal’s (1965) non-
linear, monotonic, version of ANOVA. This approach
was followed upon in additive modeling (ADDALS;

De Leeuw, Young and Takane, 1976) and multiple re-
gression (MORALS; Young, De Leeuw and Takane,
1976); also, see the review paper Young (1981). The
collective work by the Leiden group at the department
of Data Theory resulted first in Gifi (1981), later offi-
cially published as Gifi (1990). Winsberg and Ramsay
(1980) replaced Kruskal’s original monotonic regres-
sion approach (that produces step functions) by mono-
tonic regression splines (that produce smooth piece-
wise polynomial functions); a nice review is given in
Ramsay (1988). In the meantime, optimal transforma-
tions in regression had entered the mainstream statis-
tical literature in the Breiman and Friedman (1985)
paper on Alternating Conditional Expectations (ACE)
and the Tibshirani (1988) paper on Additivity Vari-
ance Stability (AVAS). Finally, regression with opti-
mal scaling became widely available in statistical pack-
ages such as SAS/STAT (in a procedure called TRAN-
SREG) (SAS/STAT, 1990) and in the CATREG pro-
cedure in SPSS Categories 8.0 (Meulman, Heiser and
SPSS, 1998).

2.2 The OS Regression Loss Function

In linear regression problems, we have a system con-
sisting of a random “outcome”, “response” or “depen-
dent” variable Y and a set of random “explanatory”,
“predictor”, or “independent” variables X = {Xk}Pk=1,
where P denotes the number of predictors. The prob-
lem defines a “training” sample, {yi,xi}N1 of known
values for Y and X, where (yi,xi) links the predic-
tor variables of the ith object with the ith value of the
outcome variable, and where i = 1, . . . ,N . Using the
training data, the model can be written as

yi = β ′xi + εi =
P∑

k=1

βkxik + εi,

or (in vector notation) as

(2.1) y = β1x1 + β2x2 + · · · + βP xP + ε,

where ε = {εi}Ni=1 are the residuals, and the linear
combination of predictor variables is formed through
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a set of regression coefficients in β = {βk}Pk=1. We as-
sume from the start, without loss of generality, that the
outcome and predictor variables are standardized (i.e.,
centered and normalized to have a standard deviation
of one), thus there is no need to fit an intercept. The
optimal coefficients are estimated by minimizing the
(mean) squared error, thus we write the optimization
task in the form of a least squares loss function:

(2.2) L(β) =
N∑

i=1

∥∥yi − β ′xi

∥∥2 =
∥∥∥∥∥y −

P∑
k=1

βkxk

∥∥∥∥∥
2

,

where ‖·‖2 denotes the squared Euclidean norm. Loss
function (2.2) has to be minimized over the vector of
coefficients β , and solving for the optimal β will give
a maximum correlation between the linear combination
of the predictor variables and the outcome variable.

For the optimal scaling algorithm, the loss function
is written as

(2.3) L(β, ϕ,ϑ) =
∥∥∥∥∥ϑ(y) −

P∑
k=1

βkϕk(xk)

∥∥∥∥∥
2

.

The arguments over which the function has to be
minimized are the weights β = {βk}Pk=1, the transfor-
mation ϑ(y) of Y , and ϕ that stands for functions
ϕk(xk), that is, the set of nonlinear transformations
ϕ = {ϕk(xk)}Pk=1.

2.3 Transformation in Optimal Scaling

In the optimal scaling approach, there is a large em-
phasis on the analysis of categorical data; we there-
fore at the outset introduce an N × Ck indicator ma-
trix Gk for each categorical predictor Xk . The num-
ber of different categories in Xk is indicated by Ck ,
and each column of Gk = Gk(xk) shows by 1–0 cod-
ing whether or not an object i scores in category ck of
Xk, ck = 1, . . . ,Ck . For each variable, we search for a
size Ck vector of quantifications vk that minimizes the
overall value of the associated loss function, now writ-
ten as

(2.4) L(β,V ,ϑ) =
∥∥∥∥∥ϑ(y) −

K∑
k=1

βkGkvk

∥∥∥∥∥
2

,

where V represents the super vector of concatenated
quantifications {vk}Pk=1. Thus, the optimal scaling
mechanism first involves the expansion of xk in Gk ,
followed by a contraction in Gkvk , and the result is the
transformation ϕk(xk). Since a continuous variable can
be viewed as a variable with N (number of objects) cat-
egories, numeric, continuous variables and categorical,

discrete variables, can be dealt with in the same frame-
work. It should be noted from the start that we only use
indicator matrix notation in the equations to show how
to obtain optimal quantifications. We do not use indica-
tor matrices (that are extremely sparse) in the computa-
tions. In an efficient algorithm, matrix multiplications
that involve Gk are replaced by simple additions.

Within the class of nonlinear transformations, we
make the following distinctions. We call a quantifica-
tion nominal if we merely maintain the class member-
ship information in the quantified variable Gkvk , or
equivalently, in the nominal transformation ϕk(xk); if
two objects i and i′ belong to the same category of
variable k, then

(2.5) xik = xi′k =⇒ (Gk)ivk = (Gk)i′vk,

where (Gk)i denotes the ith row of Gk . If a categori-
cal predictor variable contains order information on the
objects, this information can be preserved in the trans-
formation:

(2.6) xik < xi′k =⇒ (Gk)ivk ≤ (Gk)i′vk,

restricting the ordinal quantifications in vk so that
they are nondecreasing, and we call the transformation
ϕk(xk) ordinal. In the latter case, xk and ϕk(xk) are
related by a monotonic step function. A linear trans-
formation is a further restriction by preserving interval
information as well, and amounts to standardizing the
original variable. If the original variable is continuous,
and we wish to apply less restrictive transformations
than linear ones, we need to limit the number of pa-
rameters that are fitted in the nonlinear transformation.
For instance, we can use regression splines in which
the number of parameters is limited by restricting the
degree of the spline and the number of interior knots.
Alternatively, we could first make a continuous vari-
able discrete with a fixed number of categories (bin-
ning), and subsequently apply optimal category quan-
tification, resulting in a step function. The relation be-
tween regression spline functions and step functions
is given by the fact that they are equivalent when the
number of parameters fitted in the spline function is
equal to Ck − 1, where Ck is the number of categories
that is quantified.

Since the predictor variables are usually correlated
in the regression problem (2.2), the optimal transfor-
mations ϕk(xk) in (2.3) (e.g., the quantifications vk in
(2.4)) are also interdependent. For the moment, we as-
sume the transformation of the outcome ϑ(y) to be
fixed to ϑ∗.
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2.4 Computation and Convergence

To solve for each ϕk(xk), we rewrite the loss function
in (2.4) as

(2.7) L
(
β,V ,ϑ∗) =

∥∥∥∥ϑ∗ − ∑
l �=k

βlGlvl − βkGkvk

∥∥∥∥2
,

where β again denotes {βk}Pk=1 and V the super vec-
tor of quantifications {vk}Pk=1. A superscript asterix in
the argument list indicates a parameter held fixed in
minimizing the loss function. Thus, we separate a vari-
able and its weight from the linear combination of
predictors, isolating the target part βkGkvk from the
remainder, denoted as

∑
l �=k βlGlvl . In short, OS not

only alternates between optimizing β and ϕ, it also
turns the original multivariate problem into a series
of univariate ones: we update the weight and trans-
formation for one predictor at a time, holding the
weights and transformations for the other predictors
fixed, and iterate across predictors. This estimation
strategy has been called “alternating least squares” or
“conditional least squares”; in statistics it was labeled
“backfitting”, following Friedman and Stuetzle (1981).
Other terms found in the literature are “the Gauss-
Seidel algorithm”, “Newton–Raphson”, “Component-
wise update”, “Block Relaxation”, “one-variable-at-a-
time” and “Coordinate Descent”.

De Leeuw, Young and Takane (1976) have estab-
lished the convergence of the OS algorithm by show-
ing that it can be viewed as involving a cyclically
repeated series of optimal conic projections. Conver-
gence of such series can be proven by theorems avail-
able in literature (Gurin, Poljak and Raı̆k, 1967; Céa
and Glowinski, 1973; Oberhofer and Kmenta, 1974;
and Zangwill, 1969/70). A formal proof of conver-
gence for the closely related ACE procedure was given
in Breiman and Friedman (1985). The full optimal
scaling algorithm is described in the SPSS Algorithms
documentation (IBM Corp., 2010), of which a con-
cise version is included in Appendix B. Here we de-
scribe the update of the coefficients and the quantifica-
tions/transformations.

For updating the target part βkGkvk in (2.7), we de-
fine an auxiliary variable uk

(2.8) uk = ϑ∗(y) − ∑
l �=k

βlGlvl ,

thus uk is the partial residual. Inserting uk in (2.7), we
find that

(2.9) L(βk,vk) = ‖uk − βkGkvk‖2,

which is a function of βk and vk only. We minimize
(2.9) over all Gkvk ∈ Ck(xk), where Ck(xk) specifies
the cone that contains all admissible transformations of
the variable xk . In the case of a nominal transformation,
the cone Ck(xk) is defined by

(2.10) Ck(xk) ≡ {
ϕk(xk)|ϕk(xk) = Gkvk

}
,

and we define the metric projection PCk(xk) as

(2.11) PCk(xk) ≡ min
vk

‖uk − βkGkvk‖2.

This metric projection ensures that objects in the same
category according to variable k obtain the same quan-
tification in the transformed variable ϕk(xk) = Gkvk .
Minimizing over vk results in the conditional estimate
ṽk , defined as

(2.12) ṽk = β−1
k D−1

k G′
kuk,

where Dk = G′
kGk , a diagonal matrix with the marginal

frequencies of the categories in xk on the main diago-
nal. Actually, only the sign of βk is needed because the
transformed variable ϕk(xk) is standardized. The latter
is ensured by setting

(2.13) v∗
k = N1/2ṽk

(
ṽ′
kDkṽk

)−1/2
,

so that (Gkvk)
′(Gkvk) = N . The standardization of the

transformed variable, in addition to preventing the de-
generate solution with all quantified values equal to
zero, allows us to compute the regression weight βk

separately from the transformation. The current value
for the regression weight βk is obtained by minimizing
L(βk,v∗

k), resulting in

(2.14) β∗
k = N−1u′

kGkv∗
k.

