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Comment: Bayes, Oracle Bayes and
Empirical Bayes
Aad van der Vaart

Empirical Bayes methods are intriguing, and have
gained in significance by present day big data appli-
cations. Despite their early introduction, they are still
not fully understood. It is a pleasure to read the review
by a “statistical rock star” [13], who stood at the be-
ginning of the methods and more recently opened our
eyes to their importance for large scale inference.

Empirical Bayes combines Bayesian ways of think-
ing about data and what some call “frequentist” meth-
ods, often maximum likelihood. The main point of my
discussion is to highlight connections to nonparametric
and high-dimensional Bayesian methods, which have
seen a big development in the past 20 years.

In the second paragraph of Section 6, Efron writes:
“which is to say that standard Bayes is finite Bayes
with N = ∞” and goes on to describe a fully Bayesian
approach (consisting of a hyperprior h(g) on the den-
sity of the parameters θi ) as an “uncertain task”. I may
not be full Bayes enough to say this with absolute cer-
tainty, but would think that nowadays most Bayesians
would politely disagree and consider the setting a stan-
dard one, with a Dirichlet process prior as a “default”
choice [17, 18, 1, 20]. Then the setting is described by
the hierarchy:

• a probability distribution G ∼ DP(α),

• latent variables θ0, . . . , θn|G iid∼ G,

• observations X0, . . . ,Xn|θ0, . . . , θn,G
ind∼ N(θi,1).

This is the model of Efron’s Sections 1–4 augmented
with a prior on G, and could still be preceded by extra
levels to construct the parameter α (a finite distribu-
tion) of the Dirichlet process DP(α), in particular its
total mass (called “prior precision”). We restrict to the
case that the observations in step three are Gaussian; it
would be worth while to extend our discussion to Pois-
son observations, as in Efron’s Section 5.
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In the preceding hierarchy, the desired posterior dis-
tribution of θ0 given data X0, . . . ,Xn is the Bayesian
solution to the problem posed by Efron in Section 5. It
is a standard product of Bayesian inference. The stan-
dard method to compute the posterior distribution of G

in the hierarchy is based on the decomposition

P(G ∈ ·|X0, . . . ,Xn)

=
∫

P(G ∈ ·|θ0, . . . , θn) d�(θ0, . . . , θn|X0, . . . ,Xn),

where d�(θ0, . . . , θn|X0, . . . ,Xn) refers to the pos-
terior distribution of the latent variables θ0, . . . , θn,
and by general theory on Dirichlet processes the in-
tegrand P(G ∈ ·|θ0, . . . , θn) follows a Dirichlet process
DP(α+∑

i δθi
). The usual way to exploit this is to sim-

ulate samples from d�(θ0, . . . , θn|X0, . . . ,Xn). So the
standard algorithms can be used also to simulate from
the distribution of interest θ0|X0, . . . ,Xn. Over the past
decades, many algorithms were developed, from “ex-
act” Gibbs samplers to fast computational shortcuts, all
using the remarkable properties of the Dirichlet pro-
cess [15, 42, 23, 3, 26, 61, 27] (see [20], Chapter 5,
for a partial overview). Depending on the algorithm the
computational burden is similar to running the boot-
strap algorithm in Efron’s formulas (79)–(80). In fact,
because the base measure α + ∑

i δθi
of the Dirichlet

posterior of G given the latent variables θi is essen-
tially the empirical distribution of the latter variables,
many of the computational schemes possess a boot-
strap flavour.

