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Modeling and Inference for Infectious
Disease Dynamics: A Likelihood-Based
Approach
Carles Bretó

Abstract. Likelihood-based statistical inference has been considered in
most scientific fields involving stochastic modeling. This includes infectious
disease dynamics, where scientific understanding can help capture biologi-
cal processes in so-called mechanistic models and their likelihood functions.
However, when the likelihood of such mechanistic models lacks a closed-
form expression, computational burdens are substantial. In this context, al-
gorithmic advances have facilitated likelihood maximization, promoting the
study of novel data-motivated mechanistic models over the last decade. Re-
viewing these models is the focus of this paper. In particular, we highlight
statistical aspects of these models like overdispersion, which is key in the in-
terface between nonlinear infectious disease modeling and data analysis. We
also point out potential directions for further model exploration.

Key words and phrases: Maximum likelihood, iterated filtering, parti-
cle filter, compartment model, Lévy-driven stochastic differential equation,
continuous-time Markov chain, environmental stochasticity.

1. INTRODUCTION

Stochastic models for infectious disease dynamics
often fall somewhere between two extremes: the so-
called phenomenological and mechanistic models, the
latter having proved useful to carry out likelihood-
based statistical analyses. This is a long standing di-
chotomy (see, e.g., Thakur, 1991) related to the so-
called algorithmic and data modeling cultures in statis-
tics (Breiman, 2001): phenomenological models are
flexible and use generic strategies, including nonpara-
metric and regression-like ideas (see, e.g., Unkel et al.,
2012); mechanistic models include population models
of the SIR type (see, e.g., Siettos and Russo, 2013)
and use parameters and functional forms to represent
as many features as data permit of biological processes
thought to be at work. Unveiling such processes might
be attempted using several statistical methods, weak-
nesses and strengths of which have been critically as-
sessed elsewhere (King, Nguyen and Ionides, 2016,
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Fasiolo, Pya and Wood, 2016). Examples of such meth-
ods include nonlinear forecasting (Ellner et al., 1998),
trajectory matching (Kendall et al., 1999) and syn-
thetic likelihood (Wood, 2010). Also, Bayesian options
include approximate Bayesian computation (ABC;
Marjoram et al., 2003) and Particle Markov chain
Monte Carlo (PMCMC; Andrieu, Doucet and Holen-
stein, 2010). A fundamental difference between these
two methods is that ABC relies on summary statistics
and PMCMC uses the full likelihood function. Another
method that can be used to maximize the full likelihood
function is iterated filtering (Ionides, Bretó and King,
2006, Ionides et al., 2011, 2015). Iterated filtering al-
gorithms, unlike Markov chain Monte Carlo (MCMC)
or expectation-maximization (EM) algorithms, avoid
the need for analytic expressions of transition densi-
ties. These expressions become intractable as the com-
plexity of the model increases. Iterated filtering is also
statistically efficient, since it uses the full likelihood.
Likelihoods are also involved in other methods but
these can involve considerations beyond the model of
interest, like the choice of summary statistics in ABC
and synthetic likelihood, or the choice of priors (lead-
ing to heavier computational burdens) in PMCMC.
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These features make iterated filtering algorithms par-
ticularly fitted for likelihood-based analyses of mecha-
nistic infectious disease dynamics (Dobson, 2014).

The main difficulty addressed by iterated filtering al-
gorithms is maximization of mechanistic model like-
lihoods in the absence of analytic solutions. These
are numerical maximization algorithms that have been
implemented with success and affordable computa-
tional costs. Closed-form likelihoods can be derived
for the most basic infectious disease mechanistic mod-
els (e.g., Diekmann, Heesterbeek and Britton, 2013,
Chapter 5.2) and even for more sophisticated models,
as long as groups of individuals involved remain small
(Haber, Longini and Cotsonis, 1988, Becker, 1995).
In general, and for larger populations of interest, the
system will not be fully observed, leading to the use
of numerical optimizers for non-Gaussian likelihoods
of nonlinear, partially observed systems. Multiple al-
gorithms to attempt such optimization have been pro-
posed (see Kantas et al., 2015). Algorithms that have
actually been applied to maximize the likelihood of
time series of infectious disease data include hybrid-
EM algorithms (Yang et al., 2012) and iterated filter-
ing algorithms. Advantages of iterated filtering include
lower computational burdens than comparable alterna-
tives (Bhadra, 2010, Ionides et al., 2015), potential for
more precise results for infectious disease mechanistic
models (Fasiolo, Pya and Wood, 2016), and ease of im-
plementation via the R package pomp (King, Nguyen
and Ionides, 2016, King et al., 2017, R Core Team,
2017), which has been used to analyze a growing body
of infectious disease datasets.