For the other scaling levels the transformation
amounts to restrictions of the nominal quantification
in equation (2.12). For this purpose, we split the loss
function (2.9) into loss of nominal transformation and
loss due to the restriction:

L(βk,vk) = ∥∥uk − βkGkvnom
k

∥∥2

+ ∥∥Gkvnom
k − Gkvrestr

k

∥∥2
,

(2.15)

where vnom
k is the nominal quantification ṽk given in

equation (2.12), and vrestr
k is ṽk restricted according

to the chosen optimal scaling level. In Table 2, we
describe three types of restrictions schematically, for
ordinal, splines and numeric transformations, respec-
tively. Details are fully described in Appendix B.

When all coefficients and predictor transformations
have been updated in this way, one may transform the
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TABLE 2
Restricting quantifications

Quantification Ingredients

1. vord
k : weighted monotonic regres- xcat

k = Ck-vector (*) with different categories or values in xk .
sion of vnom

k on xcat
k using Dk Dk = diagonal matrix with marginal frequencies.

2. vsplin
k : weighted linear regression Sk = matrix (*) with Ck different rows contain ing a spline basis, for example, for I-splines.

of vnom
k on Skbk bk is a vector with spline coefficients to be estimated.

3. vnum
k : weighted linear regression xcat

k = Ck-vector with different categories or values in xk .
of vnom

k on xcat
k using Dk Gkvnum

k is standardized xk .

∗xcat
k and Scat

k are shortened and reordered versions of xk and Sk , with only one row per category.

outcome variable as well by defining Gy as the N ×Cy

indicator matrix for the outcome and vy as the vector
of category quantifications for the outcome. Then we
may minimize the loss function (2.4) over vy holding
the coefficients and predictor quantifications fixed at
β∗ and v∗, respectively,

(2.16) L
(
β∗,v∗,vy

) =
∥∥∥∥Gyvy − ∑

k

β∗
k Gkv∗

k

∥∥∥∥2
.

Setting partial derivatives in (2.16) to zero, gives

(2.17) ṽy = D−1
y G′

y

∑
k

β∗
k Gkv∗

k

for the conditionally optimal nominal quantification.
For the outcome variable, we have the same set of
transformation options available as for the predictor
variables. In practice, however, for reasons of inter-
pretability of the final prediction model, it is preferable
for a continuous outcome to choose a linear transfor-
mation or a spline transformation with very few de-
grees of freedom. A possible nonlinear relation be-
tween (a linear combination of) predictor variables and
the outcome is preferably taken care of by nonlinear
transformation of the predictors. If the outcome is cat-
egorical, we choose a monotonic step function if the
categories are ordered, and a nonmonotonic step func-
tion if they are unordered. In the latter case, when all
predictors are linearly transformed, optimal scaling is
equivalent (up to a scaling factor) to classical linear dis-
criminant analysis (Gifi, 1990).

3. APPLICATIONS OF OPTIMAL SCALING,
INCLUDING DIAGNOSTICS

Before going to richer applications on empirical
data, we first propose a number of diagnostics that are
useful in evaluating the OS results. Next, we demon-
strate OS regression with a small example, to show its

properties when there are nonlinear relationships be-
tween the predictor variables and the outcome.

3.1 Diagnostics

The overall criterion that is optimized by the opti-
mal scaling transformations is the multiple correlation
R2 between the optimal linear combination of trans-
formed predictor variables and the (transformed) out-
come (Gifi, 1990). An important diagnostic for a sin-
gle predictor is its “predictability” from the other pre-
dictors, and the values for the so-called conditional in-
dependence are given by the inverse of the diagonal
elements of the inverse of the correlation matrix R for
the (transformed) predictors. The elements of this P -
vector will be called tolerance values, defined by

TOL = 1

diag(R−1)
.

Optimal scaling transformations for multiple regres-
sion will usually increase the average value of TOL
over the various predictors. A suitable candidate for
a diagnostic for the condition of the correlation ma-
trix for (transformed) predictors is the so-called Log
Determinant Divergence. This measures the difference
between matrices by the log determinants of those ma-
trices. In OS regression, we measure the divergence of
the correlation matrix R and the identity matrix I, be-
cause I is the correlation matrix when all predictors are
completely uncorrelated. The Log Determinant Diver-
gence (DLD) is then written as (adapted from Dhillon,
2008)

DLD = D�d(R, I)

= tr(R) − log det(R) − P

= −
P∑

k=1

log(λk).

(3.1)
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Note that this is a “degenerate” version of Stein’s loss:

tr
( ˆ��

−1) − log det
( ˆ��

−1) − P

(James and Stein, 1961, page 376). Equation (3.1)
shows that our diagnostic D�d (DLD) boils down to a
simple function of the eigenvalues of the correlation
matrix between transformed predictors. In our expe-
rience, optimal scaling transformations for regression
will usually decrease the value of D�d(R, I). A third
diagnostic that can be used to evaluate the condition
of R is the value of its smallest eigenvalue (SMEV).
If R is ill-conditioned, the smallest eigenvalue will be
small. In our experience, optimal scaling transforma-
tions will in general increase the value of the smallest
eigenvalue if the predictors are highly correlated. We
remark that if X is high dimensional, with P � N ,
and/or R has eigenvalues equal to 0, the diagnostics
have to be adapted.

3.2 A Simple Example with Two Predictors,
Nonlinearly Related to the Outcome Variable

This simple example has two predictor variables
only, and we sampled X1 and X2 with N = 1000 from
a multivariate normal distribution, with ρ = 0.707 be-
ing the population correlation. The outcome variable
was constructed as y = exp(x1) + |x2| + ε, where ε ∼
N (0,1). The correlation between the predictors in the
sample is 0.706. The results for three different models
are shown in Table 3, which gives the results for the
regression coefficients β (with their standard errors),
the fit r2, the correlation r(x1,x2) and the diagnostics
defined in Section 3.1. The standard error of the re-
gression coefficients has been estimated by a bootstrap
with 1000 samples, and the expected prediction error
(ÊPE) and its standard error have been estimated by 10-
fold cross-validation. When the predictors were trans-
formed, nonmonotonic spline transformations (using
second degree polynomials, with three internal knots)
were fitted.

Model 1 gives results for OLS regression. The pre-
dictors are highly correlated, regression coefficients β1

and β2 are very different, and both the fit (r2) and the
estimated prediction accuracy (ÊPE) are rather poor.
Because we only have two predictors, the smallest
eigenvalue equals 1 − |r(x1, x2)|. Because β2 is very
small, we transform x2, keeping x1 fixed (model 2);
we observe that compared to model 1, the dependence
among the predictors becomes minimal (the correla-
tion between the predictors is now −0.050) and the
conditional independence (tolerance) is close to maxi-
mal (0.998). The r2 increases, as well as the regression
coefficient β2; the estimate of the expected prediction
error decreases.

If we allow both predictors to be transformed (mo-
del 3), both r2 and β1 increase compared to model 2,
while the tolerance values and β2 decrease somewhat.
The estimated prediction error is smallest for model
3, and compared to model 1, the overall improvement
is obvious. Because the predictors are uncorrelated in
model 2, the transformations in model 3 increase the
value of the smallest eigenvalue.

Figure 1 shows the partial residual plots, with the
partial residual plotted versus predictor k. (For ex-
ample, the plot in the upper left panel depicts u1 =
y−β2x2 on the vertical axis versus x1 on the horizontal
axis.) These partial residual plots are given for both the
original predictors x1 and x2 in the left panels, as well
as for the transformed predictors ϕ1(x1) and ϕ2(x2) in
the right panels. We observe that the transformations
ϕ1(x1) and ϕ2(x2), shown in the left middle panels, are
a nonlinear fit to the scatter in the partial residual plots
in the left panels. The regression between the trans-
formed predictors and the partial residuals in the right
middle panels has been linearized, as is seen from the
independently fitted smoothing splines (right panels).
These functions are fitted to inspect whether the choice
of transformation has been appropriate. If not, the plots
on the far right hand side would indicate this by show-
ing a nonlinear curve, implying there is still nonlinear-
ity remaining after transformation.

TABLE 3
Results for three different regression models with two predictors

Transformation r2 β1 (s.e.) β2 (s.e.) ÊPE (s.e.) r(x1, x2) SMEV TOL* DLD

1. lin(x1), lin(x2) 0.379 0.634 (0.027) −0.027 (0.034) 0.661 (0.181) 0.706 0.294 0.502 0.690
2. lin(x1), spl(x2) 0.570 0.637 (0.029) 0.438 (0.020) 0.467 (0.146) −0.050 0.950 0.998 0.002
3. spl(x1), spl(x2) 0.855 0.851 (0.031) 0.224 (0.029) 0.148 (0.007) 0.214 0.786 0.954 0.047

∗In regression with two predictors, both obviously have the same value for the conditional independence.



ROS REGRESSION 369

FIG. 1. Two predictors: scatter plots of partial residuals versus observed predictors (left panels) and versus transformed predictors (right
middle panels). Transformations ϕ1(x1) and ϕ2(x2) versus observed predictors displayed in the left middle panels. Linearization of partial
residuals shown in far right panels, curves obtained by fitting smoothing splines with four knots to the scatter plots in the right middle panels.

