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Fractionally Differenced Gegenbauer

Processes with Long Memory: A Review

G. S. Dissanayake, M. S. Peiris and T. Proietti

Abstract. The main objective of this paper is to review and promote the
usefulness of generalized fractionally differenced Gegenbauer processes in
time series and econometric research endeavours. In particular, theoretical
and computational aspects centered around fractionally differenced Gegen-
bauer processes with long memory together with a number of interesting and
elegant extensions will be discussed. In-depth conceptual developments and
large scale simulation study results are presented for clarity and complete-
ness. This survey highlights a number of gaps in the existing literature of this
subject area and becomes a valuable reference source for time series practi-
tioners.
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1. INTRODUCTION

The origin of stochastic analysis of time series can
be traced back to the seminal work of Yule (1926)
and Slutsky (1927), who introduced autoregressive
(AR) and moving average (MA) models. Box and
Jenkins (1970) provided a systematic inferential treat-
ment of stationary ARMA models, which became
the workhorse of modern applied time series work.
The next decade would set the scene for nonstation-
arity, integration and fractional integration. In par-
ticular, in the early 1980s the introduction of long
memory by Granger and Joyeux (1980) and Hosking
(1981) opened a new fruitful research avenue for time
series specialists and econometricians. The class of
fractionally integrated autoregressive moving aver-
age (ARFIMA or FARIMA) processes, extending the
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traditional autoregressive integrated moving average
(ARIMA) series with a fractional degree of differenc-
ing, is nowadays routinely applied to diverse phenom-
ena such as energy price and demand, telecommuni-
cation, environmental time series and financial volatil-
ity. A thorough account of the developments and the
various approaches to inference are reported in Beran
(1992, 1994), Chan and Palma (2006), Giraitis, Koul
and Surgailis (2012) and Beran et al. (2013).

The Gegenbauer processes that constitute the topic
of this paper were introduced in the last paragraph of
Hosking’s (1981) seminal Biometrika article. The con-
cept was later developed by Andél (1986) and Gray,
Zhang and Woodward (1989, 1994), who proposed
the class of time series models known as Gegenbauer
ARMA abbreviated as GARMA, using the theory of
Gegenbauer polynomials (see also Giraitis and Lei-
pus, 1995, and Woodward, Cheng and Gray, 1998, for
further details). Their distinctive properties are long
range dependence and quasi-periodic behaviour, and
they provide a model for cyclical or seasonal persistent
processes, whose autocorrelation function is an hyper-
bolically damped oscillating sequence. As a result, the
autocorrelation function is not absolutely summable
and the spectrum possesses a pole at the cyclical or
seasonal frequencies. A detailed analysis of the long
memory features of GARMA processes is in Chung
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(1996). As shown by Oppenheim and Viano (2004),
cyclical and seasonal persistent processes can arise
from the contemporaneous aggregation of stationary
autoregressive processes with complex random roots.
This generalized class can be used to represent long
memory depicting multiple unbounded spectral peaks
away from the origin, unlike in the standard long mem-
ory ARFIMA case of Hosking (1981), which can only
show unbounded spectral density peaks at the zero fre-
quency. A detailed analysis of the long memory fea-
tures of GARMA processes is in Chung (1996).

In many financial time series modelling problems,
it is known that heteroskedasticity plays an important
role. Such models in common use are the autoregres-
sive conditionally heteroskedastic (ARCH) model of
Engle (1982) and its generalized ARCH (GARCH)
model due to Bollerslev (1986). An extension of it by
Baillie, Bollerslev and Mikkelsen (1996) resulted in a
fractionally integrated GARCH (FI-GARCH) to model
the conditional variance. Incorporating heteroskedas-
ticity in ARFIMA models with GARCH errors has
been studied by Ling and Li (1997). Another interest-
ing development was the introduction of the Gegen-
bauer integrated GARCH (GIGARCH) by Guegan
(2000) combining the attributes of long memory, sea-
sonality and heteroskedasticity at the same time. In an
attempt to capture and blend some of these established
GARCH features, Dissanayake and Peiris (2011) intro-
duced conceptual properties of a class of models with
conditionally heteroskedastic errors. It was based on a
generalized fractional operator used by Anh, Angulo
and Ruiz-Medina (1999) and later developed by Peiris
(2003), Shitan and Peiris (2008, 2013). This scaled
down new operator with further applications was em-
ployed by Peiris, Allen and Peiris (2005) and Peiris and
Thavaneswaran (2007) in long memory models driven
by heteroskedastic GARCH errors.

Furthermore, it has become a customary practice in
applied time series analysis to conduct tests to assess
whether a time series is stationary or to be integrated at
a suitable degree of differencing. This procedure be-
came very popular among econometricians and was
made famous under the theme of “unit root hypothesis”
(see, e.g., Phillips and Xiao, 1998; Dolado, Gonzalo
and Mayoral, 2002). Such hypotheses of stationary se-
ries with respect to unit roots could be extended to frac-
tional processes with long memory. A unit root test for
fractionally integrated processes has been proposed in
Dolado, Gonzalo and Mayoral (2002) and asymptotic
results of a similar test is presented in Wang, Lin and
Gulati (2003). Additionally, Taylor (2005) introduced

a set of new tests to assess constant trend stationarity
against the change in persistence from trend stationar-
ity to difference stationarity or vice versa. Furthermore,
Ohanissian, Russell and Tsay (2008) proposed a statis-
tical test to distinguish between true and spurious long
memory. However, an extension of the unit root test
based on state space methodology and Kalman filter
(KF) estimates for a GARMA model is seemingly ab-
sent in the literature. Jansson and Nielsen (2012) pro-
posed a nearly efficient unit root test that is applica-
ble in such a context and assessing its power with a
GARMA model becomes a worthwhile exercise.