The range of stochastic models considered for in-
fectious diseases has been widened, both in biological
richness and in the nature of stochasticity, thanks to a
great extent to the “plug-and-play” property of iterated
filtering. Plug-and-play algorithms can by definition be
applied to fit dynamic models to data as long as simula-
tion of unobserved variables from these models is pos-
sible (Bretó et al., 2009, He, Ionides and King, 2010).
This has greatly facilitated exploration of variations in
existing models of interest, since it only requires adapt-
ing simulation computer code that is often easy to write
to begin with. The biological aspects of such variations
can be controversial but they have pointed in new di-
rections to be studied in more detail, like high asymp-
tomatic ratios (King et al., 2008). Variations in stochas-
tic nature have been less prone to controversy but can
be technical, like randomizing rates of continuous-time
Markov chains with white noise (Bretó et al., 2009).
These are two examples of exploration of infectious

disease models fostered by the plug-and-play nature of
iterated filtering. The plug-and-play nature of other al-
gorithms (like PMCMC, synthetic likelihood or ABC)
endows them with potential for equally valuable explo-
rations of new infectious disease models. More details
regarding the role of these other algorithms in infec-
tious disease modeling might be found in other contri-
butions to this special issue.

The goal of this paper is to review mechanistic mod-
els that have been explored via iterated filtering algo-
rithms, which we also briefly review, while highlight-
ing statistical aspects of these models. Both implemen-
tation and comparative performance of iterated filtering
algorithms have been recently reviewed in detail from
different perspectives (Fasiolo, Pya and Wood, 2016,
King, Nguyen and Ionides, 2016), so we limit our de-
scription of these algorithms to Figure 2 and a sup-
plement.1 However, these recent reviews give just a
glimpse of the collection of over twenty-five applica-
tions where iterated filtering has been used since its
appearance a decade ago. The models we review rep-
resent different biological mechanisms but, more im-
portantly, they are also different in stochastic nature.
After establishing a common framework (in Section 2)
that encompasses these natures, we review their dif-
ferences (in Sections 3 and 4), which lead us to fo-
cusing on the statistical concept of overdispersion in
infectious disease models (in Section 5). Overdisper-
sion and the unmodeled variability it entails can lead
to overly confident conclusions, for example, caused
by misleadingly small standard errors (McCullagh and
Nelder, 1989). This can be aggravated by severe biases,
which result from nonlinearities that are commonplace
in infectious disease mechanistic models (He, Ionides
and King, 2010). We conclude by pointing out poten-
tial directions for further exploration of infectious dis-
ease mechanistic models (in Section 6).

2. PARTIALLY OBSERVED MARKOV
PROCESS MODELS

The mathematical formulation of all the models we
review is mechanistic (i.e., based on a scientific un-
derstanding of infectious disease dynamics) but varies
widely in stochastic nature. To accommodate this di-
versity, we first introduce notation to describe these

1The supplement (Bretó, 2017) illustrates how iterated filtering
algorithms can be used to perform likelihood-based statistical in-
ference. It also applies recently developed methodology to account
for Monte Carlo noise in confidence intervals derived from profile
likelihoods (Ionides et al., 2017).
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FIG. 1. Example of diagrammatic representation of a mechanistic partially observed Markov process model of the susceptible-infectious-re-
moved-susceptible type. Observed data and demography are also represented. The three boxes highlight a biological disease transmission
mechanism where flows can occur at different rates (represented by arrow labels) between three stages (or compartments): susceptible, in-
fectious and removed (or recovered). To deal with demography (i.e., biological births and deaths), a set of flows to and from a fictitious fourth
demographic stage is also included. Due to partial observation, all data y∗

1:N come from the infectious stage only and at times t1, . . . , tN
only (see Section 2 for details on notation).

models as partially observed Markov process models,
an example of which appears in Figure 1.