3.3 Mixed Nominal and Categorical Predictors with
an Ordinal Outcome: The Marketing Data

We revisit the Marketing Data from Hastie, Tib-
shirani and Friedman ((2009), pages 492–494), intro-
duced in Section 1 to demonstrate the optimal scaling
features of the analysis. As was described previously,
the data consist of an ordinal outcome variable y (An-
nual Income per Household) and 13 predictor variables
(xk) for customers in a San Francisco shopping mall.
The predictor set consists of a mixture of ordinal (or-
dered) and nominal (unordered) categorical variables.
For the optimal scaling regression analysis, we ana-
lyzed the data matrix of 6876 objects and 13 predic-
tors directly, without creating dummy variables, and
with appropriate optimal scaling level for the nominal
and ordinal variables, respectively. The apparent pre-
diction error has been minimized by optimal scaling
and is 0.483, with 49 degrees of freedom; the estimate
of the expected prediction error obtained by 10-fold
cross-validation is 0.492, with standard error 0.011.

In Section 2 it was shown how the transformations
in optimal scaling are found. We obtain a transformed

data matrix with the same dimensions as the origi-
nal data matrix. First we use the transformed predic-
tor matrix, with columns Gkvk , to display the various
transformations in Figures 2 and 3 (the transformation
for the binary variable sex is omitted). We describe
the most important predictor variables. The first trans-
formation plot is for marital status, a nominal vari-
able with five categories (married, living together, di-
vorced, widowed, single). The quantifications are rep-
resented as dots, and are connected by a nonmonotonic
stepfunction. The standardized regression coefficient is
0.189, with an estimated standard error of 0.026, ob-
tained by a bootstrap with 1000 bootstrap samples. The
transformation plot shows a basically decreasing func-
tion, which combined with the positive coefficient indi-
cates that married couples have the highest income on
average, while widowed people have the lowest. The
category for single obtains the same quantification as
the category for divorced/separated. This information
can be used in further analyses, where we would use
the transformed predictor, which has numeric proper-
ties, instead of the original one. In other words, us-
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FIG. 2. Marketing Data. Transformations of predictors 2–7 in predicting Annual Income of Household. Nominal or ordinal quantifications
on vertical axis versus original categorical values on horizontal axis.

ing the transformed predictors subsequently in a lin-
ear multiple regression analysis, would give the same
results as obtained in the optimal scaling analysis.

The predictor, age, shows a monotonically increas-
ing function, a positive regression weight, 0.279
(0.022), but we see that the four highest categories are
tied (obtaining the same quantifications). The transfor-
mation of education (β = 0.122 (0.16)) is very regular.
Looking at occupation (β = 0.252 (0.14)), we see that
category 6 (Student, HS or College) obtains the lowest
quantification, similar to category 9 (unemployed). The
categories 3, 4, 5 and 7 have very similar quantifica-
tions. The full order of the categories obtained by opti-
mal scaling is: Professional/Managerial, Sales Worker,
Military, Clerical/Service Worker, Homemaker, Fac-
tory Worker, Retired, Unemployed, Student. Even with

8 degrees of freedom, the standard error is small.
The predictor householder status (β = 0.124 (0.14))

gives the new order as Own, Live with Parents/Family,
Rent.

Figure 4 contains two panels. In the panel on the left,
predicted values for each outcome category (of Annual
Income) are represented by a boxplot, with the usual
range from the lower hinge (the 25th percentile) to the
upper hinge (the 75th percentile). The predicted values
for the outcome variable (ŷ) are given by the vector
with the weighted sum of nominal and ordinal, quanti-
fied, predictors in Gkvk , thus

(3.2) ŷ =
K∑

k=1

βkGkvk.
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FIG. 3. Marketing Data. Transformations of predictors 8–13 in predicting Annual Income of Household. Nominal or ordinal quantifications
on vertical axis versus original categorical values on horizontal axis.

The median values (lines) in the boxplots are very
close to the associated, unstandardized, category quan-
tifications (ṽy) for the outcome variable in the right
panel, indicated by dots, and computed as

(3.3) ṽy = D−1
y G′

y

K∑
k

βkGkvk = D−1
y G′

yŷ.

Thus, the unstandardized quantifications of the cate-
gories of the outcome variable in ṽy are obtained as av-
erages (Dy contains the marginals of the outcome cat-
egories) of the appropriate values of ŷ, as coded in Gy.
The dots are connected by a (monotonic) step function.
The most remarkable feature of the transformation of
the outcome variable is the big jump from category 1

(less than $10,000) to category 2 ($10,000 to $14,999).
The remaining steps are very similar.

3.4 Mixed Ordered Categorical and Continuous
Predictors for Five Ordered Categories of
Cervical Cancer

The data used in this example were collected at the
Leiden Cytology and Pathology Laboratory, and con-
cern characteristics of cells obtained from patients with
various grades of cervical preneoplasia and neoplasia.
To obtain the samples, taken from the ectocervix as
well as the endocervix, special sampling and prepa-
ration techniques were used. The correct histological
diagnosis was known by a subsequently taken biopsy.
A subset of the data has been previously analyzed
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FIG. 4. Outcome in Marketing Data. Boxplots for predicted values (ŷ) for each category of Annual Income (in the left panel). Quantifica-
tions, indicated by dots, of the nine categories of Income in the panel on the right. Dots are connected by a stepfunction.

in Meulman et al. (1992) and Friedman and Meul-
man (2003), and contains, according to the histologi-
cal diagnosis, 50 cases with mild dysplasia (histologi-
cal group 1), 50 cases with moderate dysplasia (histo-
logical group 2), 50 cases with severe dysplasia (histo-
logical group 3), and 50 cases with carcinoma in situ
(histological group 4). The number of cases with in-
vasive squamous cell carcinoma (histological group 5)
is 42. For each of the 242 cases, seven qualitative fea-
tures of the cells were determined. The features were
rated by a pathologist on a scale ranging from 1 (nor-
mal) to 4 (very abnormal); so these seven variables are
ordered categorical. The features under consideration
are Nuclear Shape, Nuclear Irregularity, Chromatin
Pattern, Chromatin Distribution, Nucleolar Irregular-
ity, Nucleus/Nucleolus Ratio, and Nucleus/Cytoplasm
Ratio. In addition, four quantitative features of each
sample were established: Number of Abnormal Cells
per Fragment (mean values), Total Number of Abnor-
mal Cells, Number of Mitoses and Number of Nucle-
oli (mean values). From the earlier analyses mentioned
above, it is known that this data set is noisy, and accu-
rate prediction of the outcome is thereby difficult.

The complete analysis design can be described as
follows, and is depicted in Figure 5. The full data set
contains 242 objects, and 20 objects are set apart as
supplementary validation data in each of 12 steps in
the outer loop (the validation phase). The remaining
objects form the active data set, used in the model-
ing phase. Thus, in the inner loop, we analyze the re-
maining set of 242 − 20 = 222 objects; the analysis
of the active data set gives us the so-called apparent

prediction error (APE), the mean squared error loss
(MSE). On the active data set, we apply an 11-fold
cross-validation, so 202 objects are used as training
data, and 20 objects as test data. In this step, we re-
peatedly compute estimates for both the regression co-
efficients and the transformations for the training data,
and these are subsequently applied to the test data. This
gives us the estimate of the expected prediction error
(ÊPE), by averaging over the MSE for the 11 test data
sets, and its standard error (s.e.). In the validation phase
(outer loop), the regression coefficients and the trans-
formations for each of the 12 active data sets (of size

FIG. 5. Schematic representation of the estimation of the appar-
ent prediction error (APE), expected prediction error (ÊPE) and
generalization error (ÊPE). Solid arrows represent data splits by
resampling routines, which are repeated (dotted arrows). APE is
obtained directly from the Active Data. In the example presented,
ÊPE estimation is done by 11-fold cross-validation (CV) in the in-
ner loop, and ̂GENERR estimation is done by 12-fold CV in the
outer loop.
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TABLE 4
Prediction error (MSE) for different sets of transformations of the Cervix Cancer Data. Values are averages over the 12 steps in the

validation phase. The MSE for models labeled by an ∗ are used to display results in Figure 6

Predictors Average Average

Models Qual Quant Outcome APE ÊPE (s.e.) ̂GENERR (s.e.)

1∗ linear linear linear 0.254 0.288 (0.026) 0.279 (0.076)
2∗ nominal linear linear 0.216 0.274 (0.027) 0.269 (0.080)
3∗ ordinal linear linear 0.217 0.270 (0.027) 0.266 (0.079)

4∗ ordinal spl(nmon, 2, 2) linear 0.148 0.203 (0.018) 0.195 (0.055)
5 ordinal spl(nmon, 2, 1) linear 0.150 0.197 (0.017) 0.189 (0.052)
6 ordinal spl(mono, 2, 1) linear 0.153 0.191 (0.017) 0.183 (0.051)
7∗ ordinal spl(mono, 2, 2) linear 0.150 0.189 (0.017) 0.182 (0.051)

8∗ ordinal spl(nmon, 2, 2) ordinal 0.125 0.179 (0.021) 0.179 (0.060)
9 ordinal spl(nmon, 2, 1) ordinal 0.128 0.175 (0.020) 0.174 (0.059)
10 ordinal spl(mono, 2, 1) ordinal 0.134 0.175 (0.019) 0.174 (0.055)
11 ordinal spl(mono, 2, 3) ordinal 0.127 0.171 (0.019) 0.170 (0.058)
12∗ ordinal spl(mono, 2, 2) ordinal 0.128 0.169 (0.019) 0.167 (0.056)

222) are applied to the 20 objects in the associated sup-
plementary validation set, and the resulting 12 values
of the MSE for the validation set are used to obtain the
estimate of the generalization error ( ̂GENERR) and its
standard error. Since in the outer loop we also obtain 12
values for (APE, and 12 values for ÊPE and their stan-
dard error for the test data, we average those as well.
These are the values are given in Table 4.