In summary, consideration of this paper will be given
to a class of Gegenbauer processes generated by Gaus-
sian white noise and GARCH errors since most of
the other models are nested within this new family.
In other words, this will be a review of two top-
ics relevant to the class known as “fractional differ-
encing” and “long memory”. Section 2 provides pre-
liminaries of fractionally differenced Gegenbauer pro-
cesses with long memory. Gegenbauer processes and
the use of truncated state space representations and
KF in estimating and forecasting their long memory
version will be considered in Sections 3 and 4. The
state space methodology follows the work of Anderson
and Moore (1979), Pearlman (1980), Harvey (1989),
Aoki (1990), Brockwell and Davis (1996), Chan and
Palma (1998), Durbin and Koopman (2001), Harvey
and Proietti (2005), Palma (2007), Grassi and San-
tucci de Magistris (2014) and Dissanayake, Peiris and
Proietti (2016). The adoption of the techniques in
Dissanayake, Peiris and Proietti (2016, 2015) to ana-
lyze seasonality in long memory Gegenbauer series is
also presented in this section. This will be followed by
Section 5 on modelling of persistence and conditional
variance. A model testing phase based on Dissanayake
et al. (2015) will be presented in Section 6, and Sec-
tion 7 will comprise of concluding remarks.

2. PRELIMINARIES

Let {X;,t =1,2,...,} be a stationary random pro-
cess with autocovariance function y (k) = Cov(X;,
X:4ik)), and autocorrelation function (acf) p(k) =
y(k)/v(0), where k =0, 1, 2, .... We denote the nor-
malized spectrum or spectral density function (sdf) by

" .
f@= 3 pe™, —r<o=<m,
7 k=—00

where o is the Fourier frequency.
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According to the behaviour of the spectral density
and/or the acf, we can characterise the notion of long
range dependence. The following details of a long
memory process will be adopted in the sequel. As it
is illustrated by Guégan (2005) and Giraitis, Koul and
Surgailis (2012), Chapter 3, there are several alterna-
tive characterisations of the notion of long memory.
In this paper, we will adopt a definition that is based
on the second-order properties, and in particular on the
asymptotic properties of the autocorrelation according
to which {X,,t =1, ..., T} is said to be long memory
if Y1) |p(k)| — 0o as T — oo. The following defi-
nition specializes the role of decay of p(k) at infinity.

Long Memory Cyclical Process: {X;} is along mem-
ory process at the frequency wg € [0, 7] if p(k) ~
Cpkz‘s_lcos(ka)o) as k — oo, where § € (0,0.5) is
called the memory parameter and C, > 0.

Here, given two sequences ay and by, a; ~ by means
limg— o0 Z—i = 1. By Lemma 7.3.1 in Giraitis, Koul
and Surgailis (2012), if the spectral density of {X;}
takes the form f(w) ~ C(w)|w — wo| 2%, where C(w)
is a regularly varying function with limg,_, o, h(w) =

h(wp) > 0, and derivative satisfying |7 dil(c‘“)

oo and (w — a)o)d%(c“’) dw =0, for ® — wy. Then {X,}
is long memory according to the above definition with
Cp =2C(wo)I' (1 —268) sin(r5).

We focus on the class of linear causal processes,
according to which X; can be represented as X; =
Z?io Vj€—j, where €, ~ WN(O, o2) (WN stands for
white noise), and the coefficients v; decay hyperboli-
cally, v; ~ C,/,j‘s_l, J — 00, Cy # 0. This class could
be obtained by introducing the fractional differenc-
ing operator and nests important models, such as the
autoregressive fractionally integrated moving average
(ARFIMA) model, the Gegenbauer ARMA (GARMA)
model and the fractional exponential (FEXP) model.
The ARFIMA class was introduced by Granger and
Joyeux (1980) and Hosking (1981), while Robinson
(1991) and Beran (1993) introduced the FEXP model.

The most elementary fractional linear process featur-
ing long memory at the zero frequency is (I — B)’X; =
€,0 < § < 0.5, which is generalised by replacing ¢, by
a short memory ARMA(p, g) process, or by a process
with a logarithmic spectrum that can be represented by
a finite trigonometric polynomial (FEXP model). The
operator (I — B)? is the fractional differencing operator
and for § > —1 it is defined according to the binomial
expansion

do <

— TI(G-d -
1-B)°=Y —————~ B/,
( ) S TG +DI(=d)

where I'(z) = fooo x?~le=* dx is the Gamma function.

