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Recent Progress in Log-Concave Density

Estimation

Richard J. Samworth

Abstract.

In recent years, log-concave density estimation via maximum

likelihood estimation has emerged as a fascinating alternative to traditional
nonparametric smoothing techniques, such as kernel density estimation,
which require the choice of one or more bandwidths. The purpose of this
article is to describe some of the properties of the class of log-concave den-
sities on R¢ which make it so attractive from a statistical perspective, and to
outline the latest methodological, theoretical and computational advances in

the area.
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1. INTRODUCTION

Shape-constrained density estimation has a long his-
tory, dating back at least as far as Grenander (1956),
who studied the maximum likelihood estimator of a
decreasing density on the nonnegative half-line. Un-
like traditional nonparametric smoothing approaches,
this estimator does not require the choice of any tuning
parameter, and indeed it has a beautiful characterisa-
tion as the left derivative of the least concave majo-
rant of the empirical distribution function. Over subse-
quent years, a great deal of work went into understand-
ing its theoretical properties (e.g., Prakasa Rao, 1969,
Groeneboom, 1985, Birgé, 1989), revealing in particu-
lar its nonstandard cube-root rate of convergence.

On the other hand, the class of decreasing densi-
ties on [0, c0) is quite restrictive, and does not gen-
eralise particularly naturally to multivariate settings. In
recent years, therefore, alternative families of densities
have been sought, and the class of log-concave densi-
ties has emerged as one with many attractive proper-
ties from a statistical viewpoint. Indeed, the theory of
log-concave density estimation has led to applications
to a wide variety of problems, including the detection
of the presence of mixing (Walther, 2002), filtering
(Henningsson and Astrém, 2006), tail index estimation
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(Miiller and Rufibach, 2009), clustering (Cule, Sam-
worth and Stewart, 2010), regression (Diimbgen, Sam-
worth and Schuhmacher, 2011), Independent Com-
ponent Analysis (Samworth and Yuan, 2012), clas-
sification (Chen and Samworth, 2013) and censored
data problems (Diimbgen, Rufibach and Schuhmacher,
2014).

The main aim of this article is to give an account of
the key properties of log-concave densities and their
relevance for applications in statistical problems. We
focus especially on ideas of log-concave projection,
which underpin the maximum likelihood approach to
inference within the class. Recent theoretical results
and computational aspects will also be discussed. For
alternative reviews of related topics, see Saumard and
Wellner (2014), which has a greater emphasis on an-
alytic properties, and Walther (2009), with a stronger
focus on modelling and applications.

2. BASIC PROPERTIES

We say that f : RY — [0, 00) is log-concave if
log f is a concave function (with the convention
log0 := —o00). Let F; denote the class of upper semi-
continuous log-concave probability density functions
on R? with respect to d-dimensional Lebesgue mea-
sure. The upper semi-continuity is not particularly im-
portant in most of what follows, but it fixes a partic-
ular version of the density and means we do not need
to worry about densities that differ on a set of zero
Lebesgue measure.

Many standard families of densities are log-concave.
For instance, Gaussian densities with positive-definite
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covariance matrices and uniform densities on con-
vex, compact sets belong to Fy; the logistic density
fx) = ﬁ Beta(a, b) densities with a,b > 1,
Weibull(«) densities with o > 1, I' (o, A) densities with
o > 1, Gumbel and Laplace densities (amongst many
others) belong to Fj. It is convenient to think of log-
concave densities as unimodal densities with exponen-
tially decaying tails. Unimodality here is meant in the
sense of the upper level sets being convex, though in
one dimension, we have a stronger characterisation.

LEMMA 2.1 (Ibragimov, 1956). A density f on R
is log-concave if and only if the convolution f % g is
unimodal for every unimodal density g.

A more precise statement about the exponentially
decaying tails is as follows:

LEMMA 2.2 (Cule and Samworth, 2010). If f €
Fa, then there exist a > 0, B € R such that f(x) <
e~ IXI+B for all x e RY.

Thus, in particular, random vectors with log-concave
densities have moment generating functions that are fi-
nite in a neighbourhood of the origin.

One of the features of the class of log-concave den-
sities that makes them so attractive for statistical infer-
ence is their stability under various operations. A key
result of this type is the following, due to Prékopa
(1973), and with a simpler proof given in Prékopa
(1980).

THEOREM 2.3. Letd =d + d> for some dy,d; €
N, and let f :R? — [0, 00) be log-concave. Then

xe [, sedy

is log-concave on R,

Hence, marginal densities of log-concave random
vectors are log-concave. As a simple consequence, we
have the following corollary.

COROLLARY 2.4. If f, g are log-concave densities
on R4, then their convolution f % g is a log-concave
density on RY.

PROOF. The function (x,y) — f(x — y)g(y) is
log-concave on R?¢, so the result follows from The-
orem 2.3. [

Two further straightforward stability properties are
as follows.

PROPOSITION 2.5.
sity f on R4,

Let X have a log-concave den-

() IfAe R™*4 has m < d and rank(A) = m, then
AX has a log-concave density on R™.

(i) If X = (X, XZT)T, then the conditional density
of X1 given X, = x» is log-concave for each x;.