This table shows the results for three different sets
of transformations; the rows are ordered according to
the average of the estimated expected prediction error
(ÊPE). In the first three rows (models 1 to 3), trans-
formations of the outcome and the quantitative predic-
tors are linear; the qualitative predictors obtain a lin-
ear, nominal, and ordinal transformation, respectively.
Because the results indicate that ordinal transforma-
tions for the qualitative variables are most appropriate,
we also fit those in the second set of models. In ad-
dition, we fit nonlinear spline functions for the quan-
titative variables, both nonmonotonic and monotonic,
and varying the number of interior knots. In the third
set, we apply the same transformations, but now also
an ordinal transformation of the outcome variable (di-
agnosis) has been fitted.

Conclusions from this extended example, based on
both ÊPE and ̂GENERR, are as follows.

• The results show that a model with all transforma-
tions linear is least successful.

• Better results are obtained when nonlinear transfor-
mations are applied, first for the qualitative predic-

tors, allowing for ordinal transformation), and next
also for the quantitative predictors.

• For the latter, models that were fitted include both
nonmonotonic and monotonic cubic splines, with a
varying number of interior knots. The results show
that monotone functions are to be preferred over
nonmonotone functions.

• Best results are obtained when the outcome vari-
able (Diagnosis) is given an ordinal transformation.
Increasing the number of knots for the monotonic
splines is hardly worthwhile.

• The average values for ÊPE and ̂GENERR are very
similar, but the average values for the standard er-
rors is about three times as large for ̂GENERR. This
is caused by the fact that in the validation phase, es-
timates for ̂GENERR are based on 20 values, while
estimates for ÊPE are based on 222 values.

From these results, a selection (∗) is depicted in Fig-
ure 6 to emphasize the similarities and differences in
the results. The first seven boxplots show the apparent
prediction error for the active data.

• The differences between linear transformations for
the quantitative predictors (a1, a2, a3) versus non-
linear transformations (a4, a7, a8, a12) are large.

• Those between nonmonotonic (a4 and a7) and
monotonic transformations (a8 and a12) are small.

• There is a difference, however, between linear (a4
and a7) versus ordinal transformation of the outcome
(a8 and a12).
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FIG. 6. Comparing different models for the Cervix data with respect to prediction error: APE for active data (a1, . . . , a12), ÊPE for test
data (t1, . . . , t12), and ̂GENERR for validation data (v1, . . . , v12); numbers refer to the models in Table 4.

The next seven boxplots give the estimated expected
prediction error, based on the test data.

• Pattern of differences between (t1, t2, t3) versus (t4,
t7, t8, t12) is confirmed by cross-validation.

• Transformation of quantitative predictors by mono-
tonic splines (t7 and t12) is beneficial with respect to
ÊPE compared to nonmonotonic splines (t4 and t8).

The last six boxplots show the estimated generalization
error for the validation data.

• The median values of ̂GENERR are similar to the
median values of ÊPE.

• The variation is obviously much larger, as was the
standard error in Table 4.

• The overall pattern shows again that monotonic
transformations should be preferred throughout.

We display the optimal quantifications for model 12
in the transformation plots in Figure 7. The red dots
represent the category quantifications from the analy-
ses for the 12 separate active data sets. The black lines
connect the averages of the quantifications in the 12
different analyses. We observe the following.

• Overall, the quantifications for the 12 active data sets
are remarkably stable.

• With respect to the transformation of Diagnosis, the
biggest step is between the categories 3 and 4. This
has a very clear clinical counterpart, since it is the
difference between severe dysplasia and the first
class of cancer (carcinoma in situ).

• It turns out that this departure from linearity has a
positive effect on the prediction accuracy.

• Steps have about equal size for Nucl_Shape, and
Chrom_Pat, but not for the five other qualitative pre-
dictors.

• Transformations for #Abn_Cells, Tot#_Abn, #Mi-
toses are smooth, and the one for #Nucleoli is flat
at the upper end.

To conclude this section, we display in Figure 8
properties of the diagnostics for a hierarchy of models
with increasing number of degrees of freedom due to
different sets of transformation. We display the small-
est eigenvalues (left panel), and the corresponding log-
determinant divergence from independence (middle
panel). The values for both diagnostics differ consider-
ably among the six models, where the size differences
between model 1 and model 6 are (almost) of the order
3 (0.136 and 0.393, respectively, for SMEV, and 4.52
and 1.81, respectively, for DLD). In the panel at the
right, we display the average Variance Inflation Fac-
tor (VIF), indicating the dependence of a predictor on
the other predictors. The average dependence can eas-
ily be computed from the inverse of the eigenvalues
of the predictor correlation matrix. If we write R =
L�L′ then R−1 = L�−1L′, and tr(R−1) = tr(�−1);
the diagonal of �−1 contains the eigenvalues of R−1

in reversed order. The three diagnostics show overall
the same pattern for the different sets of transforma-
tions. The smallest eigenvalues (left panel) increase in
each step, and divergence from independence (mid-
dle panel) and average predictor dependency (right
panel) decrease. The largest step is taken when go-
ing from the first to the second model in the hierar-
chy (which are models 1 (predictors linear) and 7 (op-
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FIG. 7. Ordinal transformations for diagnosis (outcome, five categories), and seven categorical, qualitative predictors. Monotonic
quadratic spline transformations with two interior knots for the four quantitative predictors. The red dots indicate 12 different transfor-
mations for the predictors in the active data in the outer cross-validation loop (see Figure 5); their averages have been connected.

timally scaled predictors) in Table 4, respectively). The
smallest eigenvalue plot shows a substantial increase
between 5 and 6, which models are identical except

for the fact that in the sixth model the outcome is or-
dinal instead of linear. The divergence from indepen-
dence and average predictor dependency both show a

FIG. 8. Smallest eigenvalues of six predictor correlation matrices (left panel), difference between R and I by log determinants (middle
panel), and average dependence, the average multiple correlation between each predictor and the other predictors. The correlation matrices
are for 1: All predictors and outcome linear. 2: Outcome linear, categorical predictors ordinal, quantitative predictors monotonic spline
(2,2). 3: Like 2, but quantitative predictors nonmonotonic spline (2,2). 4: Like 3, but with quantitative predictors nonmonotonic spline
(3,3). 5: Like 4, but quantitative predictors nominal transformation. 6: Like 5, but outcome ordinal.
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drop when the outcome is transformed. We conclude
that ordinal transformation of the outcome (instead of
a linear one) has a positive effect.

4. REGULARIZED OPTIMAL SCALING
REGRESSION WITH LASSO, RIDGE, AND ELASTIC

NET PENALTIES

Regularization addresses the prediction accuracy
problem. It is well known that in certain circumstances
OLS regression may result in highly variable estimates
of the (unbiased) regression coefficients, and this high
variance leads to poor predictions, especially when
data require complex models. In those cases, it is bene-
ficial to add a penalty term to the loss function that con-
trols the variance of the regression coefficients, hereby
decreasing the standard error of the estimates, at the
cost of usually a small increase of the bias (the bias-
variance tradeoff), which overall leads to improved
prediction accuracy. First, we shall give some back-
ground to the most popular regularization methods, no-
tably Ridge regression, the Lasso, and the Elastic Net,
and the associated computational issues. Next, we re-
write the penalized loss functions in the optimal scaling
framework, to show that regularized optimal scaling re-
gression estimates can be obtained very easily, both for
the regularization methods mentioned above, as well
as for the Group-Lasso and Blockwise Sparse Regres-
sion. The latter methods expand categorical variables
to blocks of dummy variables, and continuous vari-
ables to blocks of basis functions, and apply regular-
ization to these blocks of variables by joint shrinkage
of the dummy coefficients. We will show that these
methods are equivalent to particular choices of trans-
formations within regularized optimal scaling regres-
sion, and subsequently can be extended with transfor-
mations that are restricted to be monotonic.

4.1 Background

Over the years, several methods for regularized re-
gression have been developed. Without any claim to
be complete, regularization methods in statistics be-
gan with Ridge regression (Hoerl and Kennard, 1970a;
Hoerl and Kennard, 1970b), adapting Tikhonov reg-
ularization (Tikhonov, 1943), followed by Bridge re-
gression (Frank and Friedman, 1993), the Garotte
(Breiman, 1995), and the Lasso (Tibshirani, 1996), also
known as Basis Pursuit (Chen, Donoho and Saunders,
1998) in the signal processing literature, and were fol-
lowed somewhat later by LARS (Efron et al., 2004),
Pathseeker (Friedman and Popescu, 2004), and the

Elastic Net (Zou and Hastie, 2005). Since then the
number of references especially to the Lasso and its
extensions has grown exponentially.

The oldest regularization method, Ridge regression,
reduces the variability by shrinking the coefficients, re-
sulting, as mentioned above, in less variance at the cost
of usually only a small increase of bias. The coeffi-
cients are shrunken towards each other and to zero, but
will never become exactly zero. So, when the number
of predictors is large, Ridge regression will not pro-
vide a sparse model that is easy to interpret. Subset se-
lection, on the other hand, does provide interpretable
models, but assumes more sparseness. The Lasso was
developed by Tibshirani (1996) to improve both pre-
diction accuracy and model interpretability by com-
bining the nice features of Ridge regression and sub-
set selection. Thus, the Lasso reduces the variability
of the estimates by shrinking the coefficients, and at
the same time produces interpretable models by shrink-
ing some coefficients to exactly zero. The Elastic Net
(Zou and Hastie, 2005) combines Ridge regression and
the Lasso, obtaining sparse models due to the use of a
Lasso penalty, and encouraging grouping of variables
due to the use of a Ridge penalty. Where the Lasso
would only select one variable of the group, the Elas-
tic Net tends to select groups of highly correlated vari-
ables together.