One advantage of this approach is that it is pretty.
Another should be that, as any Bayesian approach,
it automatically yields uncertainty quantification, for
instance, through credible intervals obtained from
the (simulated) posterior distributions of the θi . Now
Bayesian nonparametric credible sets are not confi-
dence sets [12, 32, 56, 58, 7], except for smooth func-
tionals for which a Bernstein–von Mises theorem holds
[31, 32, 5, 6, 50, 8, 49]. The representation

P(θ0 ∈ B|X0, . . . ,Xn)

=
∫ ∫

B φ(X0 − θ) dG(θ)∫
φ(X0 − θ) dG(θ)

d�(G|X0, . . . ,Xn),
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suggests that the posterior of the new latent variable
θ0 is not smooth in this sense. Furthermore, semi-
parametric information theory suggests that even in
the class of linear functionals

∫
hdG a Bernstein-

von Mises theorem can hold only for the very spe-
cial functions h of the form h(z) = ∫

h̄(x)φ(x − z) dx

(which are in the range of the adjoint score operator;
see [59, 60]). Theory developed for other priors than
the Dirichlet process [58, 7] further suggests that the
shrinkage generated by (empirical) Bayes modelling,
which is desirable and accounts for the increased ef-
ficiency, entails a complicated relationship to setting
confidence intervals. In summary, although in the past
decade Dirichlet–normal mixtures were shown to have
remarkably good properties, both by theory and ex-
perimentation [21, 19, 54], its use for credible inter-
vals remains to be further investigated. Preferably the-
ory should cover the frequentist setup of independent

X0, . . . ,Xn
ind∼ N(θi,1) for arbitrary parameters θi , and

the correct question may be to ask: “for which configu-
rations θ0, . . . , θn is the inference satisfactory? It seems
that the answer cannot include all configurations, but
one might, for instance, hope for configurations that
resemble a sample from a distribution.

As mentioned, the posterior distribution of G based
on the “direct observations” θi from G is the Dirichlet
process with base measure α + ∑

i δθi
. This has mean

very close to the empirical distribution of these direct
observations, and also (for larger n) the fluctuations
of the posterior are given by a Brownian bridge pro-
cess [37, 25], as for the empirical distribution around
the true distribution. As the empirical distribution of
the θi is the nonparametric maximum likelihood esti-
mator of G, this invites to view the Dirichlet prior as
a “nonparametric prior” [17]. It also suggests that the
Dirichlet posterior based on the observations Xi relates
in the same way to the nonparametric maximum likeli-
hood estimator in the mixture setting: the maximiser
of G �→ ∏

i fG(Xi) over all probability distributions
G, for fG(x) = ∫

φ(x − θ) dG(θ) the marginal density
of the Xi , discussed in Efron’s Section 6. The latter
procedure also follows an age-old and proven, general
principle of statistics, and is equally appealing to me.
Again there is quite a bit of theory and experimenta-
tion that suggests that this procedure works excellently
[30, 36, 45, 33, 28] for certain purposes. For inference
on the θi , Efron (although he prefers parametric mod-
els for G) proposes to plug-in the maximum likelihood
estimator Ĝ into

eG(Xi) := E(θi |Xi,G) =
∫

θφ(Xi − θ) dG(θ)∫
φ(Xi − θ) dG(θ)

.

(The notation is the same as Efron’s, see his formula
(12), but in our setup the expectation is conditional
given G.) This may be compared to the Dirichlet ap-
proach, which would average G out over its posterior
distribution:

e(Xi) := E(θi |X0, . . . ,Xn)

=
∫

eG(Xi) d�(G|X0, . . . ,Xn).

Although in practice one would take the average over
θi from a sample generated from the posterior distribu-
tion rather than use this equation, the formula is useful
to suggest that the two estimators are similar. Although
the correspondence is not perfect [44, 55], full Bayes
posterior distributions typically concentrate around the
corresponding maximum likelihood estimator.

Whereas the Bayesian procedure e(Xi) is the mean
of a full posterior distribution, the plug-in e

Ĝ
(Xi) is

only a point estimator. Could semiparametric profile
likelihood [41] based on the same likelihood function
lead to valid confidence intervals? Perhaps for certain
configurations of the parameters? How exactly does
this relate to the full Bayesian formulation?