3. GEGENBAUER PROCESSES AND THEIR
PROPERTIES

A Gegenbauer process is a long memory process
generated by the dynamic equation

(1) (1-2uB +B*)°X, =¢,,

where |u| < 1, 6 € (0,0.5), and ¢, is a short mem-
ory process characterised by a positive and bounded
spectral density f.(w). If ¢ ~ WN(0,02), (1) is
a well-known Gegenbauer process of order § or a
GARMA(0, 8, 0) process. Some authors use the no-
tation GARMA (0, §, 0; u) to represent the process in
(1). See, for example, Peiris and Asai (2016). As we
shall see below, (1) complies with the definition given
in Section 2 of a long memory process at the frequency
wo = arccos(u). According to (1), X, arises from fil-
tering the process €; by the infinite impulse response
filter

o
(1-2uB+ B =3 CluB’,
j=0
which we now characterise.
The Gegenbauer or ultraspherical polynomial C ;5. (u)
is defined in terms of its generating function as follows:

1 s .

2 S — cé I
() 0 —2uz 3 22 jé(:) Gz
where

[j/2]

Ciwy =Y (—=DF
k=0
' — ) .

TGO+ DI —2k+1)

and [j/2] stands for the integer part of % (see Erdelyi
etal., 1953, 10.9).

It is possible to show (see Gould, 1974, Gradshteyn
and Ryzhik, 1980 and Rainville, 1960, for details) that
C}S-(u) satisfies the recursion

Couy = S[2u(j +5 - P
j(u)—;[ u(j+38—10C5_(w)

—(j+28 - 2)C%_,w)],
for j > 2, with C3(u) = 1 and C} (u) = 28u.

For large j, the coefficients C? (1) can be approxi-
mated by (see Chung, 1996)

j)a—l cosl(j +8)wo — (87/2)]

8’\4 i
SR <2 T (8) sin’ (ap)
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As we have assumed |u| < 1, the polynomial 1 —
2uz + z% has complex zeros which are on the unit
circle. Therefore, we need the additional restriction
8 < 1/2 to ensure the square summability of Cf. (u),

or Z O{C‘S(u)}2 < 00.
If ¢, ~ WN(O, 02), the spectral density of X; is

2
f(w) = %{2\cos(w)—cos(w0)|}*25
) i
o o+w\ . (@—awy\|?
—;4s( 5 )sm( 5 )’

so that, as w — wy,

o? . —-28
flw)~ ?{2(60 — wo) sin(wo) }

Since sin(wp) is bounded, it is clear that the spectral
density is unbounded as w — wy. Therefore, it can be
shown that a stationary Gegenbauer process contains
and unbounded spectrum at wg and is long memory
when 0 < § < % This special frequency wq is called
the Gegenbauer or G-frequency.

Given the spectral density f(w), one can compute
the autocovariance function y (j) for a stationary long
memory Gegenbauer process. For the case |u| < 1,
Gray, Zhang and Woodward (1989) have shown that

2

s y(j) = 2} )F(l—za)[zsin(wo)]1/2—25
(PP @ + (1 PR (-,

where Pab (x) are associated Legendre functions that
can be calculated using the recursion

1

a+b—1
5 fofl(x) -

—b

2a —
Pyx) =" P}, (x),

with initial terms

P2,y =[(1+uw)/( —w] 1/ 1(3/2 - 26]

F(1/2,1/2:3/2 —28; (1 —u)/2),

PE Py = [(1 4 w)/(1 = w)] "1/ 7 (3/2 - 26]

F(—1/2,1/2;3/2—28; (1 —u)/2),
and

X T@)I'(@+nl(b+n)

F(a,b;c;w) = ,; T(@T(B)C(c+mn+ 1)

n

is the hypergeometric function. This leads towards the
following approximation on autocovariances:

21—2802
y(j) = in™ (wp) sin(87)
. '+ 26)

The acf of {X;} can be approximated by p(j) ~
K cos(jwg)j*~! as j — oo, where K is a real con-
stant that depends on § and wy; see Chung (1996).

When |u| =1, that is, wg = 0, 7, then

I'G+25)
rHrG+1)°
the roots of the polynomial 1 — 2uz + z? are &1 with
multiplicity 2 and § must satisfy 6 < % to ensure the

square summability of the coefficients. In this case,
p(j)~ Kj¥ as j— oo.

3.1 GARMA(p, é, q) Process

CHu) = (=1)/

A process {X;} generated by the following equation
is called a GARMA(p, &, g) or GARMA(p, 8, q; u):

¢(B)(1 —2uB + B*)’ X, =0(B)e,,

where ¢ (B),and 6(B) are stationary AR and invertible
MA operators, respectively, with no common zeros, &
is the memory parameter and |u| < 1 is a constant to
satisfy (a) |u| <1 for § < 1/2 or (b) |u| =1 for § <
1/4.

