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Abstract.

Shape constraints play an increasingly prominent role in nonpara-

metric function estimation. While considerable recent attention has been fo-
cused on log concavity as a regularizing device in nonparametric density es-
timation, weaker forms of concavity constraints encompassing larger classes
of densities have received less attention but offer some additional flexibil-
ity. Heavier tail behavior and sharper modal peaks are better adapted to
such weaker concavity constraints. When paired with appropriate maximal
entropy estimation criteria, these weaker constraints yield tractable, convex
optimization problems that broaden the scope of shape constrained density
estimation in a variety of applied subject areas.

In contrast to our prior work, Koenker and Mizera [Ann. Statist. 38 (2010)
2998-3027], that focused on the log concave (o = 1) and Hellinger (o = 1/2)
constraints, here we describe methods enabling imposition of even weaker,
o < 0 constraints. An alternative formulation of the concavity constraints for
densities in dimension d > 2 also significantly expands the applicability of
our proposed methods for multivariate data. Finally, we illustrate the use of
the Rényi divergence criterion for norm-constrained estimation of densities

in the absence of a shape constraint.
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1. INTRODUCTION

The observation of Grenander (1956) that maximum
likelihood, while failing for the general problem of
probability density estimation, still delivers a viable re-
sult under monotonicity restriction may be considered
the genesis of shape constrained nonparametric density
estimation. Prakasa Rao (1969) first investigated non-
parametric maximum likelihood estimation of a uni-
modal density assuming a known mode and developing
large sample theory for the Grenander (1956) esti-
mator. An extensive literature has followed, including
work by Birgé (1997) incorporating estimation of the
mode, and work on exploratory diagnostics for uni-

Roger Koenker is Honorary Professor of Economics,
University College London, London, WCI1H 0AX, United
Kingdom (e-mail: rkoenker@uiuc.edu). Ivan Mizera is
Professor of Mathematical and Statistical Sciences,
University of Alberta, Edmonton, Alberta, T6G 2G1,
Canada.

510

Density estimation, shape constraints, Rényi en-

modality by Cox (1966), Silverman (1981), Hartigan
and Hartigan (1985) and others.

As noted by Diimbgen and Rufibach (2009), estimat-
ing unimodal densities & la Grenander is not fully sat-
isfactory; even when the mode is known some addi-
tional restrictions on the estimated density are needed
to achieve global consistency. This may help to explain
the recent shift in research focus to surrogates of uni-
modality. Log-concave densities, or strongly unimodal
densities constitute a natural alternative since they play
an important role in core statistical theory as well as
many application areas, and offer some distinct ad-
vantages over unimodality per se from both compu-
tational and theoretical perspectives as elucidated by
early exponents of the approach: Eggermont and LaR-
iccia (2001), Walther (2002), Diimbgen and Rufibach
(2009), Pal, Woodroofe and Meyer (2007), and Cule,
Samworth and Stewart (2010). See Walther (2009) for
a more extensive review, and Eggermont and LaRic-
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cia (2001) for related discussion from a slightly differ-
ent perspective.

Shape constraints can be formalized as imposing a
“hard” penalty that takes the value O if the constraint is
satisfied and +oo otherwise. Such penalties, in con-
trast to the “soft” norm-type penalties considered in
Koenker and Mizera (2008, 2007), have the salient
virtue that they require no choice of tuning parameters.
Shape constraints are consequently somewhat simpler
mathematically, so we will consider them first, return-
ing to norm-type penalties toward the end of our expo-
sition.

The evolutionary development of Koenker and Miz-
era (2010), no longer followed here, began with the
variational formulation of the log-concave MLE prob-
lem for given X = {X1, ..., X,;}, with X; € R4:

(P1) min{%Zg(Xi)Jr/e_g(")dx’geIC(X)},
i—1

with C(X) denoting the set of closed convex func-
tions on the convex hull, H(X), of X. A solution
g : H(X) — R yields a density estimate f (x) =
exp(—g(x)) on H(X); the fact that this obviously pos-
itive quantity is a probability density estimate, that is,
its integral is equal to one, is assured by the presence
of the integral term in (Py). Outside H (X), the solution
g(x) = —o0, meaning that f (x) = 0. Interpreting (Py)
as a “primal” formulation in the context of convex pro-
gramming, Koenker and Mizera (2008, 2010) derived
the associated “dual” problem,

dQX) - G)

max{/—flogfdx‘f: I

(Dy)
Ge IC(X)O},

where Q(X) =n"!
ity measure,

"_1 8x, is the empirical probabil-

K(X)° = {G eC*(X)‘/gdG <0,g eIC(X)}

is the polar cone associated with C(X), and C*(X) de-
notes the set of (signed) Radon measures on H(X).
The appearance of the Shannon entropy in the dual
formulation (D) may be interpreted as the desire to
find f closest in the Kullback-Leibler divergence to
the uniform distribution on H(X) subject to the con-
cavity constraint.

For the problem (Pp), the solutions admit further
characterization: ¢ are piecewise linear on H(X), so
estimated densities are piecewise exponential; see, for

example, Koenker and Mizera (2010), Theorem 2.1.
This feature motivated us to look for larger classes
of quasi-concave densities that would accommodate
heavier tails and more sharply peaked densities than
the log concaves. Such classes are provided by s-
concave functions. Loosely speaking, a function is
called s-concave, for s > 0, if its sth power is concave.
More precisely, a nonnegative, real function f, defined
on a convex set C C R9 is s-concave, if there is a con-
vex function g such that

(—)'/* fors >0,
f=4e 8 fors =0,
gl/s for s <O.

This is equivalent to the definition of Avriel (1972)
used by Koenker and Mizera (2010), who define f
to be s-concave in terms of the means of order s, as
defined, by Hardy, Littlewood and Pélya (1934). Note
that log-concave functions are 0-concave, and concave
functions are 1-concave; also, if f is s-concave, then
f is also s’-concave for any s’ < s. The limiting class
of —oo-concave, the union of all s-concave classes for
all s € R, is the class of quasi-concave functions—
functions with upper level sets convex. In the one-
dimensional case, for d = 1, this class is identical with
that of unimodal functions.