Together, Theorem 2.3, Corollary 2.4 and Proposi-
tion 2.5 indicate that the class of log-concave densities
is a natural infinite-dimensional generalisation of the
class of Gaussian densities. Indeed, one can argue that
a grand vision in the shape-constrained inference com-
munity is to free practitioners from restrictive paramet-
ric (often Gaussian) assumptions, while retaining many
of the properties of these parametric procedures that
make them so convenient for use in applications.

3. LOG-CONCAVE PROJECTIONS

Despite all of the nice properties of F; described in
the previous section, the class is not convex (again, this
is also the case for the class of Gaussian densities). It
is therefore by no means clear that there should exist a
“closest” element of this set to a general distribution.
Nevertheless, it turns out that one can make sense of
such a notion, and that the appropriate concept is that
of log-concave projection.

Let ® denote the class of upper semi-continuous,
concave functions ¢ : R¢ — [—o0, 00) that are coer-
cive in the sense that ¢ (x) — —o0 as ||x|| — oo. Thus,
Fi=1{e?:¢€®, [gae? =1}. For ¢ € ® and an ar-
bitrary probability measure P on R?, define a kind of
log-likelihood functional by

L($. P) :=/Rd¢dp—/Rde¢.

Thus, instead of enforcing the (nonconvex) constraint
that ¢ should be a log-density explicitly, the functional
above has the flavour of a Lagrangian, though the La-
grange multiplier is conspicuous by its absence. Nev-
ertheless it turns out that any maximiser ¢* € @ of this
functional with L(¢*, P) € R must be a log-density. To
see this, note thatif ¢ € ® has L(¢, P) e R and c € R,
then

iL(¢+c, P)=1 —eC/ e?.
ac Rd
Hence, at a maximum, ¢ = —log(fga €?), which is
equivalent to ¢ + ¢ being a log-density.

Theorem 3.1 below gives a complete characteri-
sation of when there exists a unique maximiser of
L(¢, P) over ¢ € . We first require several further
definitions: let L*(P) := supygeq L(¢, P) and let Py
denote the class of probability measures P on R? sat-
isfying both [pa [lx]|d P(x) < 0o and P(H) < 1 for
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all hyperplanes H. Let C; denote the class of closed,
convex subsets of R, for a probability measure P
on R?, let Cy4(P) := {C € Cy : P(C) = 1}, and let
csupp(P) :=(\cec,(p) C denote the convex support of
P. Finally, let int(C) denote the interior of a convex set
C, and for a concave function ¢ : RY — [—00, 00), let
dom(¢) := {x : ¢(x) > —o0} denote its effective do-
main.

THEOREM 3.1 (Diimbgen, Samworth and Schuh-
macher, 2011).

(i) If [ga llx||d P (x) = oo, then L*(P) = —o0.
(1) If [ga lIx||dP(x) < 00 but P(H) =1 for some
hyperplane H, then L*(P) = o0.
(iii) If P € Py, then L*(P) € R and there exists a
unique ¢* € ® that maximises L(¢p, P) over ¢ € O.
Moreover, int(csupp(P)) € dom(¢p*) C csupp(P).

A consequence of Theorem 3.1 and the preceding
discussion is that there exists a well-defined map ¥ * :
Pi — Fa, given by

Y (P) = argmax/ log fdP.

feFq JR?
We refer to ¥* as the log-concave projection. In the
case where P is the empirical distribution of some data,
this tells us that provided the convex hull of the data is
d-dimensional, there exists a unique log-concave max-
imum likelihood estimator (MLE), a result first proved
in Walther (2002) in the case d = 1, and Cule, Sam-
worth and Stewart (2010) for general d. If P has a
log-concave density fp, then ¢*(P) = fp; more gen-
erally, if P has a density fo satisfying [ra follog fol <
00, then ¥ *(P) minimises the Kullback-Leibler diver-
gence dz; (fo, f) := Jga folog(fo/f) overall f € Fy.
These statements justify the use of the term “projec-
tion”.

4. COMPUTATION OF LOG-CONCAVE MAXIMUM
LIKELIHOOD ESTIMATORS

Let Xq,..., X, i P € P;, and let P, denote their
empirical distribution. In this section, we discuss the
computation of the log-concave MLE fn = Yr(Py)
when the convex hull C,, of Xy, ..., X,, is d-dimen-
sional.

We initially focus on the case d = 1, and follow
the Active Set approach of Diimbgen, Hiisler and Ru-
fibach (2007), which is implemented in the R package
logcondens (Diimbgen and Rufibach, 2011). Write
X1y < -+ < X for the order statistics of the sam-
ple, and let W denote the set of functions ¢ : R —

[—o0, 00) that are continuous on [X (1), X ()], linear
on each [X(k), X(k+1)] and —o0 on R \ [X(]), X(n)].
Let W¢one denote the concave functions in W. Then
log fn € Weone, because otherwise we could strictly
increase L(-,IP,) by replacing log f,, with the ¥ €
Weone With ¥ (X;) = log f,(X;). Since any ¢ € W
can be identified with the vector ¥ := (Y (X(1)), ...,
w(X (n)))‘r € R", our objective function can be written
as

L) =Ln..... ¥
12 n—1
==Y Wi — > &k (k. Yy 1),
n
i=1 k=1
where 8 := X (x4+1) — X k) (assumed positive for sim-

plicity) and

1
J(r,s):=/ eU=Dr s gy
0

. T
Forj=2,....,n—1,letv; = (vj1,...,vj,) €R"
have three nonzero components:
1 1 1
Vj =,y V= — ——
JJ 0 Ujj _ R
8j-1 i 8-
1
Vil = —.
JiJj+1
3

Then K = {z e R": v?ﬂ <O0forj=2,...,n —
1} denotes the set of feasible vectors, because ¥ =
(Y1, ..., Yn) " € K if and only if

Vi—Vi-1 Y=Y
X —Xi-n — X+ — X

for j =2,...,n — 1. Thus our optimisation problem
can be expressed as

Maximise L(y) over ¥ € K.

