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Comment: Strengthening Empirical
Evaluation of Causal Inference Methods
David Jensen

Abstract. This is a contribution to the discussion of the paper by Dorie et al.
(Statist. Sci. 34 (2019) 43–68), which reports the lessons learned from 2016
Atlantic Causal Inference Conference Competition. My comments strongly
support the authors’ focus on empirical evaluation, using examples and expe-
rience from machine learning research, particularly focusing on the problem
of algorithmic complexity. I argue that even broader and deeper empirical
evaluation should be undertaken by the researchers who study causal infer-
ence. Finally, I highlight a few key conclusions that suggest where future
research should focus.
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1. INTRODUCTION

It is a great pleasure to read and comment on the pa-
per by Dorie et al. (2019) summarizing lessons learned
from the 2016 ACIC Competition. Competitions such
as this are extremely difficult to plan and conduct. They
require a vast amount of work, much of which can go
unrecognized and unrewarded. The organizers deserve
an enormous amount of credit for putting together such
a well-run and comprehensive competition, as well as
completing an extensive post-competition analysis and
write up, which can be challenging to complete in the
aftermath of the competition itself.

The authors designed an evaluation approach with
several key characteristics. First, it evaluates methods
based on their empirical performance on realistic data
rather than their theoretical properties or their perfor-
mance on entirely simulated data. Clearly, some as-
pects of the data are simulated, but these are kept to a
minimum. Second, the evaluation employs a broad ar-
ray of possible treatment assignment mechanisms and
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response surfaces, along with variation in other key
aspects (e.g., functional forms and alignment). Third,
the evaluation uses either black-box methods in which
entrants have no role in applying the method or blind
do-it-yourself (DIY) methods in which entrants do not
have access to correct answers. A final element of the
evaluation—structuring it as an explicit competition—
motivated participation and ensured that even the DIY
entries were blind.

My comments largely attempt to position the compe-
tition within a larger context, both in terms of how the
research community should direct future evaluation ef-
forts and in terms of the conclusions that readers should
draw from the competition results. My comments also
reflect my primary research communities—computer
science in general and machine learning in particular—
and attempt to convey a few hard-won lessons from
these communities.

Specifically, my comments focus on three points.
First, they support the authors’ focus on empirical eval-
uation, using examples and experience from machine
learning research. Second, they argue that even broader
and deeper empirical evaluation should be undertaken
by the entire research community. Finally, they high-
light a few key conclusions that suggest where future
research should focus.
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2. THE VALUE OF EMPIRICAL EVALUATION

It is challenging to design and conduct broad and
empirical evaluations of methods for causal inference,
and few examples of such evaluations exist. Given this,
how much should we value them? The authors provide
several reasons that we should value them highly, not-
ing that individual researchers typically perform evalu-
ations that: (1) compare relatively few methods and in
potentially unfair ways; (2) employ evaluations that are
not calibrated to realistic conditions; and (3) fall prey
to the “file drawer effect” (in which a study’s results in-
fluence whether it is published). Thus, the authors note,
“[s]trong performance of a method in a paper written
by its inventor is encouraging but should be interpreted
cautiously...” I strongly concur.

However, another class of advantages is not made
explicit in the paper. Causal inference has grown in-
creasingly algorithmic (e.g., using complex methods
for estimating non-parametric models), and the field
now faces challenges similar to those long faced by
researchers in many areas of computer science. One
such challenge is algorithmic complexity. As the com-
plexity of a given algorithm grows, its expected perfor-
mance can become extremely difficult to estimate in
theory, and thus empirical evaluation becomes corre-
spondingly more useful. A related challenge is imple-
mentation detail. While the formal specification of a
given algorithm may have desirable theoretical prop-
erties, liberties are often taken during implementa-
tion that can dramatically affect performance. Poten-
tial users care more about the performance of the im-
plementation, rather than the specification, further in-
creasing the utility of empirical evaluations. A final
challenge, well-known to both statisticians and com-
puter scientists, is how this complexity interacts with
real data. While theoretical analyses of algorithm per-
formance may be possible with idealized input data,
many such estimates do not survive first contact with
real data. This, too, increases the utility of broad and
empirical evaluations.

Algorithmic complexity also increases the scope for
potential human biases. Inventors of new methods face
a vast array of design choices in any sufficiently com-
plex method, presenting them with what has been
called a “garden of forking paths” (Gelman and Lo-
ken, 2013), only one of which is typically reported in
a final paper even though large numbers of the paths
may have been implicitly or explicitly tested using
some limited collection of data sets. The authors al-
lude to this problem, and it is worth reinforcing two of

its implications. First, it increases the utility of evalua-
tions such as the 2016 ACIC Competition because they
amount to a type of pre-registration (van’t Veer and
Giner-Sorolla, 2016), and thus we should value their
conclusions over alternatives. Second, given the multi-
plicity of methods tested, we should focus on general
conclusions about the types of methods that perform
well, rather than treating the Competition as a bake-off
and focusing on the individual methods that perform
best (as the authors themselves note).