The original Lasso algorithm uses a quadratic pro-
gramming strategy that is complex and computation-
ally demanding; hence it is not feasible for large val-
ues of P , and moreover, it can not be used when
P > N . Since the Lasso paper, various less complex
and/or more efficient lasso algorithms were proposed.
For example, Osborne, Presnell and Turlach (2000a)
developed a homotopy method that can handle P > N

predictors, but it is still computationally demanding
when P is large. The same method was discussed in
Efron et al. (2004) in a different framework, and be-
came known as the LARS-Lasso. These methods pro-
vide efficient algorithms to find the entire Lasso reg-
ularization path. The “Grafting” algorithm of Perkins,
Lacker and Theiler (2003), the “Pathseeker” algorithm
of Friedman and Popescu (2004), and the “boosting”
algorithm of Zhao and Yu (2007) are gradient descent
algorithms that can deal with P > N predictors in a
computationally less demanding way. However, in the
P > N case, none of these Lasso algorithms can select
more than N predictors. The Elastic Net algorithm that
is based on the LARS-Lasso algorithm is capable of
selecting more than N predictors due to the use of the
additional Ridge penalty.
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4.2 Computation of Regression Coefficients in
Regularized Least Squares

Ridge regression, the Lasso, and the Elastic Net con-
strain the size of the regression coefficients by setting
a maximum on the sum of the squared coefficients
(Ridge), on the sum of absolute values of the coef-
ficients (Lasso), or on both these sums (Elastic Net).
Ridge regression uses an L2 restriction, which is writ-
ten

(4.1)
P∑

k=1

β2
k ≤ t2,

with t2 a tuning parameter with respect to the sum of
squares of the βk , and its value has to be determined in
the optimization process. The Lasso uses an L1 restric-
tion, constraining the sum of the absolute values of the
regression coefficients:

(4.2)
P∑

k=1

|βk| ≤ t1.

The Elastic Net combines the Ridge and Lasso con-
straints:

(4.3)
P∑

k=1

β2
k ≤ t2 and

P∑
k=1

|βk| ≤ t1.

It is well known that the restrictions on the regression
coefficients in (4.1)–(4.3) can be rewritten using an ad-
ditional penalty term to the loss function, because there
is a one-to-one relation between the value of the sum
constraint and the value of the penalty. Throughout, we
denote λ1 as the strength of the Lasso penalty, and λ2
that of the Ridge penalty. The Elastic Net loss function
is written (in matrix notation) as

(4.4) Le-net(β) = ‖y − Xβ‖2 + λ1w′β + λ2β
′β,

where the elements wk of w are either +1 or −1, de-
pending on the sign of the corresponding coefficient
β̂k . The loss function for Ridge or Lasso is obtained by
setting λ1 or λ2 to zero.

For least squares loss, the solution for the Ridge re-
gression coefficient has a well-known, analytic expres-
sion:

(4.5) β̂
ridge = (

X′X + λ2I
)−1X′y.

Provided X′X is nonsingular, the regression coeffi-
cients for the Lasso are

(4.6) β̂
lasso = (

X′X
)−1

(
X′y − λ1

2
w

)
,

where again the elements wk of w are either +1 or
−1, depending on the sign of the corresponding co-
efficient β̂ lasso

k . Since the elements of w depend on the
estimates of the coefficients, obtaining the Lasso co-
efficients is a least squares problem with 2P inequal-
ity constraints (there are 2P possible sign patterns for
the coefficients), and was efficiently solved for by the
LARS algorithm. For the Elastic Net, the regression
coefficients are estimated as

(4.7) β̂
e-net = (

X′X + λ2I
)−1

(
X′y − λ1

2
w

)
,

and minimization of this loss function is much like
minimizing the Lasso loss function, and the entire
Elastic Net regularization paths can be estimated al-
most as efficiently as the Lasso paths with the LARS-
ENet algorithm (Zou and Hastie, 2005).

4.3 Computation of Regression Coefficients in
ROS: One-Variable-at-a-Time

Generalizing regularized least squares loss to include
optimal scaling is straightforward:

Le-net(β,ϑ,ϕ) =
∥∥∥∥∥ϑ(y) −

P∑
k=1

βkϕk(xk)

∥∥∥∥∥
2

+ λ1

P∑
k=1

|βk| + λ2

P∑
k=1

β2
k ,

(4.8)

with λ1 = 0 for Lridge(β,ϑ,ϕ) and λ2 = 0 for Llasso(β,

ϑ,ϕ).
As was shown in Section 2, the OS algorithm esti-

mates the transformations and regression coefficients
one at a time, and it removes the effect of the other
predictors from the outcome when estimating a par-
ticular coefficient using (2.8), (2.9) and (2.14). In this
section, we will show that the “one-variable-at-a-time”
approach of optimal scaling results in straightforward
estimation of coefficients and enables the Lasso to se-
lect more than N predictors.

The very same strategy to find the Lasso solution
in linear regression problems was already applied in
Fu (1998), who used the name “shooting algorithm”.
However, the fact that this algorithm worked was not
fully appreciated at the time, or not fully understood.
For example, Osborne, Presnell and Turlach (2000b)
state that it is not applicable in the P > N case.
The same approach was independently re-invented in
Daubechies, Defrise and De Mol (2004) and in the op-
timal scaling research in Leiden in 2006, as reported in
Van der Kooij (2007), where it was shown that the one-
variable-at-a-time algorithm made the computation of
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regularized coefficients for the Lasso and thus also for
the Elastic Net trivially simple. Friedman et al. (2007)
subsequently showed that the algorithm was also very
fast and convergence properties were established build-
ing further on work by Tseng (1988) and Tseng (2001).
Also, see Wu and Lange (2008) for an additional con-
vergence proof. The crux is that least squares loss func-
tions that are extended with a penalty term can be sepa-
rated in a convex, differentiable part (the L2-norm) and
a part consisting of convex penalties summed over the
variables. Tseng’s convergence results can be trivially
generalized with transformations ϑ(y) and {ϕ(xk)}, as
in (4.8), without loss of generality, since transforma-
tions are considered fixed in (4.9), (4.10) and (4.11).
Convergence of the ROS regression algorithm is then
implied by independently combining two algorithms
that are known to work (coordinatewise penalized re-
gression and optimal scaling, with convergence results
given in Section 2.4).

The important consequence of the one-variable-at-a-
time approach is that the estimates of the regularized
coefficients β̂

ridge
k and/or β̂ lasso

k can be computed in the
setting of simple univariate regression of uk on ϕ(xk),
as follows:

Lridge(βk) = ∥∥uk − βkϕk(xk))
∥∥2

+ λ2
∑
l �=k

β2
l + λ2β

2
k ,

(4.9)

Llasso(βk) = ∥∥uk − βkϕk(xk))
∥∥2

+ λ1
∑
l �=k

|βl| + λ1|βk|,(4.10)

Le-net(βk) = ∥∥uk − βkϕk(xk))
∥∥2

+ λ1
∑
l �=k

|βl| + λ2
∑
l �=k

β2
l

+ λ1|βk| + λ2β
2
k ,

(4.11)

where uk = ϑ(y)−∑
l �=k βlφl(xl) analogous to (2.8). If

we define β̃k as the simple update β̃k = N−1u′
kϕk(xk)

analogous to (2.14), then incorporating regularization
in the OS regression loss function only requires a sim-
ple adjustment of the regression coefficients for Ridge,
the Lasso and the Elastic Net, and this amounts to

β̂
ridge
k = β̃k/(1 + λ2),(4.12)

β̂ lasso
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̃k − λ1

2
if β̃k > 0 and

λ1

2
< β̃k,

β̃k + λ1

2
if β̃k < 0 and

λ1

2
< |β̃k|,

0 otherwise,

(4.13)

β̂∗e-net
k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β̃k − λ1
2

1 + λ2
if β̃k > 0 and

λ1

2
< β̃k,

β̃k + λ1
2

1 + λ2
if β̃k < 0 and

λ1

2
< |β̃k|,

0 otherwise

(4.14)

for Ridge, the Lasso and the Elastic Net, respectively.
Equation (4.14) has a direct connection with the shoot-
ing algorithm by Fu (1998). As suggested by Zou
and Hastie (2005), when reporting the coefficients for
the Elastic Net, we correct for the double amount of
shrinkage in the estimation by rescaling the coefficients
β̂∗e-net

k after convergence of the algorithm

(4.15) β̂e-net
k = β̂∗e-net

k (1 + λ2).

4.4 Selection of the Penalty Parameter(s)

To select the optimal value of the penalty param-
eter(s), λ1 and/or λ2, the expected prediction error
(ÊPE) has to be estimated for each (combination of)
penalty value(s). To estimate the ÊPE, well-known
analytic methods like Generalized Cross Validation
(GCV; Golub, Heath and Wahba, 1979), AIC, or BIC
cannot be used, because we include optimal transfor-
mations, which complicates the computation of de-
grees of freedom, and we wish our method to work for
the case where P � N . So, we resort to resampling
methods, such as cross-validation and bootstrapping.
The latter methods can be very time consuming, espe-
cially when we have to find the optimal combination of
penalty values λ1 and λ2 in the Elastic Net, requiring
a full grid search. However, application of the boot-
strap or cross-validation can be made much less time-
consuming by not assessing the estimate of the ex-
pected prediction error for all combinations of penalty
parameter values. We have observed in many examples
that estimates of the expected prediction error usually
show regular curves when we plot the prediction error
for increasing values of λ1, the Lasso parameter, and
repeat this for different values of λ2, the Ridge param-
eter. An example will be shown in Figure 12. Thus, the
model selection procedure can be made much more ef-
ficient by conducting the analysis in two phases. In the
first phase, the region of the optimal values on the path
is determined by using a rather big step size for consec-
utive values of the penalty parameters, and using warm
starts. In the second phase, the search is limited to this
region (that contains the minimum), and the optimal
values are determined by taking much smaller steps,
again using warm starts.