For any i € R", we can define the set of “active”
constraints A(y) :={j € {2,...,n — 1}: v;—ﬂ > 0},
so that for ¥ € IC, the inactive constraints correspond
to the “knots” of ¥, where ¥ changes slope. Since

L is strictly concave and infinitely differentiable, for
any A C {2,...,n — 1} and corresponding subspace
V(A) :={y eR": va£ =0 for j € A}, it is straight-
forward to compute
VU (A) € Vi(A) := argmax L ()
yevi)
using Newton methods. The basic idea of the Active
Set approach is to start at a feasible point with a given
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active set of variables A. We then optimise the objec-
tive under that set of active constraints, and move there
if that new candidate point is feasible. If not, we move
as far as we can along the line segment joining our cur-
rent feasible point to the candidate point while remain-
ing feasible. This new point has a different active set
compared with our previous feasible iterate, so we can
optimise the objective under this new set of active con-
straints, and repeat. More precisely, define a basis for
R" by by := (1)}_,, bj :==min(X ) — X(;),0)]_; for
Jj=2,...,n—1and b, := (X(;))!_,. By considering
the first-order stationarity conditions, it can be shown
that any ¢ € Vi (A) maximises L over K if and only if

bTVL(W) <0 forall j € A. The Active Set algorithm
can therefore proceed as in Algorithm 1.

The main points to note in this algorithm are that in
each iteration of the inner while loop, the active set
decreases strictly (which ensures this loop terminates
eventually), and that after each iteration of the outer
while loop, the log-likelihood has strictly increased,
and the current iterate i belongs to X N V,(A) for
some A C {2, ...,n— 1}. It follows that, up to machine
precision, the algorithm terminates with the exact so-
lution in finitely many steps. See Figure 1. Diimbgen,
Rufibach and Schuhmacher (2014) study the more in-
volved problem of estimating a log-concave (sub)-
probability density in settings where observations may
be subject to various different types of censoring, in-
cluding right and interval censoring. In their R pack-
age logconcens, they propose an EM algorithm for
computation (Diimbgen, Rufibach and Schuhmacher,
2013).

Returning to the original problem of computing the
log-concave MLE, for d > 2, the feasible set is much
more complicated, and only slower algorithms are
available. For y = (y1, ..., yn)—r e R”, let f_ly ‘RY —

Density
02 03 04
! !

0.1

Algorithm 1: Pseudo-code for an Active Set algo-
rithm to compute (log f,(X(1)), ..., log f,,(X(,,)))T

Input:~A ~{2,...,n—1}

¥ <y (A)

while max;ea b] VL(¥) > 0 do

J* <« min(argmaxjeA bjTVZJ(z))

Yoy < TANGD

while Yona & K do
t* <—max{t €0, 1]1: (1 —n)y +1y
K}
ﬂ < - t*)£+ t*ﬂcand
A< AQW)
Vg < WA

end

w<—1ﬂ

~L_cand

— AY)

cand

cand

end
Output:

R denote the smallest concave function with & y(Xi) >
y; for i =1,...,n; these are called fent functions in
Cule, Samworth and Stewart (2010) (see Figure 2,
which is taken from that paper). We can write the
objective function in terms of the tent pole heights

Yi,...,Y¥Yn as

1 _
T(V1seevs Yn) ::;Zhy(Xi)—/C expfhy(x)}dx
i=1 n

This function is hard to optimise over (yi, ..., y,)' €
R”", partly because 7 is not injective. However, Cule,
Samworth and Stewart (2010) defined the modified ob-

®©
o
>

=

> -

c

7}

[= I
o
e
o

00 02 04 06 08 1.0

X

F1G. 1. Log-concave maximum likelihood estimators (solid) based on 4000 observations from a standard normal distribution (left) and the

U0, 1] distribution (right). The true densities are shown as dotted lines.
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FIG. 2. A schematic picture of a tent function in the case d = 2.

jective function

(Vs ) 1= — Zyl /exph(x)}

Thus o < 7, but the cru01al points are that o is con-
cave and its unique maximum y € R” satisfies log f,, =
h 5. Even though o is nondifferentiable, a subgradi-
ent of —o can be computed at every point, so Shor’s
r-algorithm (Kappel and Kuntsevich, 2000) can be
used, as implemented in the R package LogCon-
cDEAD (Cule, Gramacy and Samworth, 2009). See
Figure 3, which is taken from Cule, Samworth and
Stewart (2010). Koenker and Mizera (2010) study an
alternative approximate approach based on imposing
concavity of the discrete Hessian matrix of the log-
density on a grid, and using a Riemann approximation
to the integrability constraint.

5. PROPERTIES OF LOG-CONCAVE
PROJECTIONS

For general distributions P € Py, it is not possible to
compute the log-concave projection ¥ *(P) explicitly

FI1G. 3. The log-concave maximum likelihood estimator (left) and
its logarithm (right) based on 1000 observations from a standard
bivariate normal distribution.

