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Self-Exciting Point Processes: Infections
and Implementations
Sebastian Meyer

Abstract. This is a contribution to the discussion of Reinhart’s “Review
of Self-Exciting Spatio-Temporal Point Processes and Their Applications”
[Statist. Sci. 33 (2018)], which synthesizes developments from various re-
search fields. Here, I discuss some experiences from modeling the spread of
infectious diseases. Furthermore, I try to complement the review with regard
to the availability of software for the described models, which I think is es-
sential in “paving the way for new uses.”
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POINT PROCESS MODELS FOR INFECTIOUS
DISEASE SPREAD

For notifiable diseases, public health surveillance
data is routinely available in aggregated form as time
series of infection counts. Such data are typically ap-
proached with autoregressive models using a negative
binomial distribution, or assuming the counts as ap-
proximately Gaussian after a suitable transformation
to adopt classical ARIMA models or even Facebook’s
Prophet procedure (see Held and Meyer, 2018 for an
assessment). For multivariate time series stratified by
region, spatial epidemic models can account for vary-
ing demographic and environmental factors, and en-
able spatially explicit predictions. Höhle (2016) pro-
vides a recent overview of spatio-temporal infectious
disease models.

Taylor et al. (2013) propose to tackle even such
aggregate-level surveillance data with point process
methods (specifically, a log-Gaussian Cox process
model with Bayesian data augmentation). However, for
“mechanistic,” self-exciting point process models to
unfold in infectious disease epidemiology, individual-
level data are indispensable. A distinction is between a
point process indexed in a continuous spatial domain,

Sebastian Meyer is a Research Fellow at the Institute of
Medical Informatics, Biometry and Epidemiology,
Friedrich-Alexander-Universität Erlangen-Nürnberg,
91054 Erlangen, Germany (e-mail: seb.meyer@fau.de).

such as in the ETAS model, versus a multivariate tem-
poral point process operating on a discrete set of in-
teracting locations/individuals, that is, on a network.
Reinhart mentions recent applications of such multi-
variate processes in social networks. It is important
to note that similar models have also been developed
in the infectious disease context, where they are not
that much “in its infancy.” For instance, the models
described in Diggle (2006), Scheel et al. (2007) and
Höhle (2009) all describe the spread of livestock dis-
eases among farms using distance-based transmission
kernels. Such spatial distances could just as well be re-
placed by geodesic distances to quantify the coupling
between the individual infection processes, for exam-
ple, using movement networks as in Schrödle, Held and
Rue (2012) or contact networks as mentioned by Rein-
hart. Aldrin, Huseby and Jansen (2015) use a combina-
tion of spatial distances and local contact networks.

In what follows, I focus on spatially continuous self-
exciting point process models for the spread of in-
fectious diseases in human populations. Such models
come with several caveats, on three of which I would
like to elaborate.

Limited Spatio-Temporal Data Resolution

The available spatial resolution of case reports is of-
ten limited by data protection. This constrains the de-
tail with which spatial interaction can be estimated.
“Areal censoring” (e.g., to the postcode level) may
yield events that apparently occurred at the same lo-
cation, which is impossible in simple point processes.
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Equivalently, interval censoring of the infection times
results in concurrently observed events, making it im-
possible to ascertain which infection predates the other.
Furthermore, the situation is complicated by the fact
that event times only correspond to the date of speci-
men sampling or notification to public health authori-
ties. As latent periods and reporting delays differ be-
tween cases, the observed ordering of the events may
not always properly reflect the infection chain.

One way of dealing with tied event times and lo-
cations is to add random jitter with an amount corre-
sponding to the level of censoring in the data, and ide-
ally conduct a sensitivity analysis or use model averag-
ing over several random seeds. Breaking ties will affect
estimates of the triggering function as well as it will
remove spikes in the distribution of rescaled temporal
residuals (see Meyer, Elias and Höhle, 2012, Figure 4).
These are described in Ogata (1988), Section 3.3, and
supplement the spatial diagnostics discussed by Rein-
hart.

The Meaning of Location

Even if the data provided the georeferenced place
of residence of each patient, would that be a suit-
able proxy for the “epicentre”? It may neither be the
place where the individual initially became exposed
nor the location receiving the highest triggering rate
during the infectious period. Nevertheless, it is proba-
bly the best available proxy. A more realistic trigger-
ing function would obviously need to employ social
contacts rather than spatial displacement. This is pos-
sible in the multivariate models for λi(t) above but not
for λ(s, t), as there is no mapping of locations s ∈ X

to contact rates. Using a spatio-temporal point process
model for human infections thus entails the assump-
tion that geographic distance reflects interaction good
enough, which is (at least) supported by the findings
of Brockmann, Hufnagel and Geisel (2006) and Read
et al. (2014).