3.2 The k-Factor Gegenbauer Processes
Extending the process in 1, a k-factor Gegenbauer
process is given by

k
7 [T —2u;B+B»’ X, =¢.
j=1
Woodward, Cheng and Gray (1998) illustrate many im-
portant properties of this k-factor Gegenbauer process.
In particular, the spectrum of (18) is given by

2 k
flwy=—1]|1—-2u;exp(—iw)
®) o L1120

+ exp(—2iw)| 2

where 0 < w < 7.
By trigonometric identities, we can write

[cos(w) — cos(a)oj)]z}_aj,

k
9 fw)=0c*/2n []{4

j=1
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where cos(wo;) =uj, j=1,2,..., k. Hence, the spec-
trum has k£ unbounded peaks at corresponding Gegen-
bauer frequencies wq;, j =1,..., k. In summary, the

k-factor Gegenbauer process is:

e stationary if (a) |u;| <1 and §; < 1/2or (b) |u;| =1
and §; < 1/4,foreachi=1,...,k;

e stationary with long memory if (a) |u;| < 1 and 0 <
8i <1/2or (b) lu;| =1and 0 < §; < 1/4, for each
i=1,...,k

Woodward, Cheng and Gray (1998) pointed out that
the true autocorrelation structure of a k-factor Gegen-
bauer process could be obtained through the inverse
Fourier transform of its spectrum f(w). Forecasting
with the k-factor Gegenbauer processes is dealt with in
Ferrara and Guegan (2001), whereas Guégan (2005)
provides further insight on the properties of the k-
factor GARMA(O, 6,0) process. The estimation of
time-varying long memory parameters of a locally
stationary k-factor Gegenbauer process utilizing the
wavelet method is presented in Lu and Guegan (2011).

3.2.1 Other generalized fractional processes. The
first generalization of traditional ARMA models has
dealt with fractional powers of the AR and MA opera-
tors. Two processes in particular have emerged as first-
and second-order generalized fractional operators and
their applications to time series.

e Consider the process {X;} generated by

(I —aB)’X, =¢;
(10)
—1<a<1;8>0;{e}~WN(0,0?).

This process has been introduced by Spolia, Chan-
dler and O’Connor (1980) under the name ‘frac-
tional order equal root autoregressive model’, as
mentioned by Hosking (1981). The theory was fur-
ther developed by Gongalves (1987), Anh, Lunney
and Peiris (1997) and Shitan and Peiris (2008, 2013).
Clearly, (10) encompasses the standard first-order
autoregressive model when § = 1, as well as the
fractional noise process when ¢ =1 and 0 < § <
1/2.

e Similarly, the second-order fractional autoregressive
model arises from generalizing the AR(2) and is
given by

an (1—a1B—ayB?)’X; =€,

{e:} ~ WN(0, 0%),

where 1 — a1z — a2z? #0forall |z] <1,8 >0 (see
Shitan and Peiris, 2009, for details).

In (11), it is known that, for § = 1 conditions
oar+a; <1l,a0p—a; <1land —1 < ap < 1 must be
satisfied by o1 and o to ensure stationary solutions.

Let ] —a1 B —ayB? = (1 —& B)(1 — & B), where
&1 +& =ajand §16 = —an.

By writing (11) as

[1—&B)(1-5B)]’X, =«

and following Shitan and Peiris (2009), it can be
shown that the solution to (11) can be expressed as

Q& Tk + 8+ 8)&(E)
Xi=2 ) S 4 Hra+ D)

k=01=0

€t—k—I»

where ["(-) is the gamma function satisfying I" (k) =
(k — 1)! for integers k > 1.

The model in (11) is called the generalized
second-order autoregression with index §. For sim-
plicity, we call it Generalized Autoregressive of or-
der 2 [GAR(2)] model. It is clear that the class gen-
erated by (11) is more flexible than the standard
AR(2) model. Although the autocorrelation func-
tion of the GAR(2) model can be obtained, it is not
mathematically tractable as there is no closed form
solution. The spectral density f(w) is given by

o’ 2, .2
fl@)=—[(l+ei+a)

—2a1(1 — ap) cosw — 2ap cOs Zw]_a.

See Shitan and Peiris (2009) for details.

It is clear that when o = —1 [in (11)], the roots
of 1 — 1z — apz? = 0 do not lie in the stationary
region. In particular, when o = 2u, |u| < 1 and
ar = —1, the zeros of 1 — a1z — az? are a pair of
complex conjugate roots having unit modulus with
phase =+ arccos(u) and the process becomes station-
ary only for particular values of §. This leads to
Gegenbauer processes and extends to a mathemat-
ically elegant class of time series models with very
useful applications. Now we look at this new class
of models.

4. STATE SPACE REPRESENTATION OF GARMA
MODELS

Consider the Wold representation of a Gaussian
GARMA(0, §, 0) process in (1) with €, ~ IID N(O, a?)
given by

o0
(12) X;=CB)e=) Cje_j, Co=1,
j=0
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where C(B) = (1 — 2uB + B?)™® and C; are the
Gegenbauer coefficients as defined by (2), where we
drop reference to § and u for notational simplicity.

The mth order moving average approximation is ob-
tained by truncating the right-hand side of (12) at lag
m such that

m
(13)  Xim=) Cie—j, & ~iid N(0,07),
j=0
where {X, ;,} is the truncated Gegenbauer process that
will vary with the chosen finite truncation lag order
m=1,2,...,M < 0.