(though see Section 5.1 below for several exceptions
to this). Nevertheless, one can say quite a lot about
the properties of log-concave projections, starting with
affine equivariance.

LEMMA 5.1 (Diimbgen, Samworth and Schuh-
macher, 2011). Let X ~ P € Py, let A € R4 pe
invertible, let b € R, and let Py p denote the distribu-
tion of AX +b. Then

Y (Pap)(x) = v (P (A (x — b)).

| de tA|

A generic hope for the log-concave projection is that
it should preserve as many properties of the original
distribution as possible. Indeed, as we will see, such
preservation results have motivated several associated
methodological developments.

LEMMA 5.2 (Diimbgen, Samworth and Schuh-
macher, 2011). Let P € Py, let ¢* := logy*(P),
and let P*(B) := [y e?” for any Borel set B C R,
If A :R? - [—00, 00) is such that y* +tA € & for
sufficiently small t > 0, then

AdP < / AdP*.
Rd R4

As a special case of Lemma 5.2, we obtain the fol-
lowing corollary.

COROLLARY 5.3. Let P € Py. Then P and the
log-concave projection measure P* from Lemma 5.2
are convex ordered in the sense that

hdP* < hdP
R4 R4

for all convex h : R¢ — (—o0, 00].

Applying Corollary 5.3 to A(x) =t " x for arbitrary
t € R? allows us to conclude that JraxdP*(x) =
Jra xdP(x); in other words, log-concave projection
preserves the mean p of a distribution P € P;. On the
other hand, we see that the projection shrinks the sec-
ond moment, in the sense that A := [pa(x — p)(x —
,u)T d(P — P*)(x) is nonnegative definite. In fact, we
can say more: from the convex ordering in Corol-
lary 5.3 and Strassen’s theorem (Strassen, 1965), there
exist random vectors X ~ P and X* ~ P*, defined on
the same probability space, such that E(X|X*) = X*
almost surely. Thus E{X*(X — X*)T} =0, and from
the decomposition X = X* + (X — X*), we deduce
that A = 0 if and only if P has a log-concave density.
A different proof of this fact was given in Chen and
Samworth (2013), Theorem 5.
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density

log—density

FI1G. 4. Left: A comparison of the original log-concave MLE (red) and smoothed log-concave MLE (green) based on 200 observations from
a standard normal density (dotted). The short vertical lines indicate the observations, and the longer, dashed vertical lines show the locations
of the knots of the log-concave MLE. Right: The same comparison on the log scale.

This property validates the definition of the smoothed
log-concave projection, proposed in the case d = 1 by
Diimbgen and Rufibach (2009) and studied for general
d in Chen and Samworth (2013). Writing Py:={P¢€
Pa: [pa x||2dP(x) < oo}, this smoothed projection
U* . Pg — Fy is given by

YH(P) ==y (P) * Na(0, A)

_ /R ¥ — ) dN4 (0, A) ().

When P is the empirical distribution of some data,
1/7*(P) is a smooth (real analytic), fully automatic den-
sity estimator that is log-concave (cf. Corollary 2.4),
matches the first two moments of the data and is sup-
ported on the whole of R¢. See Figure 4.

Our next property concerns the preservation of prod-
uct structure, or, in the language of random vectors,
independence of components.

PROPOSITION 5.4 (Chen and Samworth, 2013).
Let P € P; be of the form P = Py ® P> for some
Py € Py, P, € Py, with di + dy = d. Then for every
x=(x],x)) " e RN e have

YH(P)(x) = ¢ (P (x) Y™ (P2) (x2).
Similarly, if in addition P € Py, then ¥*(P)(x) =
V(P ()Y (P2) (x2).

Proposition 5.4 inspires a new approach to Indepen-
dent Component Analysis; see Section 8 below. In-
cidentally, the converse of this result is false: for in-

stance, for ¢ € (0, 1], consider a distribution P sup-
ported on five points in R?, with

P({(0,0}) =g,

P{(=1,-D)=P{(=1.D})
=P({(1,=D})
=P({(1.D})
=(1—q)/4.

Then it can be shown that 1/*(P) is the uniform density
on the square [—1, 1] x [—1, 1] for g € (0, 1/3].

In a similar spirit, it is not necessarily the case that
the log-concave projection of a marginal of a joint dis-
tribution is equal to the corresponding marginal of the
log-concave projection of the joint distribution. For
example, if P is the discrete uniform distribution on
the three points {(—1, —1), (0,32 — 1), (1, =1)} in
R? (which form an equilateral triangle), then the log-
concave projection is the continuous uniform density
on the triangle, with corresponding marginal density
f1(x1) = (1 = |x1])L{jx;)<1) on the x-axis. On the other
hand, the log-concave projection of the discrete uni-
form distribution on {—1, 0, 1} is the uniform density
on[—1,1].

