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Comment: Bayes, Oracle Bayes, and
Empirical Bayes
Thomas A. Louis

1. INTRODUCTION

Brad Efron has done it again. He presents fascinating
and insightful analyses that “open the box” on the prop-
erties of empirical Bayes methods. I especially like the
exploratory data analysis theme, reminding us to look
at the data, consider what information sources are rel-
evant, and to conduct sensitivity analyses. These high-
light the importance of computing diagnostics, and the
dangers of black box modeling.

In what follows, I evaluate f -modeling (generate
posterior summaries from the estimated marginal dis-
tribution of the data) and g-modeling (estimate the
prior distribution and use Bayes’ rule to obtain the pos-
terior), consider Oracle Bayes, and address the choice
between Bayes and empirical Bayes.

2. f - AND g-MODELING

Building on Efron (2014), Brad further compares
f - and g-modeling as strategic approaches. While f -
modeling is somewhat easier to implement, and the
Robbins result for the Poisson (Robbins, 1983) is truly
neat and showed how “empirical” can be wedded to
“Bayes,” g-estimation wins the day. Producing an ef-
fective g-model has its challenges, but the hard work
pays off in that the (estimated) posterior distribution
and generated summaries respect all constraints in-
duced by prior to posterior mapping. There may be
some models and goals for which f -modeling is com-
petitive to g, but the situations are few and likely null
when data aren’t marginally i.i.d., in multivariate mod-
els, for goals such as histogram estimation and ranking
(see below), or benchmarking (Bell, Datta and Ghosh,
2013). However, producing a good estimate of the X-
marginal distribution is still very important; for exam-
ple, it is central to assessing model fit (see Box, 1980).
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2.1 The Basic Poisson Model

In Section 5, Efron presents the Robbins (1983) f -
modeling approach to estimating the posterior mean,
eg(x), and variance, vg(x), of the Poisson rate parame-
ter. That vg(x) is nonnegative implies that eg(x) is non-
decreasing, and a nondecreasing eg(x) requires that,

f (x + 2)f (x)

f 2(x + 1)
≥ x + 1

x + 2
.

Directly estimating f does not ensure satisfaction of
this or other conditions imposed by the representa-

tion, eg(x) =
∫

θx+1g(θ) dθ∫
θxg(θ) dθ

. For example, nonnegativity
of the posterior fourth central moment also imposes re-
strictions on f . These and other restrictions are auto-
matically satisfied in g-modeling, but require consider-
able machinations to be satisfied in f -modeling.

2.2 Corbet’s Butterfly Data

Efron analyzes Corbet’s butterfly data, comparing
versions of f - and g-modeling for the Poisson rate pa-
rameter (θ ) and its logarithm (λ). For comparison, I
base g-modeling on the nonparametric, maximum like-
lihood estimate (NPML), implemented by the EM al-
gorithm (Laird, 1982), starting the recursion with a se-
quence of 24 equiprobable mass points in the inter-
val [0.1 to 36.0]. The recursion quickly converged the
the three-point distribution in Table 1. It induces an
X-marginal which is graphically close to the natural
spline Poisson regression fit in Figure 4 of the article,
but it gives less weight to small θ -values.

The g-NPML prior generates the posterior mean
plots in Figure 1. In the left panel, the g-NPML line
mimics the Robbins values displayed in Efron’s Fig-
ure 5, but is monotone and respects other conditions
imposed by the g-modeling approach. Zipf’s/g-glm are
plotted as a single line, even though in Efron’s Figure 5
g-glm is slightly below Zipf’s for large values of X.

Table 2 gives the (estimated) Bayes risk for the Rob-
bins, g-NPML and g-glm priors with g-NPML less op-
timistic than Robbins, but more optimistic than g-glm.
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TABLE 1
The NPML prior estimated from Corbet’s butterfly data.

(Masses sum to 1.005 due to rounding)

mass 0.552 0.256 0.197

mass point 2.175 8.200 17.204
log(mass point) 0.777 2.104 2.845

The g-glm prior produces an estimated 47.6 number
of new species after one additional year of data col-
lection, whereas g-NPML produces 23.5. Similar dis-
crepancies occur for additional years of follow-up. The
discrepancy is likely due to g-glm relative to g-NPML
giving additional weight to small θ values.

In summary, g-NPML produces an X-marginal that
is similar to that for g-glm, with departures that gen-
erate substantially different estimated Bayes risk and
a substantially different predicted number of new
species. These remind that compatibility for some fea-
tures of a model doesn’t imply compatibility for all
features.

I am not advocating use of g-NPML, but it sets the
stage for combining a smooth approach (e.g., g-glm,
or a mixtures of Gamma distributions) with g-NPML.
Combining can be based on the full Bayesian formal-
ism (e.g., a Dirichlet process prior), taking a weighted
average of the two prior estimates with, for a fixed N0,
relative weight N/N0 the g-NPML, or using the EM
with data augmented by values at percentiles of the
smooth distribution with weights that sum to N0.

TABLE 2
Estimated Bayes risk: “Robbins” is via

f -modeling, “glm” and “NPML” via g-modeling

Bayes risk (Rg)

Robbins 4.27 = 6.60 − 2.33
g-NPML 5.12 = 6.60 − 1.48
g-glm 6.55 = 6.60 − 0.05

3. EMPIRICAL ORACLES

It is no surprise that knowing the empirical distri-
bution function (EDF) of the θs (an Oracle) provides
considerable information. And, it is pleasing that EB
can provide a notable portion of the Oracle advantage.
An “empirical Oracle” provides a middle ground be-
tween knowing the oracle and standard EB. It proceeds
by estimating the EDF of the θs that generated the cur-
rent data set using the Shen and Louis (1998) approach.
Specifically,

θ1, . . . , θN i.i.d. G

GN(t |θ) = 1

N

∑
I{θi≤t} (the Oracle)

[Xi |θi] ∼ f (xi |θi).