Once log-concavity is imposed, maximizing log
likelihood in (Pp) appears to be especially convenient,
as it leads to a convex program with the only nonlinear-
ity arising from the integrability constraint. However,
when weaker forms of concavity are considered, it
proves more convenient to adapt the fitting criterion—
in particular to retain the convexity of the optimization
formulation. This was already apparent in an earlier
work of Groeneboom, Jongbloed and Wellner (2001)
who employed least squares fitting rather than log-
likelihood when imposing the stronger requirement of
concavity of the density itself. While it is not really
obvious how to adapt (P) to obtain a viable fitting for-
mulation, the appearance of the Kullback—Leibler di-
vergence in (D) suggests the possibility of replacing it
by one of the abundant assortment of alternative diver-
gences. Koenker and Mizera (2008, 2010) pointed out
that for s-concave densities, this turns out to produce
a lucky match. They proposed replacing the Shannon
entropy in (D7) by a variationally equivalent form of
the Rényi entropy, the move that yielded a family of
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new dual and primal pairings,

1 dQX)-G
max| - [ o]y = T2,
(Do)
GeIC(X)”},
and
(Py) min[Zg(Xi)+ ll;alfgﬂdx‘gelC(X)}.
i=1

The Rényi exponent o here corresponds to Avriel’s s =
o — 1, and B is conjugate to « in the usual sense: 1/« 4
1/8=1.

Among the Rényi entropies, the ones enjoying par-
ticular connections to the existing literature happen to
be are those with o being a multiple of 1/2. Koenker
and Mizera (2010) focused primarily on the log con-
cave, o = 1, case and the Hellinger, « = 1/2, case; the
latter imposes the weaker constraint that —1/,/f be
concave. Here, we describe some further explorations
of this approach that take us into the netherworld of
o < 0. Apart from emphasizing computational aspects,
we highlight applications from the diverse fields of
economics, astronomy and anthropometry where the
methods exhibit special salience. The recent work of
Han and Wellner (2016), and Laha and Wellner (2017)
provides considerable further theoretical development
and justification for the pairing of the Rényi criterion
with weaker forms of the concavity constraints.

Existence, uniqueness and Fisher consistency results
are extended to this broader class of quasi-concave
density estimators. An alternative formulation of con-
cavity constraints for densities in dimension d > 2
is shown to significantly expand the applicability of
the methods for multivariate data. Finally, we illus-
trate the use of the Rényi divergence criterion for norm
constrained estimation of densities without a shape
constraint. An implementation of all the methods de-
scribed here is available in the R package MeddeR,
Koenker and Mizera (2017), which relies on the convex
optimization software Mosek, Andersen (2010), and its
R interface Rmosek, Friberg (2012); further details are
provided in Section 4.

2. DIVERGENCES AND ENTROPIES

A natural point of departure for the exploration of
weaker concavity constraints is the general form of the
dual formulation. We want to adapt the Shannon crite-
rion appearing in (D7) to the chosen form of the shape
constraint, at the same time preserving the convexity

of the dual formulation. Maintaining our definitions
of I(X)?, Q(X) and H(X), we consider the shape-
constrained formulation
dQX)—-G
max{— [y pyam| p = CEEL=E,
m
(D)

G e IC(X)"},

which has constraints identical to those of (D7), only
the objective function is now open to reconsideration.

Another minor variation is that the dominating mea-
sure dx is generalized to dm: This may appear not that
essential, but it offers a convenient bridge between the
theory, which favors dx, to more pragmatic choices
like dx restricted to a bounded domain, or versions of
the latter discretized to a fine grid; we should stress
that when it comes to instances of dm, we always have
in mind those quite close to the original dx. In what
follows, we will assume that dm is a regular Borel
(nonnegative) measure which is either finite so we may
without loss of generality require [ fdm = 1, or at
least assigns finite values to bounded sets as does dx.
The following proposition holds true with any restric-
tions on dm—just as a consequence of our definitions.
Proofs are deferred to the Appendix.

PROPOSITION 1. Any f satisfying the constraints
of (D)—in particular, the optimal f—satisfies the fol-
lowing:

1 n
/f(y)dm(y) —1, /yf(y)dm(y) —-Y x..
iz

In general, the higher-order moments are not pre-
served; in particular, the variance rendered by f is al-
ways less or equal to the sample variance of X; this
underlies an ingenious method of smoothing the shape-
constrained MLE for log-concave densities devised by
Diimbgen and Rufibach (2009).

Now, a convenient family of objectives for (D)
can be derived from «-divergences as described in
Cichocki and Amari (2010),

1

D(fo) = ([ 7o - 1)

(1) a(a—1)
for « ¢ {0, 1};
for « = 1 and o = 0, we have the limiting values
Dl(f,g):/flogidx
8

and

DO, g>=/glog§dx,
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respectively. Since D*(f, g) = D' ~%(g, f), it follows
that D!/? is the distinguished, symmetric element. Up
to variational equivalence, that is, up to monotone
transformations that do not affect the outcome of the
optimization problem (D), the entropies to act as ob-
jective functions in (D) are obtained from the diver-
gences above by taking ¢ = 1 and changing the sign
(before finally replacing dx by dm). This yields

E9(f) = —D*(f. g) = ﬁ([ FHwdx—1),

the expression that assures the correct sign for o < 0,
and also enables the limit transition to the integrand
log f as o« — 0. Another variationally equivalent form
is, for a # 0,

g(pr=ag (= ([ rrax-1).

in literature often referred to as the Tsallis (1988)
entropy; see, however, Perez (1967) and Havrda and
Charvét (1967). The latter delivers the correct sign for
o« > 0 and yields Shannon entropy in the limit tran-
sition ¢ — 1. It is monotonically related, and hence
variationally equivalent to the original Rényi entropy
expression, the expression that predates all the others;
for o < 1, o # 0, the latter is equal to

EYfH=d —a)_llog(/ f"’(x)dx).

The entropies resulting for « ¢ {0, 1} are variationally
equivalent to the integrals of — f* fora > 1 and @ < 0,
and to those of f* for @ € (0, 1). Koenker and Mizera
(2010) used equivalent integrands

(=y)¥/a  fory <0,

*(y) = fora > 1,
Vo) ~+00 fory >0 *

_ (—=y)log(—y) forx <0, fora—1,
400 forx >0
— (=¥ f <

_ T e dory =0 <1 a0,
400 fory >0
—log(— f 0,

= og(—y) fory< for o = 0.