We conclude this section by mentioning two fur-
ther properties that are not preserved by log-concave
projection, namely stochastic ordering and convolu-
tion. More precisely, regarding stochastic ordering,
let P and Q be distributions on the real line with!
P{0}) = P({1}) = 1/2 and Q({0}) = 1/2, Q({1}) =
2/5, O({2}) = 1/10. Then P is stochastically smaller
than @, in the sense that the respective distribution

1T thank Min Xu and Yining Chen for helpful conversations lead-
ing to this example.
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functions F and G satisfy F(x) > G(x) with strict in-
equality for some xg. Now ¥ *(P) is the uniform den-
sity on [0, 1], while it can be shown using the ideas
in Section 5.1 below that ¥*(Q)(x) = e?*~# for x €
[0, 2], where b € [—1.337, —1.336] is the unique real
solution to

and where B = log(£5=1) € [~0.3619, —0.3612]. In
particular, *(Q)(0) =e # > 1.4 > 1 = ¢*(P)(0), so
Y*(P) is not stochastically smaller than ¥ *(Q); see
Figure 5.

To see that log-concave projection does not preserve
convolution in general,2 let P({0}) = P({1}) = 1/2.
Then Q := P x P satisfies Q({0}) = Q({2}) =1/4 and
O({1}) = 1/2. We know that ¥*(P) is the uniform
density on [0, 1], but ¥*(Q) maximises

1 1 1
Zlogf(0)+Elogf(1)+zlogf(2)

over f € F1, so is log-linear on [0, 1] and on [1, 2]. In
particular, ¥*(Q) is not equal to the triangular density
on [0, 2], so ¥*(Q) # ¥*(P) x ¥ *(P) in this example.

1.0

0.8
|

Distribution function
0.4

0.2

0.0

FIG. 5. The distribution functions corresponding to yr*(P) (dot-
ted) and ¥*(Q) (solid) in the stochastic ordering example at the
end of Section 5.

2The question of whether or not log-concave projection preserves
convolution was asked to me by Varun Jog.

5.1 The One-Dimensional Case

When d = 1, the log-concave projection can be char-
acterised in terms of its integrated distribution func-
tion. For ¢ € @, let

S(¢p) = {x € dom(¢) :

1
¢(x) > 5{¢(x +8) +¢(x —8)}

for all § > O}

denote the closed subset of R consisting of the points
Xxo where ¢ is not affine in a neighbourhood of xg.

THEOREM 5.5 (Diimbgen, Samworth and Schuh-
macher, 2011). Let P € Py have distribution function
F, and let F* be a distribution function with density
f*=e?" € Fy. Then f*=y*(P) if and only if

/X {F*(t) — F(1)}dt

—0o0

<0 forallx eR,
=0 forall x € S(¢p*) U {o0}.

In particular, if P is absolutely continuous with re-
spect to Lebesgue measure with continuous density f,
and if S(log ¥ *(P)) contains an open interval /, then
¥*(P) = f on I. Theorem 5.5 is especially useful as
a way of verifying the form of log-concave projection
in cases where one can guess what it might be. For in-
stance, consider the family of symmetrised Pareto den-
sities

fa,0):=

oo

2(|x| + o)+t

Theorem 5.5 can be used to verify that the correspond-
ing log-concave projection is

-1 -1

Foa o) = “_exp{_u},

20 o
see Chen and Samworth (2013). Since the preimage
under ¥* of any f € F; is a convex set, this shows
that the preimage of the Laplace density x — e~ 1/2
is infinite-dimensional. Theorem 5.5 can also be used
to show results such as the following proposition.

xeR,a>1,0>0.

eR;

PROPOSITION 5.6 (Diimbgen, Samworth and
Schuhmacher, 2011). Suppose that P € P has log-
density ¢ that is differentiable, convex on a bounded
interval [a, b] and concave on (—oo, alU[b, 00). Then
there exist a’ € (—oo,a] and b’ € [b, 00) such that
log ¥*(P) is affine on [a’,b'] and logy*(P) = ¢ on
(—00,a’lU[b, 0).
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FIG. 6. Left: the scaled t) density f(x)=(1+ x2)_3/2/2 (green) and its Laplace log-concave projection f*(x) = e_lx‘/Z (blue). Right:
the density of the normal mixture 0.7N (—1.5,1) + 0.3N (1.5, 1) (green) together with its log-concave projection (blue); the normal mixture

satisfies the conditions of Proposition 5.6.

These ideas are illustrated in Figure 6, taken from
Diimbgen, Samworth and Schuhmacher (2011).

6. STRONGER FORMS OF CONVERGENCE AND
CONSISTENCY

In minor abuse of standard notation, if (f,), f

are densities on R?, we write f, 4 f to mean
Jra 8(x) fu(x)dx — [pa g(x) f(x)dx for all bounded
continuous functions g : R — R. The constraint of
log-concavity rules out certain pathologies and means
we can strengthen certain convergence statements:

THEOREM 6.1 (Cule and Samworth, 2010,
Schuhmacher, Hiisler and Diimbgen, 2011). Let (f;,)

be a sequence in Fy with f, 4 f for some density f
onRY. Then f is log-concave. Moreover, if ag > 0 and
Bo € R are such that f(x) < e~ *X1+Ao for all x € RY,
then for all o < ag,

[ e = f@ldx =0
R4
as n — Q.

Thus, in the presence of log-concavity, convergence
in distribution statements automatically yield conver-
gence in certain exponentially weighted total variation
distances.