Underreporting

Public health surveillance data suffer from consider-
able underreporting (Gibbons et al., 2014). The conse-
quence is that the self-exciting model component will
be underestimated while the background process might
partially capture cases caused by unobserved sources.
This is similar to the boundary effects discussed in the
review. Indeed, there is a background process “pro-
ducing new cases from nowhere,” meaning immigra-
tion of infectives from outside the observation region

(e.g., sick tourists or contaminated food) or via anti-
genic drifts. To identify such events, stochastic declus-
tering is also of interest in infectious disease epidemi-
ology, but is less useful in practice because of the bi-
ases from underreporting.

A similar limitation holds for a key epidemiologi-
cal parameter, the basic reproduction number R0, esti-
mated as the space–time integral of the triggering func-
tion. Underreporting and implemented control mea-
sures imply that this estimate is only a lower bound for
the effective reproduction number. So yes, self-exciting
models of infectious disease spread do require careful
interpretation, especially since pathogens in humans
are not nearly as well observable as earthquakes.

SOFTWARE

In synthesizing estimation and inference techniques,
the review covers relevant topics for the analysis of
spatio-temporal point patterns from epidemic phe-
nomena. I found one crucial aspect to be missing
though: software. Providing implementations of sta-
tistical methods or at least the code for the specific
analysis at hand is essential for scientific progress to-
day, as it enables others to reproduce the findings and
use the described approaches in their own data-analysis
pipelines.

Unsurprisingly, most publicly available implemen-
tations of self-exciting point process models are re-
lated to the ETAS model. Several implementations ex-
ist for estimating purely temporal versions, for exam-
ple, the Fortran code etas_solve by Kasahara, Yagi
and Enescu (2016), and the R packages SAPP (The In-
stitute of Statistical Mathematics, 2016), PtProcess
(Harte, 2010), and bayesianETAS (Ross, 2017, see
Section 3.5 of the review). A general-purpose imple-
mentation to estimate and simulate purely spatial clus-
ter process models is provided in the R package spat-
stat (Baddeley and Turner, 2005). The ETAS pack-
age (Jalilian, 2018) provides access to a C/C++ port of
Zhuang’s Fortran routines for stochastic declustering in
spatio-temporal ETAS models. There are two sophisti-
cated software packages, which support both temporal
and spatio-temporal ETAS models: SEDA (Lombardi,
2017) is a Matlab-based GUI (currently documented
to require Mac OS) for Fortran routines employing
simulated annealing for maximum likelihood estima-
tion, and etasFLP (Adelfio and Chiodi, 2015) is an
R package using the estimation approach described in
Section 3.2.2 of the review.

In principle, these ETAS packages could also be
used for nonseismological applications. However, they
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often do not allow for different parametric forms of
the triggering function, and the modified Omori for-
mula is not necessarily applicable in other contexts.
For instance, different formulations have been used in
crime (Section 4.2) and epidemic (Section 4.3) fore-
casting. At least for epidemiological models, the R
package surveillance (Meyer, Held and Höhle,
2017) fills the gap. Apart from the multivariate model
of Höhle (2009), it can also estimate and simulate
the spatio-temporal model of Meyer, Elias and Höhle
(2012) mentioned in the review. Various spatial trig-
gering functions are supported, including Gaussian,
power law, student and (piecewise) constant kernels
(custom forms are possible as well, but will usually
be much slower to estimate). A Newton-type optimizer
with analytical derivatives is used to maximize the log-
likelihood. Efforts have been made to avoid vague ap-
proximations of the contained integrals

∫
X f (s − si)ds

over the polygonal observation region X. Assuming all
these integrals to equal 1 is inappropriate for events
close to the boundary and for heavy-tailed kernels in
general. So we compute these integrals, but use an effi-
cient cubature method for isotropic spatial interaction
functions f , which only requires one-dimensional nu-
merical integration (see Meyer and Held, 2014, Sup-
plement B, and the C implementation available via the
R package polyCub).

CLOSING COMMENT

I hope that Reinhart’s review will be as infectious
as its content and trigger further applications of such
models to epidemic phenomena. Readily available,
well-documented, open-source software facilitates this
process.
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