400 fory >0

It should be stressed that minimum divergence esti-
mation methods remain an active field of study; see,
for example, Ghosh (2015) and Basu et al. (1998). The
survey of Broniatowski and Vajda (2012) lists “four
types of point estimators based on minimization of

information-theoretic divergences between hypotheti-
cal and empirical distributions.” Other relevant refer-
ences include Broniatowski and Keziou (2006, 2009)
and Liese and Vajda (2006). The divergence estimators
discussed here differ not only in their focus on non-
parametric density estimation rather than parametric
models, but more importantly, they do not seek min-
imum distance of the estimate to the empirical distri-
bution; instead, as already noted above, (D) seeks f
minimizing the distance to the uniform distribution, on
H(X), among admissible distributions specified by the
constraint that depends on the data through the empir-
ical distribution Q(X). For further explanation of this
aspect in the context of norm-constrained density esti-
mation, see Koenker and Mizera (2006).

3. THE DUAL OF THE DUAL AND SHAPE
CONSTRAINTS

Koenker and Mizer (2010) derived (D;) for o =1,
the dual of the log-concave MLE, from the primal MLE
formulation (Py); for the other «’s, they proceeded the
other way round. Now, we obtain the primal formula-
tion

)1 E
(P) mmigzg(x,-) +/w<g)dm\g € K(X)}
i=1
as the dual of (D), functions conjugate to ¥* being

denoted by . For the particular ¥} from the previous
section, we have

(-0 /B forx <0,
X) = fora > 1,
Valx) {O forx >0
=e ¥ fora=1,
f <0
= +O§ orxr =", fora <1,a #0,
—x7/B forx >0
f
= oo orx <0, fora =0.
—logx forx >0

Revisiting the proof of strong duality in Koenker and
Mizera (2010) reveals that their Theorem 3.1 can ac-
commodate general dm; the details are given in the
Appendix, in the proof of the following proposition.
Recall that the standing assumption for dm is that it
assigns finite values to bounded sets; as far as ¥ is
concerned, we assume hereafter that it is a nonincreas-
ing, proper convex function on R its domain containing
(0, +00). In fact, all the assumptions we make here and
later about v are satisfied by all the ¥/, above.
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PROPOSITION 2. Suppose that  is differentiable
on its domain. The solutions f of (D) and g of (P)
satisfy

2) f=—v'@.

The proposition reveals how the requirement G €
K(X)? stipulated in the constraints of (D) translates
to the crucial fact that the solutions f are (@ — 1)-
concave. For v, listed above, (2) translates to

1

f(x) = max{(—g(x))eT, 0}

— e 8W)

fora > 1,

fora =1,

1
=(g(x))eT fora <1,

in view of the requirement in (P) that ¢ € K(X) this
means that f is (o — 1)-concave. If ¥ is differentiable,
the monotonicity of ¥ implies the existence of the in-
verse of ¥/, from (0, +00) to the domain of v, here-
after denoted as ¢. The conjugate of ¥ can be obtained
as its Legendre transformation,

3) V() =—ye(») — ¥ (e()),

and with g = ¢(—f) then, (P) can be rewritten in
terms of the estimated f as

min{% Zgo(—f(Xi)) + / 1//(<P(—f))dm‘
(F)
o= ekm).

The formulation (P) also leads to the geometric
characterization of the optimal g. For dm = dx, Theo-
rem 2.1 of Koenker and Mizera (2010) asserts that the
optimal ¢ belongs to G(X), the collection of all poly-
hedral convex functions of the form

n n
gx,r)(x) = inf{z)\iYi X = Z/\iXi,

i=1 i=1

) \
jZM=Lqu,
i=1

where, as before, X = (X1, X»,...,X,,) are data-
points, X; € R? and Y = (Y1,Y>,...,Y,) are func-
tion values, Y; € R, at those—of the function which
is the lower convex hull of the points (X;, ¥;) € RétL,
The convention inf @ = +00 used in (4) means that
the domain of g(x y) is equal to H(X); that is, g is
equal to +oo outside H(X), which, in view of the
transformations listed above means that f is equal to
zero outside of 7 (X). This fact facilitates an extension
of Theorem 4.1 of Koenker and Mizera (2010), which

was originally proved under the assumption that ¥ is
bounded from below, an assumption satisfied for pos-
itive values of o, which Koenker and Mizera (2010)
focused on. Regarding dm, we again need only that it
assigns finite values to bounded sets; for i, we have to
assume a bit more beyond the standing assumption of
monotonicity and convexity.

PROPOSITION 3. Suppose that the limit of ¥ (y +
tx)/T, for T — 400 and every real y, is respectively
400 and 0, for x <0 and x > 0. The solution of (P)
then exists in G(X); it is unique when dm assigns pos-
itive measure to every open set within H(X), in partic-
ular, for dm = dx.

Note that the assumptions are still true for every v,
listed above: while the limit 400 for x < 0 has to be
explicitly calculated for v, with & > 0, it is automatic
for those with o < 0, as then ¥, (y) = 400 for y < 0.
On the other hand, the limit for x > O has to be ex-
plicitly calculated to be O for v, with & < 0; for those
with « > 0, it is automatic by the fact that ¥ (y) — 0
for y — +o0.

The polyhedral characterization of g for general dm
is “nonexclusive,” in particular dm arising from dis-
cretizations, do not generally assign positive measure
to every open set within H(X). Nonetheless, the proof
of Theorem 2.1 of Koenker and Mizera (2010) shows
that the optimal g still can be found in G(X). We will
thus hereafter assume that any solutions g of (P) is
from G(X)—this is hardly a restriction, as precisely
such solutions are those that are obtained by practi-
cal implementations. We will use the characterization
of solutions to establish a continuity property that pro-
vides a theoretical justification for our “approximate”
computational strategies. Note that pointwise conver-
gence, hereafter just “convergence,” of polyhedral g, €
G(X) is equivalent to their uniform convergence, and
also implies uniform convergence of their correspond-
ing transforms fv, the solutions of the related versions
of (D). The notion of weak convergence of measures
we use here is that of Billingsley (1968), in the treatises
of functional-analytic flavor often referred to as that of
weak™ topology. The proof of the following proposi-
tion is facilitated by the convexity, not that much that of
solutions, but that of the objective functions involved,
along the lines of well-known principles exemplified,
for example, by Hjort and Pollard (2011). The latter
reference indicates that error bounds are also possible;
this is left for future work.
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PROPOSITION 4. Suppose that dm,, is a sequence
of measures converging weakly to dmg. Any accumu-
lation point, for v — oo, of any sequence of solu-
tions g, of (P) with dm = dm, is a solution of (P)
with dm = dmyg. In particular, gy is a limit of any
such sequence, if it is a unique solution of (P) with
dm = dmy.