In most applications, we apply the one-standard-
error rule, as originally proposed in Breiman et al.
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(1984): we first determine the optimal model accord-
ing to the lowest prediction error of a combination of
penalty parameters, and then select the most parsimo-
nious model within one standard error of the mini-
mum. In our applications, we either use K-fold cross-
validation or the 0.632 bootstrap method (Efron, 1983),
since the latter theoretically gives a better estimate of
the estimate of the expected prediction error than the
standard bootstrap. Usually, the 0.632 bootstrap gives
a somewhat higher estimate of the expected prediction
error than K-fold cross-validation; however when dif-
ferent models are compared using the respective re-
sampling methods, the same conclusions are obtained.
Details on how to use the 0.632 bootstrap are exten-
sively described in Van der Kooij (2007).

4.5 The Group Lasso and Regularized Optimal
Scaling of Categorical Variables

In standard linear regression, it is common practice
to deal with a categorical variable by replacing it by
a set of dummy variables. Each dummy variable is a
binary predictor, and a coefficient is sought; we will
call these dummy coefficients. Applying regularization
straightforwardly in this situation would amount to reg-
ularizing these dummy coefficients. The Group Lasso
method of Yuan and Lin (2006) treats a set of dummy
variables as a group, and applies a norm restriction to
the vector of dummy coefficients in the group.

If a categorical variable is given a nominal scal-
ing level in ROS regression, it can be shown that the
category quantifications ṽk (2.13) before standardiza-
tion are equal to the dummy coefficients. The cate-
gory quantifications are subsequently normalized by
v∗
k=N1/2ṽk(ṽ′

kDk ṽk)
−1/2 so that v∗

k
′Dkv∗

k = N , where
(ṽ′

kDkṽk)
1/2 is the norm of the coefficients. This norm

is equal to the absolute value of the unregularized re-
gression coefficient β̃k .

It follows that applying the adjustment for the Lasso
as in (4.13) is equivalent to penalizing the norm of the
dummy coefficients. Thus, the Group Lasso is equiv-
alent to Lasso regularization in ROS regression, pro-
vided that we use the nominal scaling level for a cate-
gorical variable.

For continuous variables, the analogy is similar. In
the Blockwise Sparse Regression (BSR) method of
Kim, Kim and Kim (2006), for example, a continu-
ous predictor is represented by a group/block of basis
functions, such as polynomials. In the optimal scaling
approach, continuous predictors can be smoothly trans-
formed by applying nonmonotonic regression splines,
using an I-spline basis Sk , fitting spline coefficients b̃k ,
and standardizing the resulting Skb̃k , giving a trans-
formed predictor. As in the Group Lasso, regularization
is then applied to the associated regression weights β̃k .
Concluding, the regularized regression weights associ-
ated with the step functions or the regression splines in
optimal scaling are equivalent to the results obtained
in the Group Lasso and Blockwise Sparse Regression,
but only when nominal quantifications are used. Oth-
erwise, our approach is more general. For example, we
can apply ordinal restrictions instead of nominal quan-
tifications, and Ridge/E-net penalties instead of Lasso
penalties. And an important consequence of separat-
ing βk from vk , is a much more attractive represen-
tation/interpretation for categorical predictors. We can
interpret βk as in standard regression, and obtain trans-
formed predictors in Gkvk .

5. APPLICATIONS OF REGULARIZED OPTIMAL
SCALING

This section contains three examples that have been
chosen for their particular properties. First, we shall
apply regularization to the simple model with nonlin-
ear relationships. Next, we shall introduce a new data
set, with a mixture of predictor variables related to test
failure in the United States. Finally, we shall show that
ROS regression can deal with high-dimensional data.

5.1 A Simple Example, Regularized

We apply the three forms of regularization to the
small data example in Section 3.2, and from those we
choose the model that has the smallest estimate of the
expected prediction error within 1 standard error from
the optimal model (results are given in Table 5). For the

TABLE 5
Simple model: Best regularized model for three combinations of transformations

Transformation r2 β1 (s.e.) β2 (s.e.) ÊPE (s.e.) r(x1, x2) TOL λ1 λ2

1. lin(x1), lin(x2) 0.379 0.215 (0.022) – (–) 0.826 (0.232) 0.706 0.502 0.80 0.00
2. lin(x1), spl(x2) 0.538 0.255 (0.009) 0.237 (0.014) 0.607 (0.199) 0.340 0.885 0.00 1.10
3. spl(x1), spl(x2) 0.853 0.746 (0.029) 0.225 (0.024) 0.152 (0.007) 0.354 0.874 0.00 0.10
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analysis with linear transformations, this turns out to
be the Lasso regularization, where the Lasso penalty is
0.80, and where the second predictor variable is left out
of the analysis. If we include transformation of the sec-
ond predictor only (since it was omitted from the first
analysis), the Ridge regularization is selected, with a
penalty of 1.10, and both predictors in the model, with
regression coefficients 0.255 and 0.237, respectively.
Regression coefficients are very similar, the expected
prediction error decreases, and so is the correlation
between the two predictors. The tolerance increases.
Next, if we allow both predictors to be transformed, the
first predictor becomes dominant again, the expected
prediction error becomes very small, as well as its stan-
dard error, while the dependence between transformed
predictors and the tolerance are comparable to the pre-
vious analysis. However, the ridge penalty in the cho-
sen model is merely 0.10, thus results are very similar
to those of the OS analysis without regularization in
Table 3.

5.2 The United States Data

The United States Data example concerns data per
state (N = 50) analyzed in Meulman (1986), with the
predictor variables taken from Wainer and Thissen
(1981) who used seven social indicator statistics in
order to re-examine the Angoff and Mencken (1931)
search for “The Worst American State.”. The outcome
variable gives the percentage of failure on a nation-
wide test (and was taken from Walberg and Rasher,
1977). The description of the variables is given in Ta-
ble 6.

To combine transformation with estimation of the
expected prediction error using the 0.632 bootstrap, the

50 values in the original variables were binned into 15
categories, following a uniform distribution as closely
as possible. It was already shown in Meulman (1986)
that the original data contain some serious nonlineari-
ties, for example, the relation between POPUL on the
one hand, and INCOME and ILLIT on the other hand.
We summarize the analysis as follows.

• The first model option is the base analysis, since
it uses neither optimal scaling nor regularization,
and the expected prediction error (estimated with 50
samples for the 0.632 bootstrap) is 0.191 (with stan-
dard error 0.036).

• Next, regularization was applied using the Elastic
Net. The optimal model (with the smallest estimate
of the expected prediction error) turns out to be
the unregularized analysis; if we choose the model
that has the smallest estimate of the expected pre-
diction error within 1 standard error, we obtain a
sparse model with both POPUL and INCOME omit-
ted from the predictor set, resulting in an estimate of
the expected prediction error of 0.216 (0.044). The
values for the Ridge and Lasso penalties are 9.00 and
0.900, respectively.

• The third option uses spline transformations on the
basis of the partial residual plots from the second
analysis (not shown).

• In the fourth analysis, the predictor POPUL has been
omitted from the predictor set, but compared to the
first Elastic Net model (option 2), the transformed
variable INCOME remains in the model, with corre-
sponding values for the Elastic Net penalties 3.00 for
the Ridge penalty and 0.800 for the Lasso penalty,
respectively.

TABLE 6
Test failure (outcome) and social indicator variables (predictors) for the United States

Label Outcome

FAIL Failure on nation-wide test

Predictors

POPUL 1975 population in thousands
INCOME Per capita income in dollars
ILLIT Illiteracy rate in percent of population
LIFE Life expectancy in years
HOMIC 1976 homicide and nonnegligent manslaughter (per 1000)
SCHOOL Percent of population over age 25 who are high school graduates
FREEZE Average number of days of the year with temperatures below zero
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FIG. 9. Tolerance values for the seven predictors in the United States Data for four different analyses.

• Concluding this example, although we obtain dif-
ferent values for ÊPE, none of the differences are
significant due to the small sample size. Optimal
scaling decreases the value of DLD, but when reg-
ularization is added, this effect is diminished. This
can be explained as follows: because coefficients
are shrunken in the regularization, the contribu-
tion of the other predictors is not optimally re-
moved.

We can depict the effect on DLD by plotting the val-
ues for tolerance, being the inverse of the diagonal ele-
ments of the inverse predictor correlation matrix (Fig-
ure 9). It is clear that optimal scaling without regular-
ization OS (upper curve) produces the largest values
for tolerance when compared to the two other curves
at the bottom of the panel (ROS-ENET and OLS, re-
spectively), especially for predictor 1, 2 and 7 that ob-

tained a nonmonotonic transformation. If we fit an ad-
ditional curve for OS combined with the Lasso, we
obtain the value 0.20 for the Lasso penalty, which is
slightly higher than the optimal model for ROS-ENET
(0.0,0.10) in Table 7, with ÊPE = 0.173 (0.033). The
corresponding curve for the tolerance values is per-
fectly in between ROS-ENET and OS. The correspond-
ing value for DLD equals 3.217.

The transformations of POPUL, INCOME, ILLIT
and FREEZE from analysis 4 in Table 7 are shown in
Figure 10. As we use these to depict the partial residu-
als in Figure 11, we notice a close to linear relationship
between the partial residuals ϑ(y) − ∑

l �=k βlϕl(xl) on
the vertical axis and the transformed predictor ϕk(xk)

on the horizontal axis, except for POPUL. The latter
predictor, however, has been omitted from the model
by the Lasso penalty. The plot at the bottom right

TABLE 7
Four model options for United States data, with/without Elastic Net regularization and/or Optimal Scaling. λ1 = Lasso penalty,

λ2 = Ridge penalty

Transformation Regularization r2 ÊPE (s.e.) optimal λ1 λ2 ÊPE (s.e.) selected λ1 λ2 df DLD

1. No No 0.876 0.191 (0.036) – – 0.191 (0.036) – – 7 4.121
2. No Yes 0.825 0.191 (0.036) 0.00 0.00 0.216 (0.044) 0.90 9.00 5 4.121
3. Yes1 No 0.933 0.210 (0.045) – – 0.210 (0.045) – – 18 2.603
4. Yes1 Yes 0.865 0.159 (0.031) 0.10 0.00 0.176 (0.037) 0.80 3.00 14 3.965

1POPUL, INCOME and FREEZE transformed with cubic nonmonotonic spline, one interior knot, ILLIT transformed with quadratic mono-
tonic spline, one interior knot, FAIL, LIFE, HOMIC and SCHOOL with numeric transformation.
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FIG. 10. United States Data. Optimal scaling transformations for four predictors from ROS-ENET regression.

shows ŷ = ∑P
k=1 βkϕk(xk) on the vertical axis versus

the transformed outcome ϑ(y) on the horizontal axis.
Figure 12 shows all the paths for Ridge penalties

ranging from 10 (at the top) to 0.0 (at the bottom),
with a stepsize of 1.0. The horizontal axis represents
the value of the Lasso penalty, ranging from 0.0 to 1.7,
and the vertical axis gives the estimates of the predic-
tion error, obtained with the 0.632 bootstrap (ÊPE). As
was mentioned in Section 4.3, the different curves for

the Lasso penalty for increasing values of the Ridge
penalty are quite regular. The figure shows that even
for very large Ridge penalties, the different paths cross
each other for Lasso penalties around 0.8.