A very natural question about log-concave projec-
tions, with important implications for the consistency
of the log-concave maximum likelihood estimator, is
“In what sense does a distribution Q € P; need to
be close to P € P; in order for ¢*(Q) to be close

to ¥*(P)”? To answer this, we first recall that the
Mallows-1 distance’ d; between probability measures
P, Q on R? with finite first moment is given by
di(P,Q):= inf E|X-Y|,
(P,O):=  inf EIX-Y]|

where the infimum is taken over all pairs of ran-
dom vectors (X, Y) defined on the same probabil-
ity space with X ~ P and Y ~ Q. It is well known

that dy(P,, P) — 0 if and only if both P, —d> P and
Jra X1 d Py (x) = [pa llx||dP(x).

THEOREM 6.2 (Diimbgen, Samworth and Schuh-
macher, 2011). Suppose that P € P; and that
di(P,, P) — 0. Then L*(P,) — L*(P), P, € Py for
sufficiently large n, and, taking o9 > 0 and By € R
such that ¥*(P)(x) < e~ *XI+ho for all x € RY, we
have for o < o that

L e (P = v (P dx — 0
asn — oQ.

The Mallows convergence cannot in general be

weakened to P, —d> P. In particular, if P = U{—1, 1}
and P, = (1—n"YHU{-1, }+n~'U{—=(n+1),n+1},
then P, i P but it can be shown that

Sl * 4
/_OOW (Py) =¥ (P)|_)W'

3 Also known as the Wasserstein distance, Monge—Kantorovich
distance and Earth Mover’s distance.
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Writing dry(f, g) = %fRd | f — g|, Theorem 6.2 im-
plies that the log-concave projection ¥ * is continuous
when considered as a map between the metric spaces
(P4, dy) and (Fy, dry). However, it is not uniformly
continuous: for instance, let P, = U[—1/n, 1/n] and
Qn = Ul=1/n*1/n*]. Then di(Py, Qn) = 5; —
ﬁlz — 0, but since ¥*(Py)(x) = 51{xe[~1/n,1/n]} and

2
w*(Qn)(x) = %1{)(6[,1/”2,1/”2]}, we have

1
drv (V™ (Pn), ¥*(Qn)) =1 — -1

One of the great advantages of working in the gen-
eral framework of log-concave projections for arbi-
trary P € Py, as opposed to simply focusing on em-
pirical distributions, is that one can study analytical
properties of the projection as above, meaning that the
only probabilistic arguments required to deduce con-
vergence statements about the log-concave maximum
likelihood estimator are simple facts about the conver-
gence of the empirical distribution. This is illustrated
in the following corollary.

COROLLARY 6.3 (Diimbgen, Samworth and Schuh-
macher, 2011). Suppose that X1, X», ... are inde-
pendent and identically distributed with distribution
P € Py, and let P,, denote the empirical distribution of
X1, ..., Xp. Then, with probability one, f, :=y*(Py)
is well defined for sufficiently large n, and taking
ag > 0 and By € R such that f*(x) .= ¢y*(P)(x) <
e~ 0xI+Po for all x € RY, we have for o < o that

/Rd 1| £ ) —

as n — Q.

F¥e0)|dx 20

PROOF. let H = {h : RY - [—1,1] : |h(x) —
h(y)| < |lx — y| forall x,y € R?}, and define the
bounded Lipschitz distance between probability mea-
sures P and Q on RY by

dgL(P, Q) := sup
heH

hd(P Q).

Then dpy, metrises convergence in distribution for
probability measures on R, and from Varadarajan’s
theorem (Dudley, 2002, Theorem 11.4.1), we deduce

that dgi.(P,, P) 220. In particular, since the set of
probability measures P on R¢ with P(H) < 1 for
all hyperplanes H is an open subset of the set of all
probability measures on R? in the topology of weak
convergence (Diimbgen, Samworth and Schuhmacher,
2011, Lemma 2.13), it follows that with probability

one, P, € P; for sufficiently large n, and fn is well
defined for such n.
Since we also have

/ IxIldP, (x) = | x|l dP(x)
Rd Rd

by the strong law of large numbers, it follows that

di(P,, P) 230. The second part of the result therefore
follows by Theorem 6.2. [

Corollary 6.3 yields the (strong) consistency of the
log-concave maximum likelihood estimator in expo-
nentially weighted total variation distances, and also
provides a robustness to misspecification guarantee in
the case where the true distribution P does not have a
log-concave density.

7. RATES OF CONVERGENCE AND ADAPTATION

Historically, a great deal of effort has gone into un-
derstanding rates of convergence in shape-constrained
estimation problems, with both local (pointwise) and
global rates being considered. For the log-concave
maximum likelihood estimator, the following result,
a special case of Balabdaoui, Rufibach and Wellner
(2009), Theorem 2.1, establishes the pointwise rates of
convergence in the case d = 1.

THEOREM 7.1 (Balabdaoui, Rufibach and Wellner,

2009). Let X1,...,Xn = fo € Fu, let folxo) > 0
and suppose that ¢g := log fois twice contlnuously dif-
ferentiable in a neighbourhood of xo with ¢{(xo) < 0.
Let W be a standard two-sided Brownian motion on R,

and let

W(s)ds—t fort >0,
Y(t):=1’9%
/ W(s)ds—t fort <O.

Then the log-concave maximum likelihood estimator
[ satisfies

n?3 fu(x0) — fo(xo)}
(7.1) fox0) g xo) I\,
<T) H"(0),

where {H(t) : t € R} is the “lower invelope” process
of Y,sothat H(t) <Y(t) forallt € R, H" is concave
and H(t) = Y (t) if the slope of H" decreases strictly
att.