Following Chan and Palma (1998), Dissanayake,
Peiris and Proietti (2016) focus on the following state
space representation of the above mth order MA ap-
proximation:

Xim =Zoy + &,
(14)

arp1 = Tooy + Hey,
where ;1 = [ X (t + 1]2), X (¢ +2]t), X (¢t +3|1), ...,
X (t +m|t)] is the m x 1 state vector with elements
X+ jlt) = EXiyjmlFo), j=12,....m, F; =

{Xt,ms Xt—l,ms D) }a and
Z=[1,0,...,0],
[0 1 0 0] Kol
0 O 1 . 0 (6))
To = ol, H= :
0 0 - - 0] | Cn |

The measurement equation is essentially X, , =
E(X; m|Fi—1) + €, whereas the transition equation
provides the predictors X (t + j|t) = X + j — 1]t) +
Cje, j=1,...,m. The distribution of the initial state
vector is a1 ~ N(0O, P1), where P; is the Toeplitz ma-
trix with elements pp; = U,%l Zj CiCitih—k-
Alternatively, the MA approximation could be ob-
tained by applying the innovations algorithm, follow-
ing Brockwell and Davis (1991). A different asymp-
totically equivalent approximation can be obtained us-
ing the corresponding truncated AR(m’) approxima-
tion Z’}io 7 Xm,1—j = €, arising from truncating the
infinite AR polynomial 7 (B) = (1 -2uB+ B 2)8 gt lag
m’. Details can be found in Chan and Palma (1998) and
Grassi and Santucci de Magistris (2014), together with
a comparison of these two approximations for fraction-
ally integrated processes at the zero frequency. An al-
ternative AR approximation can also be obtained by

applying the Durbin-Levinson algorithm to the auto-
covariance matrix of the process.

4.1 Estimation and Prediction

The Kalman filter, Kalman (1961) and Kalman and
Bucy (1961), produces recursively the one-step-ahead
predictor of X;,,, given a particular value of the pa-
rameter vector, and computes the innovations v; =
Xmt — X(t|t — 1), the prediction error variance and
the one-step-ahead predictor of the states, as well as
their mean square error matrix. Therefore, it enables
the evaluation of the likelihood function of the ap-
proximating model. The latter can be maximised with
respect to the unknown parameters u and & (the pa-
rameter 0,2 can be concentrated out of the likelihood
function). Let {x;,r =1, ..., T} be a time series gener-
ated by a Gegenbauer process. The maximiser can be
characterised as a quasi maximum likelihood estimator
(QMLE) as it converges to the MLE, under regularity
assumptions that are detailed below and that entail let-
ting m increase as T  increases, at a suitable rate, so that
m/T — 0.

The KF recursions for the approximating MA (m)
model considered in the previous subsection are, for
t=1,...,T:

Vr =Xy — Zay,
fi=2ZPZ +0o2,
15) K, =(ToP,Z' + 2 H)/f:,
ar+1 = Toas + K;vy,
P =ToPTy+ HH — fiK, K],

where K; is the Kalman gain, and f; the one-step-
ahead prediction error variance. The KF returns the
pseudo-innovations vy, such that if the MA (m) approx-
imation were the true model, v; ~ IID N(O, a,% ft), so
that the quasi log-likelihood of (6, u, o,%) is (apart from
a constant term)

E(S,u,an%)
(16) 1 d 1 w2
=—(Tho>+Y Infi+ — —t>
{ERDWIEES o

The scale parameter o,% can be concentrated out of the

likelihood function, giving the MLE

2
=2
t

fi
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The profile log-likelihood

1 . T
(A7) £y (8,u) = —E[T(lna,i +1) + Zlnf{|
=1
is a function of parameters (8, u).

The maximisation of (17) can be performed by a
quasi-Newton algorithm, after a reparameterization
which constrains § and u in the subset of R2[0, 0.5) x
[0, 1).

4.2 An lllustrative Example

We illustrate the above state space approach by fit-
ting a Gaussian Gegenbauer process by QMLE to a
time series of length T = 512 generated according
to the following mechanism. We simulate 7 + mg
draws from an i.i.d. sequence ¢, ~ N(0, 1), = —mo+
1,—1,0,1,...,T, and we construct the series {X;};
t=1,2,...,T, using (13), with u = 0.8, § = 0.4,
02 = 1. The generated series (for a reasonably large
my, such as mo = 10%) can be thought as a realisation
of the stochastic process in (12).

The simulated series is plotted in Figure 1 along
with its sample autocorrelation function. The latter is
a damped sinusoidal with a period of about 10 obser-
vations. Figure 2 shows the true spectral density of
the Gegenebauer process, f(w), which is unbounded
at w = cos” ! (u) = cos™1(0.8), along with the peri-
odogram of the simulated series, [ (w;) = %[)?(0) +
22,{;11 y (k) cos(wjt)], where y (k) is the sample au-
tocovariance function at lag k and w; =27j/T, j =
0,...,|T/2], are the Fourier frequencies.

Simulated series

0 100 200 300 400 500

Autocorrelation function

0.5 |
& ) i
< ’ ol o1 Rak; ot
o i e e 1T, ue?
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05 i i i i
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F1G. 1. Simulated series from a Gaussian Gegenbauer process
with § =0.4,u=0.8, 62 =1 and corresponding acf.
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FI1G. 2. Sample spectrum (periodogram) and true spectrum of a
simulated GARMA(0, §, 0) model.