As mentioned above, noteworthy values of « are
those that are multiples of 1/2. In particular, @ = 2
has a connection to the Pearson xZ; the solution corre-
sponds to the least-squares estimator of Groeneboom,
Jongbloed and Wellner (2001) and yields a density
estimate which is itself concave. Obviously, @ = 1,
our point of departure, yields the MLE of log-concave
densities, with the link to the Kullback-Leibler di-
vergence and Shannon entropy. Koenker and Mizera
(2010) somewhat championed o = 1/2, linked to the
Hellinger distance, the only symmetric choice among
the a-divergences; the resulting density estimates are
those with the convex reciprocal of the square root, the
class including, in particular, all ¢ densities with de-
grees of freedom greater or equal to one (and all log-
concave densities as well).

The «-divergences for o < 1/2 are reverse versions
of their symmetric, about 1/2, counterparts for 1 — «.
An important instance, for which we in 2010 did not
possess a reasonably stable algorithm, is that for o =0,
corresponding to the reverse Kullback—Leibler diver-
gence and the entropy that is sometimes called the
Burg (1967) entropy. The corresponding density es-
timate can thus be interpreted as an empirical likeli-
hood estimate of a density with convex reciprocal. An-
other noteworthy instance is that for « = —1, corre-
sponding to the reverse x2, or the Neyman x2. For
further discussion and other «, see Koenker and Miz-
era (2008, 2010).

4. COMPUTATIONAL ASPECTS

In this section, we will briefly describe our imple-
mentation which relies crucially on the convex opti-
mization software Mosek, Andersen (2010), and its in-
terface Rmosek, Friberg (2012) to the R language, R
Core Team (2017). Additional software and data to
reproduce the computational results reported here is
available in the R package MeddeR, Koenker and Miz-
era (2017).

While for theoretical purposes it is useful to replace
dx by dm restricted to a compact (albeit large) set,
for the purpose of numerical computations we need to

make our variational formulation of the Rényi diver-
gence estimator finite-dimensional; that is, to discretize
it in some way. This formally corresponds to choos-
ing a dm that approximates dx, the latter restricted to
a compact set, and is concentrated on a finite set of
atoms, called hereafter evaluation points. The finite-
dimensional problem then estimates the values of f at
these points. The most straightforward examples arise
in the one-dimensional case: we take dm supported
on a uniformly spaced fine grid, typically N = 300
to 1000 points, starting with the minimum and end-
ing with the maximum of the X;’s, and assigning to
each grid point mass 1/ N—except perhaps for the end
points, depending on whether standard rectangular or
trapezoidal integration formula is to be applied.

In dimension one, implementation poses few prob-
lems: the dm grid becomes an input to the estimat-
ing function solving (D). The complexity of the al-
gorithm depends only on N, the number of evaluation
points, and is independent of #n, the size of data. Given
the speed of the optimization algorithm, the problem
of this algorithm in the one-dimensional case is sel-
dom the size of N, which can be easily increased.
When N does become prohibitively large—this situ-
ation can occur in one-dimensional problems with ex-
treme outliers, and is almost inevitable in multidimen-
sional problems—it is usually more fruitful to turn to
the primal formulation (P). Since our variational prob-
lem has a solution, g, that is polyhedral, convex and
piecewise linear on a triangulation—or for d > 2, on
simplices spanned by the observed X;’s—the solution
is characterized by the n function values, y; = g(X;).
In fact, this amounts to making the X;’s the evaluation
points, although at this point with uncertain masses at-
tached to them; as N = n in such a case, the complexity
of the algorithm now depends on n, the number of data
points.

There are two important difficulties that have to be
tackled in this approach. The first one is enforcing the
convexity of the fitted g. In dimension one, this is very
easy, owing to the fact that the evaluation points either
come already ordered, or can be easily sorted. One has
then only to make sure that any three adjacent evalua-
tion points satisfy the convexity requirement. The num-
ber of required constraints is linear, O(N), in N. More
generally, let V denote a diagonal matrix with diago-
nal elements consisting of the order statistics of the X;,
and set Ay = D**1V where D denotes the differencing
operator on V, then A;y > 0 imposes monotonicity,
Ay > 0 convexity, and so forth.
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In higher dimensions imposing convexity is some-
what more onerous, but conceptually still quite simple.
As noted by Seijo and Sen (2011), we need only to
impose n(n — 1) linear equality constraints in view of
the following observation, which goes back at least to
Afriat (1967, 1972).

PROPOSITION 5. Let v; € R, y; € R, for i =
1,2,...,n. There is a convex function, g, such that
g(v;) =y, if and only if there are h; € RY, such that

(v; — vj)Thi <vYi—vyj Jforalliand j#i.

The geometric interpretation is quite self evident: At
each vertex of the triangulation, (v;, y;), there must be
a supporting hyperplane in the direction of every other
vertex. Order O(N?) linear inequality constraints may
seem burdensome, but the good news is that their num-
ber does not depend on the dimension, d, any more;
only the number of variables grows linearly with d and
N, O(Nd), via the dimension of the subgradients 4;.

Once the mechanism for imposing convexity is in
place, the only remaining challenge is to approximate
the integrability constraint on the estimated density.
Again, in dimension one this is would not be that much
a big deal, as the integrals in the segments of adjacent
ordered evaluation points can be interpolated via var-
ious numerical schemes; for instance, one can take a
fine grid of points between the two, interpolate linearly
the values of g in between, and use standard rectangu-
lar or trapezoidal integration formula for v (g), which
due to the convexity of i preserves the convex charac-
ter of the optimization task. And, after all, in dimension
one we do not have to bother, as we rather use (D) in-
stead of (P) for computing the estimates.

In multidimensional problems, d > 2, this strat-
egy is not so straightforward—already in the two-
dimensional case, linear interpolation poses a problem:
We know that g is polyhedral, but to determine how to
interpolate one needs to know the triangulation. Opti-
mizing over triangulations, however, is challenging.

A way out is to eschew linear interpolation and con-
sider instead the right prism Riemann sums where each
point x of the integration domain belongs to the base
polygon containing X; closest to x, and the height of
the prism is g(X;). The polygonal tesselation of the
integration domain corresponding to the nearest X; is
the well-known Voronoi tesselation. There are efficient
algorithms for its construction, in arbitrary dimension,
and also for the calculation of the volumes of the poly-
gons.