The optimal squared error loss (SEL) estimate is the
posterior mean,

(3.1)
ḠN(t |X) = EG

[
GN(t; θ)|X]

= 1

K

∑
P(θk ≤ t |X).

FIG. 1. Posterior means for E(θ | X) (left panel) and E(λ | X) (right panel). Zipf’s/g-glm are plotted as a single line even though in
Efron’s Figure 5 g-glm is slightly below Zipf’s for large values of X.
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The SEL-optimal discrete function with N mass points
each with mass 1/N is,

ĜN(t | X) : mass 1/N at Ûj = Ḡ−1
N

(
2j − 1

2N

∣∣∣∣ X
)
,

an “empirical Oracle.” It also produces an estimated
histogram.

The empirical Oracle, ḠN in equation (3.1), depends
on the assumed G, but is also influenced by the ob-
served data. An EB approach replaces the assumed
prior (G) by an estimate (see Paddock et al., 2006),
providing more tuning to the data. If the estimate con-
sistently estimates G, then ĜN will consistently esti-
mate GN which will converge to G, closing the circle.

With Ḡ
(0)
N an initial value for the prior, and Ḡ

(ν+1)
N

the result of applying equation (3.1) with G
(ν)
N as the

prior, “roughens” the initial G toward the data (see
Laird and Louis, 1991, Shen and Louis, 1999). As
ν → ∞, G

(ν)
N converges (very slowly!) to the nonpara-

metric, maximum likelihood (NPML) estimate of the
prior, though using this approach to get the NPML
most assuredly not recommended.

The SEL loss function can be replaced by posterior
percentiles of GN(t) (see Paddock and Louis, 2011),
which supports construction of credible intervals.

4. FREQUENTIST, BAYES, EB, OR BEB?

Making inferences solely based on information from
a single study/dataset (N = 1) without incorporating
external evidence or professional judgment is prima fa-
cie frequentist. However, as Brownstein et al. (2019)
propose, this pure form is difficult if not impossible to
achieve. All other inferential activities entail some de-
gree of formal or informal Bayesian evaluation. If the
number of relevant data sources (N ) is large and they
provide a large amount of information on the prior dis-
tribution, plug-in EB performs well. Many genomics
examples live in this domain. For N = 1, if there is
to be Bayes, it needs to be high-church Bayes, driven
by personal/expert judgment (see O’Hagan, 2019). If
N is moderate, then accommodating uncertainty in the
inferred prior and posterior distributions via an expan-
sion (Morris, 1983), the bootstrap, or hyperprior Bayes
(BayesEB) is needed. Evaluating whether plug-in is
sufficient usually requires comparing it an approach
that captures inferred prior uncertainty, and if the latter
has been implemented, then why not use it?

TABLE 3
Comparison of simulated unconditional, nominal 95% EB CI

length and coverage for the exponential/inverse gamma model for
N = 5. See Section 5.4.3 and Table 5.4 in Carlin and Louis (2009)

for full details

Method

Feature ↓ Classical Naive EB Laird/Louis h1 h2

Length 38.80 5.22 7.50 4.51 5.66
Coverage 0.952 0.900 0.954 0.930 0.951

4.1 Example: Exponential/Inverse-Gamma

Carlin and Louis (2009) evaluated pre-posterior CI
length and coverage for the exponential/inverse gamma
model with θ the rate/hazard,

θ1, . . . , θN
i.i.d.∼ InvGamma(η,1),

f (yi | θi) = 1

θi

e−yi/θi , yi > 0,

θ̂mle
i = yi,

which produces the marginal distribution and marginal
mle,

m(yi | η) = η/(yi + 1)η+1,

η̂mmle = N

/ N∑
i=1

log(yi + 1).

They compared the frequentist CI to naive EB (plug-in
η̂mmle), Laird and Louis (1987) bootstrap, Carlin and
Gelfand (1991) hyperprior matching using h1(η) = 1
and h2(η) = 1/η, when N = 5 and the true η = 2.

Table 3 gives a snippet of their results. The classi-
cal interval is well calibrated, but extremely long rel-
ative to all other methods. The naive EB interval is
shortest, but at the expense of under-coverage. The
Laird/Louis bootstrap and the h2-based intervals are
well calibrated, with the latter being the shorter, but
the former not depending on specifying h. That the h1-
based interval under-covers shows that for small N sit-
uations, choice of hyperprior matters.

5. CLOSING

Efron’s evaluations and commentary should energize
similar analyses of the potentials and pitfalls of EB
analysis for more complex models and goals. Some of
the assessments can build on his reported mathemat-
ical analyses, others will require well-designed sim-
ulations. Assessments will be challenging, especially
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if activating the model requires MCMC. Careful de-
sign will be needed in a complex, multilevel, multi-
factor model to track information flow, and to assess
which outputs are highly sensitive and which are ro-
bust to model specification (hyperprior, prior, and the
data likelihood), and to model activation.

Efron’s examples show that while there may be some
risk in employing EB, there can be substantial rewards.
EB controls the risk by reducing, but not eliminating,
the need for personal opinion/judgment. Other than for
the Bayesian purist, EB is an attractive approach, and
the purist can find comfort in that BayesEB is “Bayes”
with marginalization over the hyperparameters produc-
ing a prior for the θs that augments linkages amongst
them.

Finally, in Efron (1986), Brad and discussants con-
sider the benefits and potential drawbacks of the
Bayesian approach to inference. There have been im-
pressive advances in Bayesian and empirical Bayesian
methods in the last 30+ years, and it would be great to
know his updated views, possibly entitled, “Why isn’t
everyone an empirical Bayesian?”
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