Various mth order truncated MA approximating
models have been fitted to the series by the approxi-
mate maximum likelihood method outlined in the pre-
vious section. The QMLEs of 8, u and o2 are reported
in Table 1. The likelihood is a monotonically increas-
ing function of m, whereas the estimated prediction
error variance decreases with m. On the other hand, H
and # vary sensibly with m.

Figure 3 displays the implied spectral density of
X, m corresponding to the above parameter estimates.
For m > 1, they are characterised by a spectral peak
around the frequency cos ™! (i1). Another distinguishing
feature is the presence of side lobes, due to the trunca-
tion of the MA filter (this is referred to as the Gibbs
phenomenon).

If the autoregressive approximation is used in lieu
of the MA one, the estimated spectral density do not
suffer from the Gibbs phenomenon. This is illustrated
in Figure 4, which displays the AR spectrum estimates
for the same values of m.

TABLE 1
Fitting a GARMA(O0, 8, 0) model to a simulated series using
different MA(m) approximating state space models. Quasi
maximum likelihood estimates of the parameters (true values are
§=04,u=08,02=1)

Values of m
1 5 15 25 50
§ 0.32 0.41 0.50 0.44 0.43
i 0.98 0.80 0.75 0.78 0.78
52 1.31 1.06 0.97 0.95 0.96
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FI1G. 3. Spectral densities of estimated MA approximating GARMA(0, §, 0) models with different lag orders.

Dissanayake, Peiris and Proietti (2016) present the
results of an extensive Monte Carlo experiment, which
enabled them to conclude that the optimal order of the
MA approximation falls in the range [29, 35], whereas
for the AR approximation the optimal truncation is in
the range [9, 13]. The optimality is assessed with re-
spect to the total parameter estimation mean squared

error and by the mean square forecast error. Their study
also confirmed that the variance of the QMLE of the
long memory parameter § is %. A further develop-
ment illustrated that the QMLE approach based on the
truncated MA or AR representation outperformed tra-

ditional ARIMA and AR models for time series, such

2 25 3 3.5

FIG. 4. Spectral densities of estimated AR approximating GARMA(0, §, 0) models with different lag orders.
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as the Wolfer’s sunspots numbers. The meta-analytical
comparison was performed with established model re-
sults available in the literature; the optimal m value was
established by performing a rolling pseudo-real time
forecasting experiment and by choosing the value that
minimised the one-step-ahead mean square forecast er-
ror (see Dissanayake, Peiris and Proietti, 2016, for fur-
ther details). These developments motivated the au-
thors to apply the methodology to seasonal processes,
which is the topic of Section 4.3.

4.3 Seasonal Fractional Gegenbauer Processes

The presence of long range dependence in the sea-
sonal behaviour is a well-established phenomenon for
environmental and economic time series. It has been
observed in riverflows (Montanari, Rosso and Taqqu,
2000), monetary aggregates (see Porter-Hudak, 1990),
time series of revenues (Ray, 1993), inflation rates
(Hassler and Wolters, 1995), quarterly gross national
product and shipping data (Ooms, 1995).

Several statistical modelling methodologies have
been developed, among which we mention the frac-
tional Gaussian noise process of Abrahams and Demp-
ster (1979), the seasonal fractionally integrated au-
toregressive moving average (SARFIMA) model of
Porter-Hudak (1990), the flexible seasonal fraction-
ally integrated process (flexible ARFISMA) of Hassler
(1994), the k-GARMA process of Woodward, Cheng
and Gray (1998), the seasonal long range dependent
process of Palma and Chan (2005), the seasonal frac-
tionally integrated process of Reisen, Rodrigues and
Palma (2006) and the seasonal ARFIMA model of
Bisognin and Lopes (2009). Statistical inference for
seasonal long memory processes has been dealt with
by Giraitis and Leipus (1995), Chung (1996), Arteche
and Robinson (2000), Velasco and Robinson (2000),
Giraitis, Hidalgo and Robinson (2001), Palma (2007),
Arteche (2007), Koopman, Ooms and Carnero (2007),
Bisognin and Lopes (2009), Hsu and Tsai (2009) and
Arteche (2012).

Let s denote the seasonal period (e.g., s =7 for a
weekly seasonal component in daily data). The sea-
sonal changes are defined as X; — X;—; = (1 — B%) X;.
The seasonal lag polynomial (1 — B) has s’ roots,

(18) &k = cos(wg) + 1 sin(wg),

where wy =2km /s, k=0,1,2,...,5' — 1.

This implies the following factorization:

(1-8°)

s—1
="M@ -8
k=0

(s=1)/2
(1-B) [] (1-2cos(wi)B+ B?)
k=1
s 1s odd,
- (s/2)—1
(1-B)1+B) ] (1—2cos(wx)B + B?)
k=1
s 1s even.

A seasonal fractional Gegenbauer process of order
O 1s defined as

19 (1-B)"X,=¢. & ~WN(0,0?).

The seasonal behaviour is due to the presence of |s/2]
factors representing Gegenbauer polynomials defined
at the frequencies wy =2nk/s, k=1, ..., |s/2], char-
acterised by the same fractional integration order.
A possible generalization allows for a Gegenbauer fac-
tor with angular frequency wg:

(1—B*)"(1—2uB+ B*)’X, =¢,.