In view of the strategy outlined above, with discrete
dm approximating d X, this scheme can be seen as se-
lecting the data points X; as the evaluation points, and
assigning them masses in dm equal to the volumes of
the Voronoi polygons formed by the evaluation points.
Experiments in the one-dimensional case, when com-
parisons with other methods are easily made, indicate
that the approximation is good in the center of the data,
as the data points are typically dense there. The poly-
gons become larger in the tails, but this is counterbal-
anced by the fact that the density is smaller. If neces-
sary, some additional evaluation points (‘“undata”) can
be added at the tails. On the other hand, when » is large
we may want to choose a smaller number of evaluation
points, that is, we may want N < n, as it is N that de-
termines the complexity of the algorithm through the
O(N?) convexity constraints. We may achieve this by
including only some, not all, of the X;’s in the eval-
uation points. Indeed, we may even avoid X;’s com-
pletely and choose evaluation points that are somehow
uniformly spread over H(X).

In the case that no evaluation point is equal to a
particular data point X;, a question arises how X; is
expressed in the “likelihood” term n~! Y 8(Xy).
Again, there are several possibilities for such an “eval-
uation functional” in the one-dimensional case: Either
X; is replaced by the nearest neighbor evaluation point,
or its contribution is divided to that of the nearest two,
with weights equal to the weights linearly interpolat-
ing X; by the nearest two. The evaluation functionals
in this fashion enter also the implementation via (D)
if the evaluation points do not necessarily contain all
the X;, for instance, if they are uniformly spaced. It
should be said that while both approaches return a so-
lution that integrates to one under dm, it is only the
evaluation functional via linear interpolation that leads
to the estimate preserving the mean of the data, in the
sense of Proposition 1.

In the higher dimensions, it is only nearest neigh-
bor interpolation that is practical in this context, due
to complications arising from the triangulation for lin-
ear interpolations. In such a way, the “likelihood” term
seems to be counting the number of X; falling into the
particular polygonal base, so that the discretized com-
putational method can be viewed as a regularization,
through shape constraints, of a histogram formed by
the resulting right prisms. Further details are available
in the documentation and code of the R package Med-
deR.
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5. PROSPECTS IN ASYMPTOPIA

There has been considerable recent progress in un-
derstanding the large sample behavior of shape con-
strained density estimators. The log concave MLE,
fn—in this section, we emphasize the dependence on
the sample size, n, in the notation—has been exten-
sively studied with rate results established by Doss and
Wellner (2016) and Kim and Samworth (2016), and
showing that fn achieves the minimax optimal rate of
O(n=*3) for squared Hellinger distance over the class
of log concave densities. Even more recently, Kim,
Guntuboyina and Samworth (2016) have shown that
for univariate densities such that log f is piecewise lin-
ear with k distinct segments, fn converges in squared
Kullback-Leibler divergence at rate O(% log>/* n), that
is at essentially the parametric rate up to the log factor.
This is obviously a substantial improvement over the
minimax rate of @(n~%°) achievable over the entire
class of log concaves.

As noted by Han and Wellner (2016), comparatively
little is known about the asymptotic behavior of the
other shape constrained Rényi divergence estimators.
Doss and Wellner (2016) have shown that a maximum
likelihood estimator for the class of s concave densi-
ties does not exist for any s < —1, that is, &« < 0. Thus,
abandoning log likelihood in favor of the Rényi en-
tropy criterion is not simply a matter of computational
convenience, but may be motivated by more fundamen-
tal considerations.

Koenker and Mizera (2010) addressed the prob-
lem from the point of the asymptotics for n = 400,
rather than n — oo, establishing Fisher consistency
for the shape constrained Rényi divergence estima-
tors, with dm = dx, and o > 0. In the latter case, all
the relevant integrands are bounded from below by 0;
nonetheless, the proof of and the discussion follow-
ing their Theorem 4.2 indicates that the essential re-
quirement for more general « is the integrability of
¥*(— fo). The objective function of (D) has to be fi-
nite for the underlying fp, that is, for the density fy
governing the stochastic behavior of X1, X», ..., X,,.
Such an assumption does not create a problem for dm
with bounded domains—but if we eschew philosophi-
cal detours and adhere to the usual mathematical for-
malism of dm = dx, we may have to concede that
this condition may be almost necessary. The finiteness
of the Shannon entropy, the fact that the integral of
— folog fo exists and is finite, is pretty much the min-
imal standard component of the consistency proofs for
maximum likelihood estimators—as in Assumption 6

of Wald (1949), or in a bit stronger version, page 62 of
van der Vaart (1998).

For the reader’s convenience, we restate the result
here, in the strengthened form applicable to all «. Our
starting point is the transformed primal formulation
(F), withn~! Y7 1 ¢(— f(X;)) interpreted as the inte-
gral of ¢(— f) with respect to the empirical probability
Q(X). Fisher consistency then concerns the objective
function

) ®o(f) = / o(— 1) fo+ ¥ (w(— 1)) dm

arising from (F) by replacing dQ(X) by fodm. Us-
ing the strategy of Huber (1967), we add to the objec-
tive function of (F) a term depending only on fy; this
yields an equivalent minimization problem, in terms of
f, with the objective function

[ (o= L (f I aqon)

+/w(¢<—f))dm,

(6)

for which we are able to establish the desired result,
with the objective function

do(f) = / o(— 1) fo+ ¥ (— fo)

+ ¥ (p(=1f))dm,

resulting now from (6) by replacing dQ(X) by fodm.
It is necessary to sort out some subtle issues here: al-
though the relationship between (F) and (6) is clear
apart from the possibility that fy(X;) = 0 for some i,
a problem that we consider decidedly minor, we can-
not a priori exclude certain other problems arising with
(5) and (7). The integrals may not exist, and even when
they do, they could be equal to +oo for all f, mak-
ing the resulting Fisher consistency result somewhat
trivial. Koenker and Mizera (2010) concentrated on the
cases when o > 0, with terms like ¥ (¢ (— f)) bounded
from below by 0, when such possibilities were ex-
cluded. The following result establishes Fisher consis-
tency for the full range of «.