In Figure 13, we focus on the paths for Ridge penal-
ties ranging from 0.0 to 3.0. The curve on the bottom
gives the ÊPE for the Lasso penalty 0.0, and shows that
the smallest value for ÊPE is obtained for the Lasso
penalty 0.10. From this point, the curve is monotoni-

FIG. 11. Partial residuals for each predictor obtained in Regularized Optimal Scaling regression (ROS-ENET), and the residuals of the
model (linear combination of transformed predictors) versus outcome variable FAIL). Curves, obtained by fitting smoothing splines with four
knots, show remaining nonlinearities, which are neglectable, except for POPUL.
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FIG. 12. United States Data. Estimates of the Expected Prediction Error obtained by Elastic Net Regularized Optimal Scaling Regression.
Paths from top to bottom represent decreasing values for the Ridge parameter from 10.0–0.0. The graph shows that values for ÊPE are very
similar for Lasso penalties around the value 0.8, no matter the value of the Ridge penalty.

cally increasing. The picture for the three other curves
(Lasso penalties from 1.0 up to 3.0) show a different
picture. The different paths cross each other close to
the value 0.80 for the Lasso penalty. The two large dots

indicate the smallest overall value, which is 0.159, and
the smallest value within one standard error (0.031),
which is 0.176. The latter is on the curve for the Ridge
penalty 3.0.

FIG. 13. United States Data. Expected Prediction Error obtained for Elastic Net Regularized Optimal Scaling Regression. Paths from top
to bottom represent decreasing values for the Ridge parameter from 3.0 to 0.0. The optimal value (with λ1 = 0.1, λ2 = 0.0) and the selected
value, chosen within one standard error from the optimal value (with λ1 = 0.8, λ2 = 3.0) are indicated by large dots.
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5.3 High-Dimensional Metabolomics Data: The
Leiden ApoE3 Data

The data were provided by the Systems Biology
group at Leiden University (Thomas Hankemeier and
colleagues), and concern 1550 LC-MS (Liquid Chro-
matography Mass Spectrometry) measurements of
plasma lipids. LC-MS is an exceedingly sensitive and
specific analytical technique that can precisely deter-
mine the identities and concentration of compounds
in plasma. The biochemical background is as follows.
ApoE3 stands for Apolipoprotein E3, which makes
up cholesterol particles, such as LDL, VLDL, HDL.
A strongly increased lipoprotein level in plasma re-
sults in artherosclerosis, and if blocking a blood vessel,
might lead to stroke or heart attack. The objects are two
samples of 10 mice: one of an (untreated) wildtype, and
another of transgenic mice that contain the Human Lei-
den ApoE3 variety. The main question is whether dif-
ferences in metabolomic profiles can be detected, and
which predictors are important distinguishing the wild-
type from the transgenic mice. The latter were not on
a high, but on a low-fat diet, and the LC-MS data were
collected after nine weeks, while artherosclerosis usu-
ally becomes manifest after 20 weeks. For each mouse,
we have two measurement vectors available, resulting
in a data matrix with 38 rows and 1550 columns (one
transgenic mouse died during the experiment). ROS
regression was performed with four different options:
two forms of regularization (the Lasso and the Elas-
tic Net), combined with two types of transformation
(linear and quadratic spline). The outcome variable has
four categories (two types of mice, two replications of
the measurements) and we assume the categories to be
ordered (an ordinal optimal scaling level was applied.
The results for the 2 × 2 analysis plan are given in Ta-
ble 8. The table shows that optimal scaling regression
(with monotonic quadratic spline transformations) out-
performs linear regression: the cross-validated predic-

tion error ÊPE is diminished by a factor 2. This is true
for both the Lasso and the Elastic Net.

We first show the full paths of the estimates of the
expected prediction error (ÊPE, determined by 13-fold
cross-validation since we have only 38 objects), for 12
different values for the Lasso parameter (λ1) on the
horizontal axis and 10 different values for the Ridge
parameter (λ2), from 0.1 to 1.0, in the Elastic Net (Fig-
ure 14). Note that we do not give results for λ1 = 0.1,
since this value for the Lasso parameter is too small
to give an admissible solution. The optimal model is
found for spline transformations, e-net regularization,
λ1 = 0.3 and λ2 = 0.2. The paths for different values of
the Ridge penalty seem to cross at the point where the
Lasso penalty (horizontal axis) is around 0.7. One stan-
dard error from the ÊPE for the optimal model gives
the selected model (spline transformations, e-net regu-
larization, with λ1 = 0.7 and λ2 = 0.4). In Table 8, we
see that also the Lasso with quadratic spline transfor-
mations does very well, with only 8 out of 1550 pre-
dictors, from the middle of the LC-MS spectrum. The
Elastic Net uses the same predictors, but adds predic-
tors (with smaller coefficients) that are adjacent on the
spectrum (and thus are correlated), and uses a total of
26 predictors. Choosing the Elastic Net model might
give more stable results for future data: by using corre-
lated variables, a weighted average would be applied,
and this might diminish the effect of uncorrelated mea-
surement error compared to the error introduced by the
use of a single variable.

Figure 15 shows the five different ordinal quantifi-
cations for the outcome variable for the models given
in Table 8. The quantifications are very similar for the
five different options, especially when the same trans-
formations (spline or linear transformations) have been
applied. The black squares show the quantifications for
outcome in the chosen model (spline transformations,
e-net regularization, with λ1 = 0.7 and λ2 = 0.4).

TABLE 8
Prediction error for different sets of transformations

Transformation Regularization ÊPE (optimal) λ1 λ2 # pred’s

1. Linear(1,0) lasso 0.122 (0.028) 0.20 0.00 12
2. Linear(1,0) e-net 0.117 (0.030) 0.30 0.10 16
3. Spline(2,0) lasso 0.059 (0.016) 0.20 0.00 8
4. Spline(2,0) e-net 0.054 (0.020) 0.30 0.20 26

ÊPE (selected)
5. Spline(2,0) e-net 0.069 (0.021) 0.70 0.40 26
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FIG. 14. ApoE3 Data. Expected Prediction Error obtained by Elastic Net Regularized Optimal Scaling Regression. Paths from top to
bottom represent decreasing values for the Ridge parameter from 1.0–0.1. The optimal value (opt, λ1 = 0.3, λ2 = 0.2) and the selected value,
chosen within one standard error from the optimal (sel, λ1 = 0.7, λ2 = 0.4) are indicated by large dots. The graph shows that the values for
ÊPE around λ1 = 0.7 are about the same no matter the value of the Ridge penalty.

FIG. 15. Five monotonic step functions for the categorical out-
come variable in the ApoE3 Data. Dashed lines show stepfunctions
for the outcome when the predictors are transformed by spline func-
tions, dotted lines when the latter have linear transformations. Red
lines refer to quantifications found by the Elastic Net, and blue lines
are shown for the Lasso. The large squares (no line drawn) show the
quantifications of outcome for the chosen model (ÊPE one standard
error from the optimal model: elastic net with splines, λ1 = 0.7,
λ2 = 0.4).

6. DISCUSSION

When confronted with categorical variables, non-
linear relationships or multicollinearity (for instance
when P > N ), the widely used linear regression frame-
work requires adjustments. In an attempt to overcome
these issues, most methods involve transformations
of predictors and/or regularization. In this paper, we
show how optimal scaling regression can be integrated
with popular regularization methods (Ridge Regres-
sion, Lasso and Elastic Net) in a very general algo-
rithm that can deal with both continuous and categori-
cal variables. Categorical variables may have either or-
dered (ordinal) or unordered (nominal) values. Trans-
formation of continuous variables is called for when
nonlinear relationships exist between predictor vari-
ables and the outcome. optimal scaling linearizes these
relationships, as can be seen from the partial resid-
ual plots. Furthermore, OS allows for transformations
of both the outcome as well as the predictors. When
compared with alternative methods, regularized opti-
mal scaling has the power to generalize many exist-
ing procedures such as Group Lasso, Blockwise Sparse
Regression, GAM and ACE, thanks to its large flexi-
bility in choices of transformations and penalty func-
tions. Combined with an efficient one-variable-at-a-
time (coordinate descent) algorithm, it is able to handle
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large data sets of mixed nature encountered in modern-
day applied statistics. The option that only uses nu-
meric optimal scaling levels awaits comparison with
the algorithms proposed in Friedman, Hastie and Tib-
shirani (2010, 2012), and Mazumder, Friedman and
Hastie (2011), while splines have also been applied in
Chouldechova and Hastie (2015).

If the predictor correlation matrix is ill-conditioned,
a good property of optimal scaling is that it improves
upon this condition, as measured by the value of the
smallest eigenvalue. We also proposed the Divergence
of Log Determinants to quantify the conditionality of
the predictor correlation matrix in a single diagnos-
tic. As for the predictors, optimal scaling tends to in-
crease their conditional independence (on average), as
measured by so-called tolerance values (described in
Section 3.1). In some cases, large Ridge and/or Lasso
penalties may be required to prevent overfitting when
allowing for optimal transformations.