For all of these reasons, broad and empirical eval-
uation strategies have long been emphasized in the
field of machine learning (ML). Indeed, they are virtu-
ally required by most ML reviewers when confronted
with a new modeling method. For certain classes of
tasks, the ML research community has responded to
this need with large suites of testing resources, includ-
ing large repositories of data sets (e.g., Dheeru and
Karra Taniskidou, 2017) and standard evaluation pro-
tocols (e.g., Provost et al., 1998, Bradley, 1997). Some
of the best papers in the field routinely evaluate perfor-
mance across a dozen or more data sets (a classic ex-
ample is Domingos and Pazzani, 1997). These types of
evaluations regularly yield surprises in machine learn-
ing research. Two longstanding examples that are fre-
quently cited are the effectiveness of naive Bayesian
classifiers (Domingos and Pazzani, 1997) and the anal-
ogous effectiveness of relatively simple bag-of-words
models in information retrieval tasks (Lewis, 1998).

Of course, evaluating methods for causal inference
(as opposed to, say, classification) poses special chal-
lenges, and the development of the resources necessary
for broad and empirical evaluation is only just begin-
ning. Perhaps the greatest challenge is that, in con-
trast to classification or regression tasks, the “ground
truth” for causal inference requires knowledge of a
different joint distribution than the one that gener-
ated the (observational) training data. Fortunately, the
2016 ACIC Competition joins several other recent
efforts to develop such evaluation resources. These
include two subsequent ACIC Competitions (Hahn,
Dorie and Murray, 2018), at least three competitions
organized for various machine learning conferences
(Guyon et al., 2008, Guyon, Janzing and Schölkopf,
2010, Guyon, Statnikov and Batu, 2019), the DREAM
in silico data sets that attempt to emulate single gene
knockout experiments (e.g., Schaffter, Marbach and
Floreano, 2011), observational data sets drawn from
several exhaustive experiments on large-scale compu-
tational systems (Garant and Jensen, 2016), a recent
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DARPA research program focused on evaluating meth-
ods for causal inference against data drawn from com-
plex social simulations (DARPA, 2017), and the IBM
Causal Inference Benchmarking Framework (Shimoni
et al., 2018).

3. EXPANDING THE RANGE OF EMPIRICAL
EVALUATION

The authors have provided an unusually strong ad-
dition to the set of resources for empirical evaluation
of methods for causal inference, and the community
needs many more such additions. None of the indi-
vidual efforts mentioned above is comprehensive, yet
the growing set of community resources could pro-
duce a major shift in how researchers guide their fu-
ture research efforts (Cohen and Howe, 1988). This
set of resources should continue to grow in both depth
and breadth, particularly the latter. All evaluation ap-
proaches have blind spots, and researchers need a
broad base of evidence from which to draw conclu-
sions.

The authors themselves cite a number of the key
challenges of causal inference that were not addressed
in their competition, including non-binary treatment,
non-continuous response, non-i.i.d. data, variation in
sample size and number of covariates, measurement er-
ror, and weakening the assumptions of ignorability and
overlap. This is an excellent list. I would add two addi-
tional items: (1) alternative causal inference tasks; and
(2) real-world response surfaces. Each are described in
more detail below.

Alternative causal inference tasks—The causal in-
ference task addressed in the Challenge is simple: es-
timate the effect of a single binary treatment on a sin-
gle continuous outcome variable at a specific time for
all treated individuals. However, a wide range of alter-
native tasks are entirely plausible. For example, many
real-world scenarios require: (1) estimating the effects
of repeated interventions over time, (2) intervening on
multiple dependent data instances, (3) manipulating
multiple treatment variables simultaneously, (4) esti-
mating the temporal trajectory of an outcome variable;
(5) considering multiple outcome variables (perhaps
with constraints or an overall cost function on their
joint values); or (6) some combination of these ele-
ments. In addition, some realistic tasks could allow a
method to abstain from providing any causal estimate
for specific instances. Providing the means to assess
performance on such tasks (particularly in the form of
a competition) can be an effective way to drive research

interest in such tasks and to broaden what the commu-
nity considers to be reasonable research topics.

Real-world response surfaces—The response sur-
faces considered in the challenge were impressively di-
verse, but it is unclear to what extent they correspond
to the response surfaces likely to be encountered in
practice. While the covariates used in the challenge
were drawn from real-world distributions, the treat-
ment assignment and response surfaces were not. This
is particularly concerning because one of the primary
conclusions of the paper is that methods that flexibly
model the response surface perform best. How much
does this conclusion depend on the particular distribu-
tion of response surfaces in the competition?