The extension of the state space modelling approach
to seasonal GARMA processes can be performed by
considering the AR(m) or MA(m) approximations to
(4.3), obtained by truncating at mth lag the infinite
polynomials

o0
(1-B)"(1-2uB+B*’ =Y n;B/,
Jj=0
and

o0
(1-B)"(1-2uB+B*) "= y;B.
j=0

5. MODELLING THE PERSISTENCE IN THE
CONDITIONAL VARIANCE

An important generalization of GARMA processes
aims at modelling the conditional heteroscedasticity of
the error process. This is relevant for the analysis and
interval and density forecasting of electricity prices.

Most econometric models dealing with the persis-
tence in the conditional variance are based on the
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class of generalized autoregressive conditional het-
eroscedasticity (GARCH) models. When the condi-
tional mean is modelled via a GARMA(p, é, q) pro-
cess, as in Dissanayake and Peiris (2011), the following
GARMA(p, §, )-GARCH(r, s) representation arises:

¢(B)(1 —2uB + B%)’ X, =6(B)e,,

€r = 01&y, Er ™~ 1.1.d. N(O, 1),

(20) r )
Utz =0+ Zajetzfj + Z'Bjatzfj’
j=1 j=1

with a9 >0, o;j >0, j=1,....r, B; 20, j =
1,...,s.

A unique member of this class, named as the
ARFIMA(0, 2§, 0)-GARCH(r, s) model, was studied
in detail by Ling and Li (1997), who have shown that
there exists a unique J;-measurable second-order sta-
tionary solution {&;, X;}, where F; is the filtration gen-
erated by the history of the process.

Dissanayake, Peiris and Proietti (2014) extended
the theory to the more general GARMA(O,§, 0)—
GARCH(r, s) case, showing that, under the assump-
tions |u] < 1,0 <8 < 5 and Yj_ o + X5, B < 1,
there exists an JF;-measurable second-order stationary
solution {e;, X;} with causal representations
21)

00 J 1/2
etzet{oco—i- ZDT<1_[ A,_,-)Et_j} a.s.,

j=1 i=1
and
[M/2]
X;= Yy (=D
(22) k=0

Qu)M =2k + M — k)!
T RIS — DM — 2Kk)!

€r—k a.S.,

where &; = (aostz,O, ...0,00,0,...,0),an (r +s) x 1
vector with nonzero first and (r 4+ 1)thcomponents, M
is a fixed integer based on the required number of bi-

nomial coefficients, D = («y, ..., a, B1, ..., Bs), and
are; are; | Bre; e Beg?
A Io—1yxe—1) O@—1)x1 O(—1)xs
t— )
o ar Bi Bs
O—1yxr |](.s'—l)><(x—l) O@—1yx1

and I, is the r x r identity matrix.

Additionally, letting {X; ,} denote the MA(m) ap-
proximating process, X; n, = Y ;o Cké€;—k. Under the
above assumptions and suitable regularity conditions,

Dissanayake, Peiris and Proietti (2014) show the con-
vergence of X; , to X;. This opens the way to infer-
ence via the state space approach discussed in Sec-
tion 4, suitably extended to handle conditional het-
eroscedasticity. Table 2 reports the results of a Monte
Carlo experiment aiming at assessing the accuracy of
the quasi maximum likelihood estimates based on the
state space approach. The results are based on 1000
replications from a GARMA(O, §, 0)-GARCH(1, 1)
process with 6 = 0.3, u = 0.8, a9 = 0.4, a1 = 0.3,
B1 = 0.3. The order of the MA and AR approxima-
tion have been chosen each time according to a rolling
forecasting experiment as the value that is optimal for
out of sample predictability.

An interesting fact that was observed is that the per-
formance of the estimator of the memory parameter
and the selection of the optimal mth order approxima-
tion is unaffected by the volatility clustering in &;.

Another use of Gegenbauer processes is in mod-
elling the long range dependence of the volatility of
financial time series. Several studies report evidence of
long memory in empirical volatility returns, as illus-
trated by Robinson (1991), Shephard (1996), Lobato
and Savin (1998) and Baillie (1996). A new class
of GIGARCH was introduced by Guegan (2000) to
model volatility with generalized fractional integra-
tion. McAleer and Medeiros (2008) proposed a flexi-
ble model to describe nonlinearities and long memory
in time series dynamics for the purpose of forecast-
ing volatility. Lieberman and Phillips (2008) have pro-
vided some analytical explanations for long memory
behaviour that has been observed in realized volatil-
ity. An elegant and parsimonious way of approximating
the long memory behaviour of time series of realized
volatility measures through a restricted autoregressive
model was proposed by Corsi (2009).

6. TESTING GARMA (0, §, 0) PROCESSES

A stochastic process X; is said to be integrated of
order §, denoted X; ~ I(8), if(1 — B)®X; is a station-
ary process with absolutely summable autocorrelation
function. This definition encompasses that of an /(1)
process, which is such that (1 — B) X; is stationary and
short memory. Also, a stationary short memory pro-
cess will be said to be integrated of order zero, denoted
X~ 1(0).