In the context of a regularized analysis, there are two
goals: model selection and assessment of the selected
model. To achieve these goals, the best approach is a
three-way data split, dividing the full data into an ac-
tive data set and a validation set, where the active data
set itself is divided into a training set and a test set (as
was shown in Figure 5). In that case, the generalization
error can be estimated by applying the values obtained
for the parameters in the active data set to the valida-
tion set. This was done in the analysis of the Cervix
Cancer Data in Section 3.4. When there are not enough
data for a three-way split, the validation phase is omit-
ted and the estimate of the generalization error is ap-
proximated by the estimate of the expected prediction
error instead. Of course, the latter will be too optimistic
since we use the cross-validation phase as well to se-
lect the optimal values for the regularization parame-
ters. (Note that in this phase, we only select a model
on the basis of the values of the regularization parame-
ters, and not on the basis of the transformations.) If we
are mainly interested in comparing the prediction accu-
racy for different choices such as with/without optimal
scaling, and/or regularization, we may assume that the
optimism will not differ very much between models,
thus not affecting the conclusions too much.

The coordinate descent approach has a very excit-
ing history (e.g., see Tibshirani, 2011). It was already
shown in Van der Kooij (2007) that the alternating least
squares (ALS) approach that is applied in OS to find
the optimal transformations and regression weights
(one-variable-at-a-time), automatically leads to very

simple and efficient estimates for regularized regres-
sion coefficients in the Lasso and the Elastic Net. We
may conclude that the ALS framework that was kept
alive all these years in optimal scaling, gave rise to re-
newed interest and exciting research using coordinate
descent optimization.

NOTE

The algorithm described in this paper has been im-
plemented in a user-friendly procedure called CATREG
that has been developed by the first two authors in
the CATEGORIES module of IBM/SPSS Statistics
(Meulman, Heiser and SPSS, 2010). This procedure
contains all the different features of ROS regression
that are mentioned in this paper. A somewhat more
limited version in R (R Core Team, 2017) is also avail-
able, and can be obtained upon request from the second
author.

APPENDIX A: COPULA REGRESSION

The use of copula methodology to describe depen-
dence between variables is popular in for example fi-
nance and economics (Kolev and Paiva, 2009). The
merit of Sklar’s theorem reveals itself in practical sce-
narios where it may be more intuitive to state marginal
CDFs and a copula C than to specify the joint distri-
bution F directly (Parsa and Klugman, 2011; Trivedi
and Zimmer, 2005). In its original form (Sklar, 1959),
the function C : [0,1]P+1 �→ [0,1] maps the marginal
CDFs of an outcome y and P predictors x1, . . . ,xP to
a joint distribution function F as follows:

F(y,x1, . . . ,xP )

= C
(
F0(y),F1(x1), . . . ,FP (xP )

)
.

(A.1)

In particular, following Cai and Zhang (2018), we
say random data pairs (yi,Xi) ∈ RP+1 satisfy a Gaus-
sian copula regression (Song, 2000) if there exist
strictly increasing functions f0, . . . , fP such that
(f0(yi), f1(xi1), . . . , fP (xiP )) is i.i.d. multivariate nor-
mally distributed. For i = 1, . . . ,N and ε ∼
Nn(0,�), it follows that

(A.2) f0(yi) =
P∑

k=1

βkfk(xik) + εi.

At first glance, it seems model (A.2) bears a close
resemblance to optimal scaling with transformations
θ = f0 and φk = fk . However, we are currently un-
aware of a copula regression model that allows for
high-dimensional continuous and categorical data with
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adaptivity to both monotone and nonmonotone trans-
formations in the way ROS regression does. Four es-
sential distinctions may be pointed out.

Transformation and Computation

The optimal scaling transformations are conceptu-
ally different from (strictly increasing) marginal dis-
tribution functions, since they are (alternatingly) opti-
mized over partial residuals. In addition to the (Gaus-
sian) copula dependence parametrization (�), the
marginals f in (A.2) must be specified to obtain esti-
mates of the (nonlinear) regression parameters β . Since
the f ’s are unknown, they must either be estimated
based on a (strictly monotone) functional form, a ker-
nel or their empirical CDFs, in which case the problem
becomes semiparametric. Pitt, Chan and Kohn (2006)
propose Bayesian MCMC based estimation with de-
pendent error structure �.

Categorical Data

Secondly, it is generally not easy to deal with cate-
gorical predictors in the copula estimation framework
(Parsa and Klugman, 2011; Genest and Nešlehová,
2007). Masarotto and Varin (2012) extend the Gaus-
sian copula to nonnormal outcomes (continuous, dis-
crete or categorical), requiring numerical integration.
Hoff (2007) suggests a Bayesian method that allows
for predictors of mixed type, but focuses on association
analysis and only treats the low-dimensional setting.

Distributional Assumptions

Copula regression is usually likelihood driven, while
ROS regression is least squares based. An advantage
of the normality assumption on ε exploited by Cai and
Zhang (2018) is that it enables theory towards para-
metric statistical inference of debiased, L1 regularized
β parameters (van de Geer et al., 2014). However, such
benefits come with strong assumptions on X, sparsity
of β and the size of the penalty parameter. Moreover,
these mathematical results are specific to the L1 case;
inference is lost for the Elastic Net generalization.

Dimensionality

For the model in (A.2), Cai and Zhang (2018) treat
the high-dimensional case P � N only for real-valued
variables (Yi,Xi) ∈ RP+1, while ROS regression al-
lows for categorical outcomes and/or predictors. Fur-
thermore, a recent contribution to (low-dimensional)
Gaussian copula regression by Noh, El Ghouch and
Bouezmarni (2013) led to a critical review paper by
Dette, Van Hecke and Volgushev (2014). Not only is

copula-based regression sensitive to misspecification
of the dependence structure; it can also perform poorly
when the regression function itself is not monotone.
Performance was claimed to deteriorate further when
the number of predictors grows.

APPENDIX B

OS Algorithm

The OS algorithm consists of the following steps.

1. Initialize ϑ , ϕ and β (standardized y and X, and
OLS coefficients, or random values).

2. If scaling level outcome not linear update transfor-
mation:
(a) ṽy = D−1

y G′
y
∑

k βkϕk . If scaling level not nom-
inal restrict ṽy.

(b) ϑ(y) = standardized Gyṽy.
3. For k = 1, . . . ,P :

(a) uk = ϑ(y) − ∑
l �=k βlϕl(xl).

(b) Update coefficient: βk = N−1u′
kϕ(xk).

(c) If scaling level predictor k not linear update
transformation: ṽk = β−1

k D−1
k G′

kuk . If scaling
level not nominal restrict ṽk .

(d) ϕ(xk) = standardized Gk ṽk .
4. Compute loss and check convergence.

If not converged return to step 2.

Regularization is incorporated by applying equation
(4.12), (4.13), or (4.14) to βk after step 3(d).

OS Transformations

For scaling levels other than nominal the cone Ck

that contains all admissible transformations of Xk is
defined by

Ck(xk) ≡ {
ϕk(xk)|ϕk(xk) = trans(xk)

}
,

and the metric projection is written as

PCk(xk) ≡ min
trans(xk)

∥∥uk − βk trans(xk)
∥∥2

,

with uk as defined in equation (2.9) and trans(xk)

stands for mon(xk), denoting a least squares monotonic
transformation of Xk , or spl(xk), denoting a spline
transformation, or lin(xk), denoting a linear transfor-
mation, amounting to a standardized version of xk .

• In the case of ordinal transformation, the metric
projection amounts to applying monotonic (iso-
tonic) regression of sign(β−1

k )uk onto xk , written as
mon(sign(β−1

k )uk,xk), and standardizing the result.
The monotonic regression can either be increasing or
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decreasing, whichever gives the smaller loss value;
if applicable, the sign of βk has to be adjusted. The
restricted quantification is obtained by applying the
up-and-down-blocks minimum violators algorithm
(Kruskal, 1964; Barlow et al., 1972) to vnom

k .
• In the case of spline transformation, the metric pro-

jection amounts to a smooth transformation of the
predictor Xk using splines. One possibility is to con-
struct an I -spline basis matrix Sk(xk) (see Ramsay,
1988 for details), and having Sk = Sk(xk), we mini-
mize

(B.1) L(bk) = ‖uk − βkSkbk‖2,

over bk = {bk
t }Tk

t=1, the Tk-vector with spline coef-
ficients that have to be estimated, and where Tk is
dependent on the degree of the spline and the num-
ber of interior knots. If the I -spline transformation
does not have to follow the order of the values in
Xk , we can compute the analytical solution for bk

directly, since (B.1) is a straightforward regression
problem, with the columns of Sk = sTk

t=1 as indepen-
dent variables. If, however, the I -spline transforma-
tion is required to be monotonic with xk , we have to
minimize (B.1) under the restriction that the vector
bk with spline coefficients contains only nonnega-
tive elements. This constrained optimization prob-
lem can be solved by applying the one-variable-at-
a-time strategy here as well. Thus, the problem is
further partitioned by isolating the t th column of the
spline basis matrix Sk (denoted by sk

t ) and the t th el-
ement (bk

t ) of the spline coefficient vector bk from
the remaining elements {bk

r }r �=t . Next, we minimize
iteratively

(B.2) L
(
bk
t

) =
∥∥∥∥
(

uk − βk

∑
r �=t

bk
r sk

r

)
− βkb

k
t sk

t

∥∥∥∥2

over bk
t ≥ 0, for t = 1, . . . , Tk . (There is a com-

plication if we take the normalization condition
b′

kS′
kSkbk = N into account that ensures that the

transformed variable is standardized; how this prob-
lem is solved can be found in Groenen, van Os and
Meulman, 2000.)
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