)

PROPOSITION 6. Suppose that \ is differentiable
on its domain. For all f, the integral (7) defining the
function <I>o(f) exists, and 0 = <I>0(f0) < CIDO(f) with
the possibility that ®o(f) = +oo for some f. If the
integral

[ oy dm
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FI1G. 1. Density estimation of annual increments in log income for U.S. individuals over the period 1994-2013. The left panel of the figure
reproduces a plot of the logarithm of a kernel density estimate from Guvenen et al., Figure 6, showing that annual income increments are
clearly not log concave. However, the right panel shows that —1/./ f does appear to be nicely concave and is fit remarkably well by the

Rényi procedure with o = 1/2, superimposed in red.

exists and is finite, then the integral (5) defining the
function ®y(f) exists for all f, for f = fy it is fi-
nite, and for all f we have the inequality ®o(fy) <
Do(f), again with the possibility that ©o(f) = +o0o
for some f.

Han and Wellner (2016) provide a much more de-
tailed analysis of the large sample behavior of the
Rényi estimators with convergence results in weighted
L1 and L norms. They also provide limiting distri-
bution theory, including results on the asymptotic cost
of imposing weaker forms of concavity when stronger
forms would have sufficed. A limitation of this theory
at this stage is that many results are restricted to the
s > —1, that is, « > 0, setting. In view of our compu-
tational results reported above, we would be eager to
learn more about to what extent the theory can be ex-
tended into the netherworld of « < 0.

6. SOME EXAMPLES

In this section, we present several applications of
shape constrained density estimation, in an effort to
illustrate the potential advantages of the weaker con-
cavity constraints imposed by the methods we have de-
scribed above.

6.1 Annual Log Income Increments

In an influential recent paper Guvenen et al. (2016)
have estimated models of income dynamics using a
very large, 10 percent, sample of U.S. Social Secu-
rity records linking to Internal Revenue Service data.
Their work reveals quite surprising features of annual
increments in log income. In the left panel of Figure 1,
we reproduce Figure 6 of Guvenen et al. It depicts a

conventional kernel density estimate after log transfor-
mation based on their sample. There are two imme-
diately striking features: First, the spread of the den-
sity from —4 to 4 documents a surprising volatility for
some individuals we see annual changes in (unlogged)
income by a factor of more than 50 in both tails; sec-
ond, the shape of log density estimate is clearly not

concave. However, when we plot —1/ f (x) instead

of log f (x) in the right panel of the figure, we obtain
a much smoother curve that is fit almost exactly by the
Hellinger, o« = 1/2, concavity constraint. As we have
already noted the o = 1/2 constraint is special in the
sense that linear extrapolation in the tails corresponds
to Cauchy, #; behavior and in terms of our estima-
tion criterion corresponds to the symmetric case mid-
way between Kullback—Leibler and reverse Kullback—
Leibler divergence.

Permitting Cauchy tail behavior may be regarded as
sufficiently indulgent for most statistical purposes, but
the next example illustrates that even weaker concav-
ity constraints paired with Rényi fitting criteria with
o < 1/2 is sometimes necessary to accommodate very
sharp peaks in the target density.

6.2 Rotational Velocity of Stars

We reconsider the rotational velocity of stars data
considered previously in Koenker and Mizera (2010).
The data was taken originally from Hoffleit and Warren
(1991) and is available from the R package MeddeR.
Figure 2 illustrates a histogram of the 3806 positive
rotational velocities from the original sample of 3933.
After dropping the 127 zero velocity observations, the
histogram looks plausibly unimodal and we compare
four distinct Rényi shape constrained estimates. The
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log concave, o = 1, estimate is clearly incapable of
capturing the sharp peak around x = 18, and even the
fit for & = 0 fails to do so. But pressing further, we see
that setting « = —1 provides much better fit by con-
straining —1/f2 to be concave. The even weaker con-
cavity constraint with « = —2 seems too extreme with
a substantial over-shooting of the modal peak. This ex-
ample vividly illustrates that the weaker forms of con-
cavity constraints implied by o < O can be effective
complements to more familiar shape constrained esti-
mation methods when the target densities are sharply
peaked or heavy tailed.

6.3 Gosset’s Criminal Anthropometrics

Shape constraints for multivariate density estimation
offers several new challenges, not the least of which
is the computational challenge of finding a tractable
way to represent the concavity constraints. Further de-
tails on computational methods will be provided in

X

Rotational velocity of stars with three quasi-concave shape constrained density estimates using the Rényi likelihood.

the next section. Here, we will revisit the bivariate
problem of estimating the density for the well-known
MacDonell (1902) data on the heights and left middle
finger lengths of 3000 British criminals. This data is
perhaps best known for its role in preliminary simula-
tions reported in “Student” (1908).

Figure 3 illustrates contour plots for four different
values of the constraint parameter «, together with the
scatter of dithered values of the original data. Contours
are labeled in units of log density. A notable feature
of the data is the anomalous point at the upper region
of the convex hull. This individual is extremely tall,
but possesses a rather diminutive left middle finger; a
grandfather of the “fanta-faced Falangist” perhaps? Al-
though the central contours appear somewhat similar
for the various «’s, the labeling of the contours near
this extreme point differ dramatically. When « = 1,
so we are imposing log concavity, such a person is
highly anomalous and the nearest contour is labeled
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FI1G. 3. Contour Plots of British Criminal Heights and Finger Lengths: Contour estimates are based on four values of the Rényi exponent
o €{—2,—1,0, 1} and are all labeled in units of log density. Note that the tail behavior near the anomalous point is quite different for the
two Rényi exponents, and the density is also much more sharply peaked for the smaller o’s.
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FIG. 4. Gaussian histogram based on 500 observations and two penalized maximum likelihood estimates with total variation norm penalty

and A € {0.5 x 1074,0.5 x 107°}.

log f(x) = —20 in this region, so f(x) ~2 x 107°
there. When o = 0, the corresponding contour is la-
beled —10, so f(x) A~ 4.5 x 107 in roughly the same
region, making him look far less unusual.

7. RENYI ENTROPIES IN NORM CONSTRAINED
DENSITY ESTIMATION

Although our original intent for using Rényi di-
vergence as an estimation criterion was strictly prag-
matic—to maintain the convexity of the optimization
problem underlying the estimation while maintaining
weaker forms of the concavity constraint—we would
now like to briefly consider its use in norm constrained
settings where the objective of penalization is smooth-
ness of the estimated density rather than shape con-
straint.