A Partially Observed Markov Process (POMP)
model (Ionides et al., 2011), also known as state-
space model or hidden Markov model, consists of a
stochastic process {X(t), t0 ≤ t ∈ T ⊆ R

+} that is un-
observed, except for times t1, . . . , tN at which obser-
vations Y1, . . . , YN are available, and is parameterized
by unknown parameter θ , with all of θ , Yn, and X(t)

taking values in subsets of R
n. Writing Xn = X(tn)

and the collection of observations as Y1:N and assum-
ing that the joint density2 of Y1:N and X0:N exists,
Markovianity of X0:N together with conditional inde-
pendence of observations gives the joint density

(2.1)

fX0:N,Y1:N (x0:N,y1:N ; θ)

= fX0(x0; θ)

N∏
n=1

fXn|Xn−1(xn | xn−1; θ)

· fYn|Xn(yn | xn; θ).

Writing the marginal density of Y1:N as fY1:N (y1:N ; θ)

and the observed data as y∗
1:N , the maximum likelihood

estimate θ̂ maximizes the likelihood function defined
as �(θ) = fY1:N (y∗

1:N ; θ). Inferences based on �(θ), ex-
cept when the system of interest is small or when lin-
ear and Gaussian approximations are appropriate, will
require sophisticated statistical methods. For example,
likelihood maximization may be attempted using iter-

2We use the term density formally to refer to probability density
functions, probability mass functions (i.e., densities with respect to
the counting measure) and to mixed joint functions (i.e., involving
both discrete and continuous marginal distributions).

ated filtering algorithms, which are illustrated in Fig-
ure 2. These algorithms rely on sequential Monte Carlo
algorithms (or particle filters), which are simulation-
based tools that exploit the specific density decomposi-
tion of (2.1). This decomposition is also useful to iden-
tify sources of variability.

Stochasticity in infectious disease dynamics is of-
ten considered to have either a demographic, environ-
mental or measurement error origin (see, e.g., Lande,
Engen and Saether, 2003, Nisbet and Gurney, 1982).
Demographic stochasticity results from events that by
chance affect some individuals in the population but
not others (e.g., becoming or ceasing to be infectious),
playing a major role in smaller populations. Popula-
tion individuals that are infectious are connected to ob-
served data through measurement error. Finally, envi-
ronmental stochasticity affects all individuals equally
(overtaking demographic stochasticity in large popula-
tions) and can result from variability in parameters θ .
In (2.1), demographic variability has often been mod-
eled via fXn|Xn−1 , which aims at representing the scien-
tific understanding and mechanisms of main interest in
applications; measurement error has been modeled via
fYn|Xn , which, compared to fXn|Xn−1 , tends to be cho-
sen on the basis of fewer scientific considerations; and
environmental variability has been modeled via both.
When these choices for fXn|Xn−1 and fYn|Xn are guided
by scientific understanding, we say that the likelihoods
they specify via (2.1) are mechanistic.

3. MECHANISTIC LIKELIHOODS

3.1 Modeling Disease Transmission Via fXn|Xn−1

The transmission models we review aim at represent-
ing mechanisms for how individuals from a population
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Algorithm: Iterated filtering (IF2, Ionides et al., 2015)

input:
Simulator for fX0(x0; θ)

Simulator for fXn|Xn−1(xn | xn−1; θ), n in 1 :N
Evaluator for fYn|Xn(yn | xn; θ), n in 1 :N
Data, y∗

1:N
Number of iterations, M

Number of particles, J

Initial parameter swarm, {�0
j , j in 1 : J }

Perturbation density, hn(θ | ϕ;σ), n in 0 :N
Perturbation sequence, σ1:M

output:
Final parameter swarm, {�M

j , j in 1 : J }

Pseudocode:
For m in 1 :M

Draw �
F,m
0,j ∼ h0(θ | �m−1

j ;σm) for j in 1 : J
Draw X

F,m
0,j ∼ fX0(x0;�F,m

0,j ) for j in 1 : J
For n in 1 :N

Draw �
P,m
n,j ∼ hn(θ | �F,m

n−1,j , σm) for j in 1 : J
Draw X

P,m
n,j ∼ fXn|Xn−1(xn | XF,m

n−1,j ;�P,m
n,j ) for j in 1 : J

Set wm
n,j = fYn|Xn(y

∗
n | XP,m

n,j ;�P,m
n,j ) for j in 1 : J

Draw k1:J with P(kj = i) = wm
n,i · (∑J

j=1 wm
n,j )

−1

Set �
F,m
n,j = �

P,m
n,kj

and X
F,m
n,j = X

P,m
n,kj

for j in 1 : J
End For
Set �m

j = �
F,m
N,j for j in 1 : J

End For

FIG. 2. Iterated filtering algorithms rely on extending a partially observed Markov process model of interest by introducing random
perturbations to the model parameters θ to then explore the original space of θ searching for values that are more likely to have produced
the observed data. Convergence to a maximum likelihood estimate has been established for appropriately constructed procedures that iterate
this search over the parameter space while diminishing the intensity of perturbations (Ionides, Bretó and King, 2006, Ionides et al., 2011,
2015). The role and timeliness of iterated filtering algorithms for infectious disease modeling have recently been pointed out (Dobson,
2014).

progress through compartments (e.g., Jacquez, 1996)
that represent the stages of a disease cycle. To accom-
modate the diverse stochastic natures they can have,
we introduce notation to describe their compartmental
aspects only and postpone details on their stochastic
nature to Sections 3.1.1 through 3.1.4.