This lower invelope process was introduced and
studied in detail in Groeneboom, Jongbloed and Well-
ner (2001a). The nonstandard limiting distribution is
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characteristic of shape-constrained estimation prob-
lems. Balabdaoui, Rufibach and Wellner (2009) study
the more general case where more than two derivatives
of ¢9 may vanish at xg, in which case a faster rate is ob-
tained; they also study the joint convergence of fn with
its derivative f,; The pointwise convergence rate in d
dimensions remains an open problem, though Seregin
and Wellner (2010) obtained a minimax lower bound
for pointwise estimation at xo with respect to absolute
error loss of order n=2/(@+% provided ¢y is twice con-
tinuously differentiable in a neighbourhood of x( and
the determinant of the Hessian matrix of ¢q at xo does
not vanish. This is the familiar rate attained by, e.g. ker-
nel density estimators, under similar smoothness con-
ditions but without the log-concavity assumption.

An interesting feature of (7.1) is that the limiting
distribution depends in a complicated way on the un-
known true density. This makes it challenging to apply
this result directly to construct confidence intervals for
fo(xo). However, in the special case where xg is the
mode of fy, Doss and Wellner (2016a) have recently
proposed an approach for confidence interval construc-
tion based on comparing the log concave MLE at xq
with the constrained MLE fn, say, where the mode
of the density is fixed at m € R, say. Their key obser-
vation is that, under the null hypothesis that the log-
concave density fp attains its maximum at m, and pro-
vided (log fo)” (m) < 0, the likelihood ratio statistic is
asymptotically pivotal, in the sense that

Z fu(Xi) d
2log Ay ._22 log — D,
i=1 f (X)

where D is a universal limiting distribution (not de-
pending on fp). Under the alternative hypothesis that
the log-concave density fo does not have a mode at m,
the statistic A,, tends to be inflated; in fact, (2/n) log A,
converges in probability to a deterministic, positive
limit.

We now turn to global rates of convergence, and
write dﬁ(f, g) = fRd(fl/z — g1/2)2 for the squared
Hellinger distance between densities f and g. The
same rate as for pointwise estimation had been ex-
pected in the light of the facts that any concave function
on R¥ is twice differentiable (Lebesgue) almost every-
where in its domain (Aleksandrov, 1939), and that for
twice continuously differentiable functions, concavity
is equivalent to a second derivative condition, namely
that the Hessian matrix is nonpositive definite. The fol-
lowing minimax lower bound therefore came as a sur-
prise:

THEOREM 7.2 (Kim and Samworth, 2016). Let

Xi,..., Xy i fo € Fa, and let F denote the set of
all estimators of fo based on Xi,...,X,. Then for

each d € N, there exists cg > 0 such that

—4/5 g

. 9, = cin ifd=1,
A i B O 21050 g5

Theorem 7.2 yields the expected lower bound when
d=1,2[notethat2/(d +1)=4/(d +4) =2/3 when
d =2]. However, it also reveals that log-concave den-
sity estimation in three or more dimensions is funda-
mentally more challenging in this minimax sense than
estimating a density with two bounded derivatives. The
reason is that although log-concave densities are twice
differentiable almost everywhere, they can be badly be-
haved (in particular, discontinuous) on the boundary of
their support; recall that uniform densities on convex,
compact sets in R? belong to F. It turns out that it is
the difficulty of estimating the support of the density
that drives the rate in these higher dimensions.

The following complementary result provides the
corresponding global rate of convergence for the log-
concave MLE in squared Hellinger distance in low-
dimensional cases.

THEOREM 7 3 (Kim and Samworth, 2016). Let

X1,..., fo e Fq, and let fn denote the log-
concave MLE basedon X1, ..., X,. Then
O(n_4/5) ifd=1,

sup E o dfi(fu, fo) = 0(n™logn) ifd=2,
Joca O(n="*logn) ifd=3.

Thus the log-concave MLE attains the minimax opti-
mal rate in terms of squared Hellinger risk whend =1,
and attains the minimax optimal rate up to logarith-
mic factors when d = 2,3. We mention that in the
case d = 1, Doss and Wellner (2016b) proved that
d%(fus fo) = 0,(n=*/%) for each fixed fy € Fi, and
indeed showed that the same rate holds for the MLEs
over classes of s-concave densities with s > —1; see
Section 9.1. The proofs of these results rely on em-
pirical process theory and delicate bracketing entropy
bounds for the relevant class of log-concave densities,
made more complicated by the fact that the domains
of the log-densities can be an arbitrary d-dimensional
closed, convex set. The argument proceeds by approxi-
mating these domains by convex polytopes, which can
be triangulated into simplices, and appropriate bracket-
ing entropy bounds for concave functions on such do-
mains are known (e.g., Gao and Wellner, 2017). Criti-
cally, when d < 3, the region between two nested con-
vex polytopes with p and g vertices respectively can
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be triangulated into O(p + ¢) simplices (e.g., Brass,
2005).