There is a long tradition of norm penalized non-
parametric maximum likelihood estimation of densi-
ties. Perhaps the earliest example is Good (1971) who
proposed the penalty

I(f) = / ((VFY)?dx.

which shrinks the estimated density toward densities
with smaller Fisher information for location. A deeper
rationale for this form of shrinkage remains obscure,
and most of the subsequent literature has instead fo-
cused on penalizing derivatives of log f, with the fa-

miliar cubic smoothing spline penalty

J(f) = f (log f")* dx,

receiving most of the attention. A notable exception is
the Silverman (1982) proposal to penalize the squared
L> norm of the third derivative of log f as a means of
shrinking toward the Gaussian density.

Squared L, norm penalties are ideal for smoothly
varying densities, but they abhor sharp bends and
kinks, so there has also been some interest in explor-
ing total variation penalization as a way to expand the
scope of penalty methods. The taut-string methods of
Davies and Kovac (2001) penalize total variation of
the density itself. Koenker and Mizera (2007) describe
some experience with penalties of the form

J(f) = / |(log )| dx.

that penalize the total variation of the first derivative of
log f. In the spirit of Silverman (1982), the next ex-
ample illustrates penalization of the total variation of
the third derivative of log f, again with the intent of
shrinking toward the Gaussian, but in a manner some-
what more tolerant of abrupt changes in the derivatives
than with Silverman’s squared L, norm.

7.1 Total Variation Shrinkage to the Gaussian

In Figure 4, we illustrate a histogram based on 500
1.i.d. standard Gaussian observations, and superimpose
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FIG. 5. Mixture of three 3-parameter lognormals with histogram and two Rényi likelihood estimates with total variation (L| norm) penalty
with a € {0, 1} based on 500 i.i.d. observations and penalty parameter, . =9. The true density is depicted in red and the estimated density is

in blue.

two fitted densities estimated by penalized maximum
likelihood as solutions to

min —Zlogf(Xi) +)‘/|(1°gf)”’|dxl,
f i=1

for two choices of A. For A sufficiently large solutions
to this problem conform to the parametric Gaussian
MLE since the penalty forces the solution to take a
Gaussian shape, but does not constrain the location or
scale of the estimated density. For smaller A, we obtain
a more oscillatory estimate that conforms more closely
to the vagaries of the histogram.

Penalizing total variation of (log f)” as in Figure 4
raises the question: What about other Rényi exponents
for o # 1? Penalizing (log f)” is implicitly presuming
subexponential tail behavior that may be better con-
trolled by weaker Rényi penalties. To explore this con-
jecture, we consider in the next example estimating a
mixture of three lognormals.

7.2 Lognormal Mixtures

Figure 5 illustrates a histogram based on 500 ob-
servations from a mixture of three 3-parameter log-
normals with the population density superimposed in
red. This density serves as a cautionary illustration of

how difficult it can be to choose an effective bandwidth
for conventional fixed bandwidth kernel estimation.
A fixed bandwidth sufficiently small to distinguish
the two left-most modes is incapable of producing a
smooth fit to the upper mode, and this makes adap-
tive bandwidth kernel methods difficult due to poor
performance of the pilot estimate. Logspline methods
as proposed by Kooperberg and Stone (1991) perform
much better in such cases, but in our experience they
can be sensitive to knot selection strategies. The meth-
ods under consideration here are allied more closely to
the smoothing spline literature, and thereby circumvent
the knot selection task, but in so doing introduce new
knobs to turn and buttons to push. Not only do we need
to choose the familiar A, there is now a choice of the
order of the derivative in the penalty, and the Rényi ex-
ponent, «, determining the transformation of the den-
sity. We would argue that these choices are more easily
adapted to particular applications, but others may feel
differently. From a Bayesian perspective, however, it
seems indisputable that more diversity in the class of
computationally tractable prior specifications is desir-
able.

Examining Figure 5 we see that the « = 1 maximum
likelihood estimate is a bit too smooth, barely able to
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find the second mode, whereas the o = 0 solution is
somewhat better at capturing the first mode, and also
better at identifying the second mode. Both methods
produce an excellent fit to the third mode, almost in-
distinguishable from the true density.

8. CONCLUSION

Shape constrained nonparametric density estima-
tion offers a valuable compromise between restric-
tive parametric methods and conventional smooth-
ing methods. While log-concavity is a natural con-
straint in some applications and can be efficiently
implemented by maximum likelihood, in other ap-
plications it can be advantageous to impose weaker
forms of the concavity constraint, and for this pur-
pose it is convenient to pair constraints that require
that —1/f* be concave with a Rényi «-divergence
criterion for goodness of fit. We have significantly
expanded the theoretical underpinnings of this ap-
proach providing new existence, uniqueness and con-
tinuity results as well as extending its computational
tractability a wide domain of «’s. The approach has
been illustrated with several examples taken from
economics, astronomy and anthropometrics. We also
briefly discussed related methods that pair norm-based
smoothing penalties with the Rényi divergence estima-
tion criterion.

Many problems remain for future research. As al-
ready mentioned, the convexity of the problems yield-
ing our estimates entails not only favorable continuity
properties, but also facilitates possible error bounds.
Adaptive choice of « is undoubtedly an appealing
question. However, we do not regard « as a typical
tuning parameter, rather its selection is best dictated
by close examination of its influence on particular fea-
tures of the fitted density. This is revealed in our empir-
ical examples: Sharpness of the modal peak in the case
of the rotational velocity application, and tail behavior
in the Gosset anthropometry application. Global mea-
sures of fit, while certainly feasible criteria for guid-
ing this choice, seem less well suited. The theoretical
properties of the underlying estimators, despite the im-
pressive accomplishments of Han and Wellner (2016),
leave much still unknown especially about the limit-
ing asymptotic behavior. The “netherworld” of o < 0,
in particular, remains to be charted. We look forward
to future progress on these and other aspects of such
methods.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. The proposition fol-
lows from the fact that if G € K(X)°, then it anni-
hilates all constant and linear functions—as these are
precisely those g that both g and —g are convex. In
such a case,

Oz/gdGz—/—gdGZO and thus

/ga’G:O.