The Dirichlet mixture formulation fits into Efron’s
procedure of g-modelling, with the Dirichlet prior a
nonparametric approach to G. There are plenty of other
priors for G that can be used, including smooth para-
metric models. The smoothness of the normal density
makes the marginal densities fG of the Xi for two dif-
ferent mixing distributions G similar even if the G are
quite different, for instance, in smoothness and number
of support points [21, 52]. This diminishes the role of
the prior and suggests that the gain of using a paramet-
ric prior can be small, even if the model is correct.

Such approximations, and the potential harm of mis-
specification, are dependent on the scale of the Gaus-
sian kernel, here taken equal to 1 throughout, and the
support of the θi . One other possible use of empiri-
cal Bayes methods is to set such “hyper” parameters
in a data-dependent way. Maximum likelihood on the
Bayesian marginal density of the data is an attractive
method, and has been observed to perform similarly to
a full (hierarchical) Bayesian approach that puts priors
on these parameters. While Efron achieves good results
using, for example, splines with 7 degrees of freedom
with N = 1500 observations at error scale 1, some au-
tomation might be preferable, and (empirical) Bayes is
an attractive way to do so.

Strong prior knowledge on the nature of the latent
variables θi may be put to use. If these are suspected to
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take on a small number of different values, a finite mix-
ture with a fixed or penalised number of support points
may be preferable over a Dirichlet, as the latter, even
though very sparse, still may overshoot the number of
support points [39]. The sparse case, where many θi are
(nearly) zero, is especially relevant. By its nonparamet-
ric nature, a Dirichlet process prior might work, but in
the past decade attention has focused on priors that ex-
plicitly put a point mass at zero (spike-and-slab) [40,
24, 29, 10, 9] or that are continuous with a peak at
zero, such as the horseshoe or two-point mixtures [4,
48, 22, 51]. Such priors naturally shrink the posterior
distribution of individual parameters θi to zero, unless
the corresponding observation Xi is clearly away from
zero, and in this sense are a Bayesian competitor to
the Lasso. The posterior mean eG(x) as a function of
the observation is an S-curve as in Efron’s Figure 2,
but sparsity in the prior makes for a sharper S, distin-
guishing better between small and large values of x.
The shrinkage effect is moderated by the size of the
point mass at zero or the width of the peak at zero,
which can, and should, be set based on the data. Full
Bayesians will prefer to put a “hyper prior” on these
parameters, but empirical Bayes (based on maximis-
ing the likelihood

∏
i fG(Xi) over the parameter in G)

gives about the same behaviour [29, 57]. The marginal
posterior distributions of the parameters can be used to
set credible intervals for the individual parameters θi .
Although for some configurations of parameters over-
shrinkage may destroy coverage, these intervals per-
form reasonably well [58, 7], in particular for making
“discoveries”, that is, filtering out nonzero parameters.

Efron discusses the estimation of the number of
unseen species of butterflies as an application of G-
modelling with Poisson observations. Here also there
is a nonparametric Bayes connection. So-called species
sampling models (see [20], Chapter 14, for a summary)
are random discrete distributions whose point masses
can serve as a prior model for the abundances (scaled
to fractions) of species. Observed individuals can be
viewed as a sample from such a discrete distribution,
and questions about unseen species can be formulated
in terms of properties of the hidden random discrete
distribution and answered by posterior quantities given
the observations. For instance, the probability that the
next observation Xn+1 will be a new species, given ob-
servations X1, . . . ,Xn, is the posterior predictive prob-
ability that this will be drawn from an atom that has not
been used by X1, . . . ,Xn. The Dirichlet process prior
is one example of such a species sampling model (it
is indeed discrete [38, 2, 53]), but there are many other

examples, possibly more suitable to butterflies [35, 14],
with a close link to the theory of random exchangeable
partitions [43, 46, 47]. Applications to estimating un-
seen species were developed in [34, 16, 11].
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