We define a compartment model (following closely
Bretó and Ionides, 2011) based on a finite collection of
compartments C and a flow set consisting of compart-
ment pairs between which flow is possible F ⊂ (C×C)

that excludes reflexive flow, that is, the set of pairs

{(c, c) : c ∈ C}. For each pair (i, j) ∈ F , with appro-
priate definitions of integrals (given in Sections 3.1.1
through 3.1.4), we define cumulative flow processes
{Nij (t)} by

Nij (t) =
∫ t

t0

dNij (s),(3.1)

with Nij (t0) = 0, based on which we define compart-
ment model {X(t)} = {Xc(t) : c ∈ C}, representing the
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size of each compartment at time t , by

Xc(t) = Xc(t0) + ∑
(i,c)∈F

Nic(t)

− ∑
(c,j)∈F

Ncj (t).
(3.2)

Different models can be specified via (3.1) often in-
volving instantaneous flow rates ρij (X(t)) that repre-
sent the intensity at which flows occur. Compartment
models {X(t)} need not take all of the full unobserved
process, which might include other unobserved ele-
ments of interest disconnected from the compartments
(as in Sections 4.2 and 6.1).

3.1.1 Ordinary differential equation models. Com-
partment models may be specified in (3.1) as sets of
coupled (or systems) of ordinary differential equations
by defining

dNij (t)

dt
= ρij

(
X(t)

)
Xi(t)

with solution {X(t)}. This kind of deterministic spec-
ification of disease transmission has a long history
(Kermack and McKendrick, 1927). More recently, this
specification of fXn|Xn−1 has been used with iterated
filtering in combination with environmental models
(resulting in the diffusion and stochastic differential
equation models described next).

3.1.2 Diffusion process models. Compartment mod-
els may be specified in (3.1) as diffusion processes by
defining

dNij (t) = ρij

(
X(t)

)
Xi(t) dt + σij

(
X(t)

)
dBij (t)

with solution {X(t)}. Choices for the infinitesimal
standard deviation function σij range from setting it
to zero (to recover ordinary differential equations) to
being proportional to

√
Xi(t) or Xi(t) (as in Ionides,

Bretó and King, 2006, King et al., 2008), a choice that
we revisit in Section 4.1.1.

3.1.3 Stochastic differential equation models driven
by Lévy processes. Compartment models may be spec-
ified in (3.1) as stochastic differential equations driven
by Lévy processes {Lij (t)} by defining

dNij (t) = ρij

(
X(t)

)
Xi(t) dLij (t)

with solution {X(t)}. Analogously to setting
σij (X(t)) = 0 in diffusions, allowing some processes
to be degenerate, that is, Lij (t) = t , specifies deter-
ministic components (as in Laneri et al., 2010, 2015,
Bhadra et al., 2011, Roy et al., 2013, 2015, Martinez
et al., 2016). We revisit these models in the context of
parameter randomization in Section 4.1.

3.1.4 Continuous-time Markov chain models. Com-
partment models may be specified in (3.1) as conti-
nuous-time Markov chain mechanisms {X(t)} im-
plied by the system {N(t)} of coupled, interacting
Markov counting processes {Nij (t)} with transition
rates ρij (x)xi (Brémaud, 1999). These in turn imply
transition probabilities

P
(
Nij (t + h) = nij |N(t) = n

)
= 1 − ρij (x)xih + o(h),

P
(
Nij (t + h) = nij + 1|N(t) = n

)
= ρij (x)xih + o(h),

P
(
Nij (t + h) > nij + 1|N(t) = n

) = o(h),

(3.3)

where the values of x follow from n using (3.2). This
kind of stochastic specification of transmission models
also has a long history (Bartlett, 1960). More recently,
this specification of fXn|Xn−1 has been used with iter-
ated filtering in combination with measurement mod-
els (Camacho et al., 2011, He et al., 2011, 2013, Earn
et al., 2012, Blackwood et al., 2013b, King et al., 2015)
and with both measurement and environmental mod-
els (Bretó et al., 2009, He, Ionides and King, 2010,
Shrestha, King and Rohani, 2011, Shrestha et al., 2013,
2015, Magpantay et al., 2016, King, Nguyen and Ion-
ides, 2016).