Note that the constraint on f in (D) means that the
integral with respect to f dm is the same as that with
respect to d(Q(X) — G). Thus, for every feasible f,

ffdm:/ld(Q(X)—G)
:/1d@(X)—f1dG

=/1d(@(X)=1
and

/xfdm:/xd(Q(X)—G)
=/de(X)—/xdG

=/de(X). 0

PROOF OF PROPOSITION 2.  The proposition is the
consequence of the duality Theorem 3.1 of Koenker
and Mizera (2010)—formulated, however, not for a
general dm, but the Lebesgue measure dx. The care-
ful inspection of their proof reveals that dx is specif-
ically involved in the invocation of Corollary 4A of
Rockafellar (1970); the careful inspection of the latter
reveals that it is in fact formulated for a general Borel
regular measure dt—our dm.

The next paragraph of the proof of Koenker and
Mizera (2010), devoted to the constraint qualification,
makes a substantial use of the fact that the integral of
a constant function over H(X), a bounded set, is finite.
This follows from our standing assumption on dm: It
assigns finite values to bounded sets.

Finally, the extremal condition follows from the
form of the subgradient given by Corollary 4B of
Rockafellar (1970)—which is again formulated for
general Borel regular dm. [

PROOF OF PROPOSITION 3. The proof follows
from that of Theorem 4.1 of Koenker and Mizera
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(2010). In spite of the theorem imposing the assump-
tion that ¢ be bounded from below by 0, the proof
briefly addresses in the last paragraph a potential treat-
ment of ¥ not necessarily bounded from below. In such
cases, one needs to find an integrable minorant; this
is possible here due to the fact that the support of the
solutions is restricted to 7 (X)—and consequently dm
only needs to be considered on that domain as well.
The standing assumption that dm assigns a finite value
to H(X) is first required for a constant function to be
in the domain of the objective function; without loss of
generality, this constant function can be equal to 1, that
is, we can set y appearing in the proof of Koenker and
Mizera to be equal to 1—given that a is contained in
(0, +00) and thus, due to the assumptions of the propo-
sition, is in the domain of Y as well. The convexity of
Y then entails that the linear function supporting i at
1 lies entirely below the graph of v,

v+ 2y Dz +y).
This inequality then yields for T > 1

V(1 +18x,2)(x))
T

>y '(Dgx.z)(x) +c,

where ¢ = min{yr(1), 0} and g(x,z) is the function in-
troduced in the proof of Koenker and Mizera. As Z is
fixed in the proof, the right-hand side provides the de-
sired minorant: the range of g(x,z)(x) for x € H(X)
is bounded and the integrability then follows from the
fact that the integration is with respect to a finite mea-
sure, dm restricted to H(X). The assumptions of the
proposition regarding the limits of ¥ (y + 7x)/t then
conclude the proof of existence along the lines of the
proof of Theorem 4.1 of Koenker and Mizera (2010);
the proof of uniqueness goes exactly along the lines
of the same proof—namely, its penultimate paragraph.

(]

PROOF OF PROPOSITION 4.  Given the form of the
objective function in (P) and the fact that all solutions
are convex functions supported by H (X), and thus con-
tinuous and bounded, we obtain that the objective func-
tions of (P) for dm = dm, converges to the objective
function of (P) for dm = dmy, at every g € G(X). In
view of the finite-dimensional parametrization of G(X)
by values Y; = g(X;), this pointwise convergence can
be strengthened to uniform convergence on compacts,
due to convexity of the objective functions, as in Theo-
rem 10.8 of Rockafellar (1970); see also Pollard (1991)
or Hjort and Pollard (2011). This uniform convergence
on the compact lower level sets of the objective func-
tion of (P) for dm = dmg containing, as revealed by

the proof of Proposition 3, the solution of (P) for
dm = dmy in its interior, entails the proposition. [J

PROOF OF PROPOSITION 5. See Lemma 2.2 of

Seijo and Sen (2011). O

PROOF OF PROPOSITION 6. Under the assump-
tions on v, its conjugate can be obtained as its Leg-
endre transformation,

(8) V(=N =—o=Nf—¥(e(=1),

which means that the integrand of
Bo(f) = [@=D o+ (=0

+ ¥ (p(=1))dm

is identically equal to O for f = fy. The nonnegativity
of this integrand for all other f follows from the same
inequality argument as in the proof of Theorem 4.2 of
Koenker and Mizera (2010), and yields

(10) 0= do(fo) < Do(f),

possibly with the right-hand side equal to +o0.

To obtain the analogous inequality for the objective
function @, we need only to “subtract” the integral of
¥ *(— fo), heeding the subtleties that may arise when
infinities are involved. For f = fy, equality (8) implies
that we can legitimately write

0=<i>o(fo)=/w*(—fo)der/fp(—fo)fo
(11)
+ ¥ (¢(—fo)) dm,

as the existence of the finite integral of ¥ *(fy) on the
left-hand side implies the same for the term on the
right-hand side of (8) for f = fy.

If ®g(f) < +o00, that is, if the integral of a nonneg-
ative integrand in (9) exists and is finite, then the exis-
tence of the finite integral of —y*(f) implies the inte-
grability of the sum, that is the existence of the finite
integral in (5); then we can legitimately write

o(f) = f W (— fo) dm + / o(— 1) fo

+ ¥ (p(=f))dm

and combine (10), (11) and (12) to obtain the proposi-
tion.

Suppose that @0 (f) = +00. Since both integrals in
(11) are finite, the proposition will follow if we show
that the rightmost integral in (12) is also equal to 4-oc0.
Note that we cannot use (12) now (which would make
the conclusion obvious), as we did not establish it in

9)

(12)
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this case. We can, however, use the following: suppose
that p is an integrable function, its integral exists and
is finite, and ¢ > 0 is a nonnegative function such that
its integral is +o00. Then the integral of g — p exists
and is equal to +00. To demonstrate this, we define, in
a usual manner,

(g — p)* =max{(q — p)., 0},
(g — p)~ =max{—(g — p), 0}
and

+

p =max{pao}s p_ =max{_p’0};

we know that p = p™ — p~, and that the integrals of
both p* and p~ are finite. The finiteness of the integral
of p™ implies the same for the integral of

(¢ — p)~ =max{p —g¢,0} =max{p™ — p~ —¢,0}
<max{p™,0}=p¥,

due to the nonnegativity of p~ and g. Now, the integral
of (g — p)* can be finite or +oo. If it is finite, then we
know that the integral of (¢ — p) exists and is finite; this
means that the integral of ¢ = (¢ — p) + p also exists
and is finite, which contradicts our assumption about
q: therefore, the integral of (¢ — p)*, and consequently
that of ¢ — p is equal to +oc0. [
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