As the authors note, one option for generating re-
alistic response surfaces is to evaluate using “con-
structed observational studies.” These studies use data
from a randomized experiment to estimate treatment
effect, then construct an observational data set, make
an observational estimate using the constructed obser-
vational data, and compare the two estimates. In the
cases cited by the authors, the observational data sets
are constructed by either: (1) combining data from
treated individuals in the experimental data with data
from untreated individuals drawn from an alternative
data source (LaLonde and Maynard, 1987, Hill, Reiter
and Zanutto, 2004); or (2) allowing an alternative pool
of subjects to self-select (Shadish, Clark and Steiner,
2008). Constructed observational studies have the ad-
vantage of producing real-world treatment assignment
and real-world response surfaces. However, as the au-
thors note in Section 2.1, such studies have a set of
related problems: (1) they represent only a single data
generating process; (2) we cannot know whether ig-
norability is satisfied; and (3) additional uncertainty is
introduced by the comparison of two estimates (as op-
posed to an estimate and a known parameter value).

Intriguingly, however, there exists an alternative ap-
proach to constructing observational studies that mit-
igates at least one of these problems. This approach
(Garant and Jensen, 2016) uses exhaustive experimen-
tal data in which all potential outcomes can be as-
sessed (in the three examples we provide, the exhaus-
tive experimental data is generated by manipulating
large-scale computational systems). The approach then
samples non-randomly from such data to create con-
structed observational data. As with the constructed
observational studies critiqued by the authors, the es-
timated causal effect from the observational analysis
is then compared to the experimental estimate. How-
ever, this approach has the advantage of having a re-
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alistic response surface. In contrast to the data gener-
ated for the competition, only the treatment assignment
is synthetic. In addition, because the treatment assign-
ment can be determined entirely from known covari-
ates, ignorability is satisfied. This approach is hardly
a panacea—each data set still represents only a single
data-generating process and it still requires comparing
two estimates. However, it is one more option to con-
sider in producing a range of empirical evaluation re-
sources.

4. IMPLICATIONS

Given the strong reasons to trust the validity of the
competition results, the conclusions of the authors are
of great interest. I applaud the care and thoughtfulness
of the authors in drawing conclusions from the large ar-
ray of quantitative data generated by the competition.
I will focus on two conclusions that should be of par-
ticular interest to researchers.

First, the authors note that methods that focus on
flexible modeling of the response surface performed
best, even when the method did not also model the as-
signment mechanism. This will surprise a large group
of researchers who focus primarily on modeling treat-
ment assignment, particularly since modeling treat-
ment assignment appears so much simpler (at least in
the case of binary treatment). This provocative find-
ing emphasizes the need to better understand the range
of likely real-world response surfaces and the extent
to which the competition results would hold over that
range.

Second, the authors call out “lack of alignment” as
one of the most challenging aspects of the data. Align-
ment refers to the correspondence between the manner
in which specific covariates affect both the assignment
mechanism and the response surface. The authors note
that: “Lack of alignment creates difficulty because if
there are many covariates available to a researcher and
only a subset of these are true confounders (and in-
deed perhaps only certain transformations of these act
as true confounders) then methods that are not able to
accurately privilege true confounders are potentially at
a disadvantage. Of course most of the submissions did
not explicitly do this.” (emphasis added).

Simple variable selection is unlikely to be effective
in cases that lack alignment, because the question is not
whether a variable is necessary for accurately modeling
either treatment assignment or outcome, but whether a
given variable participates in confounding and whether
conditioning on that variable will remove the con-
founding. As Pearl (2009) and others note, this is not

a simple inference, but requires substantial knowledge
about the causal dependence structure among all vari-
ables. Of course, this knowledge is exactly is what
learned by methods that infer causal graphical models
from observational data, and strong formal theory ex-
ists to use that structure to identify the correct adjust-
ment set for any particular causal inference (Spirtes,
Glymour and Scheines, 2000, Pearl, 2009). The chal-
lenges created by lack of alignment argue strongly for
using methods based on causal graphical models, both
because such methods produce the knowledge neces-
sary to infer the correct set of variables on which to
condition and because the joint causal structure effi-
ciently factors the joint distribution into much simpler
and more easily estimated conditional distributions.

A final note: As the authors point out, some of their
most interesting findings are negative—very few of the
features sometimes conjectured to be major differentia-
tors proved to be important in predicting performance
of specific methods across a wide range of data gen-
erating processes. This provides strong guidance to fu-
ture research. Researchers should either: (1) proceed
as if these factors are unimportant; (2) identify special
cases in which they are; or (3) identify and correct er-
rors in this particular approach to empirical evaluation.

5. CONCLUSIONS

Again, congratulations to the authors on conducting
an extremely successful and informative competition
that will provide lasting value to the research commu-
nity.
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