Although Theorem 7.3 provides strong guarantees
on the worst case performance of the log-concave MLE
in low-dimensional cases, it ignores one of the appeal-
ing features of the estimator, namely its potential to
adapt to certain characteristics of the unknown true
density. Diimbgen and Rufibach (2009) obtained the
first such result in the case d = 1. Recall that given
aninterval I, B €[1,2] and L > 0, wesay h: R — R
belongs to the Holder class Hg 1 (1) if forall x, y € 1,
we have

|h(x) —h(y)| <Llx—yl, ifp=1,
W' (x) —h' ()| <Lix—ylf~", ifp> 1.
THEOREM 7.4 (Diimbgen and Rufibach, 2009).

ii.d.
Let Xq,...,X, S fo € F1, and assume that ¢g :=

log fo € Hp, L (I) for some B €[1,2], L >0 and com-
pact interval I C int(dom(¢yg)). Then

A 1 B/(2B+1)
SuP|fn(X0)—f0(xo)|=0p<< orgln) )

xp€el

Here the log-concave MLE is adapting to unknown
smoothness. When measuring loss in the supremum
norm, the need to restrict attention to a compact inter-
val in the interior of support of fj is suggested by the
right-hand plot in Figure 1.

Other adaptation results are motivated by the thought
that since the log-concave MLE is piecewise affine,
we might hope for faster rates of convergence in cases
where log fo is made up of a relatively small number
of affine pieces. We now describe two such results. For
k € N we define F* to be the class of log-concave den-
sities f on R for which log f is k-affine in the sense
that there exist intervals Iy, ..., I such that f is sup-
ported on Iy U --- U I, and log f is affine on each /;.
In particular, densities in F! are uniform or (possibly
truncated) exponential, and can be parametrised as

1

Lixelsy,sal} ifa =0,

fa,sl,sz(x) =15 _gll

eus2 — pusi
for (o, s1,52) € T : = (R x Tg) U ((0, 00) x {—00} x
R) U ((—00,0) x R x {o0}), where Tg := {(s1, 52) €
R? : 51 < s3}. Define a continuous, strictly increasing
function p : R — (0, 0co0) by
2e5(x — 1) —x24+2

f 0,
2e* —2 —2x — x2 ifx#

2 if x =0;

eax]]-{xe[sl,sz]} if # 0,

(72)  px):=

o0 _|
©
X o
= <]
Lo_

T T T T T
-20 -10 0 10 20

X

F1G. 7. The function p defined in (7.2).

cf. Figure 7. It can be shown that p(x) < max{p(2),
p(x)} <max(3,2x) for all x € R.

THEOREM 7.5 (Kim, Guntuboyina and Samworth,
2018). Let X1,..., X, b Sasi,50 € FY with n > 5,
and let fn denote the log-concave MLE. Then, writing
K* = a(s2 —s1),

2 min{2p (|«*]), 6logn}
Efdrv(fa, fo) = i .

In fact, Theorem 7.5 is a special case of the re-
sult given in Kim, Guntuboyina and Samworth (2018),
which allows the true density f to be arbitrary, and
includes an additional approximation error term that
measures the proximity of fj to the class F'. An im-
portant consequence of Theorem 7.5 is the fact that if
|| is small, then the log-concave MLE can attain the
parametric rate of convergence in total variation dis-
tance. In particular, if fj is a uniform density on a com-
pact interval (so that k* = 0), then E s drv( f,,, fo) <
4/n'/2; cf. the right-hand plot of Figure 1 again. In-
terestingly, this behaviour is in stark contrast to that
of the least squares convex regression estimator with
respect to squared error loss in the random design
problem where covariates are uniformly distributed on
[0, 1] and the responses are uniform on {—1, 1}: in
that case, the true regression function is zero, but the
risk of the estimator is infinite (Baldzs, Gyogy and
Szepesvari, 2015)! The proof of Theorem 7.5 relies on
a version of Marshall’s inequality for log-concave den-
sity estimation. A special case of this result states that

. iid. -
if Xq,...,X, = Jas1.5 € F!, then writing X () 1=
min; X;, X(») :=max; X; and k :=a(X ) — X(1)), we
have

sup| £, (x) — Fo(x)]

xeR

(7.3)
< p(lx) suﬁan(x) — Fo(x)

9
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where Fy and F,, denote the distribution functions cor-
responding to the true density and the log-concave
MLE respectively, and where [, denotes the empirical
distribution function.*

We now aim to generalise these ideas to situa-
tions where fp is close to FX, but assume only that

X1,..., X, - fo € F1. An application of Lemma 5.2

to the function A(x) = log Jo@) yields

fn(x)

2 I&, XD 5oz
dit.(fas fo) <~ lgllog %) =:d3 (fu, f0)-

In particular, an upper bound on d}z(( fn, Jfo) immedi-
ately provides corresponding bounds on d%v( fn, 1),

A2 (fn, fo) and d2; (fu, fo).

THEOREM 7.6 (Kim, Guntuboyina and Samworth,
2018). There exists a universal constant C > 0 such
that forn > 2,

E r,d% (fu, fo)

[ Ck. sppen L o }
< min { s T it (o, S
To help understand this theorem, first consider the
case where fy € FX. Then Efod}z((fn, fo) < % .
log®/*(en/ k), which is nearly the parametric rate when
k is small. More generally, this rate holds when fy € F;
is only close to F* in the sense that the approxima-
tion error dlz(L(fo, fr) is 0(% logS/4 ). The result is
known as a “sharp” oracle inequality, because the lead-
ing constant for this approximation error term is 1. See
also Baraud and Birgé (2016), who also obtain an ora-
cle inequality for their general p-estimation procedure.