The problem of testing whether X; ~ I (1) versus the
alternative X; ~ I (0) is illustrated by Phillips and Xiao
(1998). It is often found that both the null and the alter-
native hypotheses are rejected, suggesting that many
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TABLE 2
Monte Carlo simulation of a GARMA(0, §, 0)-GARCH(1, 1) process with § = 0.3, u =0.8, ¢g = 0.4, o1 = 0.3, B =0.3. Accuracy of the
OMLE parameter estimates, based on 1000 replications (SE = Standard Error, MSE = Mean Square Error)

T =1000
MA approximation AR approximation
8 i oo a1 B § i oo o1 B1
Mean 0.306 0.788 0.430 0.264 0.296 0.305 0.792 0.424 0.273 0.293
SE 0.082 0.130 0.149 0.180 0.098 0.081 0.126 0.148 0.184 0.096
MSE 0.006 0.017 0.023 0.033 0.009 0.006 0.016 0.022 0.034 0.009
T =2000
Mean 0.299 0.804 0.403 0.296 0.300 0.299 0.804 0.403 0.296 0.299
SE 0.018 0.022 0.050 0.063 0.034 0.020 0.028 0.052 0.065 0.034
MSE 0.0004 0.0008 0.002 0.004 0.001 0.0003 0.0005 0.002 0.004 0.001

series are not well represented by both the 7/(0) and
I (1) hypotheses.

The definition can be extended to allow for integra-
tion at any frequency in the range (0, 7). In particular,
we will say that X; is integrated of order § at the fre-
quency wy, denoted I (8, wo) if (1 —2uB + B%)%X, ad-
mits a stationary short memory representation, where
u = cos(wg).

We will focus on the following testing problems:

1. Test Hy : X; ~ 1(28,0), versus Hy : X; ~ I(6,
a)o),a)oe (0,7‘[).

2. Test Hy: X; ~ 1(0.5, wqg) versus Hy : X; ~ 1(6,
wg), § <0.5.

We can equivalently reparameterize the first case in
terms of u, with Hy: u = 1 and Hj : |u| < 1. Under
the null, the process is a standard long memory process
with fractional integration order 2§, whereas under the
alternative it is a Gegenbauer process integrated at an
angular frequency different from zero. Hence, the first
case is a test for the presence of a stochastic persistent
cycle. In the second case, we test whether the Gegen-
bauer process nonstationary at the frequency wq, versus
the alternative that it is stationary, with fractional order
5 <0.5.

Chung (1996) performed these testing problems,
basing the inference on a conditional sum of squares
estimation method. The approach that is taken
by Dissanayake, Peiris and Proietti (2015) and
Dissanayake et al. (2015) is based on the quasi-
likelihood ratio (QLR) test arising from the maximized
likelihood of the MA or AR approximations both un-
der the null and the alternative. The QLR approach can

be justified by the theoretical constructs of equations
(13), (14) and the description of Section 4.1.

Consider the GARMA(0, §,0) process model de-
fined in (1), with €; ~ i.i.d. N(0, 62). The Gegenbauer
polynomial could be written as

1—2uB + B =[2(u — D)p(A — 1) + A?],

where A = (1 — B), so that we can reparameterize the
process as follows:

2 — 1)(A — 1)+ A?PX, =€,

The test of Hy : u = 1 (under which the true model
is A2%X, = ¢), versus H; : u < 1 [under which the
process is integrated of order § at the frequency wy =
arccos(u)], is

LR7 = max[€,2 (8, u)] —max[£,2 (8, D],

where the profile likelihood is given in (17). The dis-
tribution of the test statistic is nonstandard, as u lies on
the boundary of the parameter space; see Dissanayake,
Peiris and Proietti (2015) for more details.

As far as the test of nonstationarity is concerned,
Hp : § =0.5, the quasi-likelihood ratio test statistic is

LR} =max[£,2 (8, u)] — max[€,2 (1/2, u)],

Again, the distribution of the test statistic is nonstan-
dard and we refer to Dissanayake et al. (2015) for fur-
ther details.

Following Jansson and Nielsen (2012), Dissanayake,
Peiris and Proietti (2015) and Dissanayake et al. (2015)
explore the power properties of their quasi-likelihood
ratio test. Their evidence is that the power of the tests
are reasonable and comparable with those presented in
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Beaumont and Ramachandran (2001). For testing the
fractional order of seasonal and nonseasonal unit roots
of long memory processes, see Ferrara, Guegan and Lu
(2010).

The QMLE rests on the Gaussian assumption and the
ability to select the optimal order of the approximation.
In the case of GARMA processes with GARCH dis-
turbances, an important issue would be assessing the
robustness of the estimation and the testing of devi-
ation procedures from Gaussianity. It does not come
under the purview of this paper and would be a worth-
while exercise for a proactive researcher in statistics or
econometrics.

7. CONCLUDING REMARKS

The facts provided in this review highlight certain
gaps in the literature linked with fractionally differ-
enced long memory Gegenbauer processes. Relevant
model formulation, state space based estimation and a
related nearly efficient unit root testing procedure have
been investigated. New results have been presented in
the discussion of this paper to encourage further re-
search within the statistical and econometric commu-
nities.
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