3.1.5 Discrete time models. Compartment models
may be specified in (3.1) as discrete time systems re-
sembling the continuous-time Markov chain of the pre-
vious section by specifying difference equations or by
letting Nij (tn+1) − Nij (tn) in (3.2) be random vari-
ables with conditional mean ρij (X(tn))X

i(tn). Vari-
ations on discrete-time specifications include differ-
ent integer-valued distributions (e.g., Poisson, binomial
and negative binomial) and different additional steps
[e.g., susceptible reconstruction in the case of TSIR
models (Grenfell, Bjørnstad and Finkenstadt, 2002)].
This specification of fXn|Xn−1 has been used with iter-
ated filtering in combination with measurement mod-
els (Blackwood et al., 2013a, Blake et al., 2014) and
both measurement and environmental models (Lavine
et al., 2013, Martinez-Bakker, King and Rohani, 2015,
Bakker et al., 2016).

3.2 Modeling Disease Measurement Via fYn|Xn

The measurement models we review are variations
on a binomial sampling mechanism. We describe them
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in a common framework by defining discrete-time pro-
cess {Cn} that cumulates new infections between ob-
servation times, that is,

(3.4) Cn+1 = ∑
(j,I )∈F

NjI (tn+1) − NjI (tn).

3.2.1 Binomial model. In a binomial sampling
mechanism, the Cn individuals are sampled indepen-
dently with equal probability π , that is, fYn|Xn is as-
sumed to be a binomial density [conditional on Cn, as
in Blackwood et al. (2013b) and in Blake et al. (2014)].
This mechanism ties the (conditional) mean and vari-
ance of observations.

3.2.2 Poisson model. Specifying a Poisson density
with parameter πCn [as in Camacho et al. (2011) and
in Shrestha, King and Rohani (2011)] also ties the
observation mean and variance. However, unlike bi-
nomial models, Poisson models have unbounded sup-
port. Extending the support of the measurement model
can provide mechanisms to capture false positive di-
agnoses, an idea developed in more detail in Sec-
tion 6.1. Unbounded supports are ultimately a mod-
eling decision—albeit one that may result in sim-
ulated measurements exceeding the total population
size—that can be accommodated by different statistical
methods. The Poisson model approximates a binomial
mechanism for large Cn and small π and has also been
considered as part of a mixture distribution to produce
a negative binomial model.

3.2.3 Negative binomial model. Specifying a neg-
ative binomial density with mean πCn and variance
πCn + τ 2π2C2

n is more common in applications than
the binomial or Poisson models (Bretó et al., 2009,
Laneri et al., 2010, 2015, Bhadra et al., 2011, He et al.,
2011, 2013, Earn et al., 2012, Roy et al., 2013, 2015,
King et al., 2015, King, Nguyen and Ionides, 2016,
Magpantay et al., 2016, Martinez et al., 2016). Unlike
the binomial and Poisson models, the negative bino-
mial model relaxes the constraint on the observation
mean and variance, as we discuss further in the context
of parameter randomization in Section 4.2.

3.2.4 Gaussian model. Specifying a Gaussian den-
sity matching the mean and approximating the variance
of the binomial mechanism above is also common in
applications. Such Gaussian approximations have been
used both directly or discretizing them by accumulat-
ing the density on the nonnegative integers (allowing
for zero inflated counts, as in He, Ionides and King,
2010, Martinez-Bakker, King and Rohani, 2015). The

models we review depart from a genuine binomial vari-
ance πCn(1 − π) in different ways. Some address
the constraint on the mean and variance by using one
or even two additional parameters, that is, letting the
Gaussian variance be πCnτ (Shrestha et al., 2013,
2015) or πCnτ1 + τ2 (Blackwood et al., 2013a); some
include a quadratic term, that is, πCn(1 − π) + τC2

n

(Lavine et al., 2013, He, Ionides and King, 2010); and
some include only such quadratic term (Ionides, Bretó
and King, 2006, King et al., 2008, Martinez-Bakker,
King and Rohani, 2015, Bakker et al., 2016). We re-
visit these choices in the context of parameter random-
ization in Section 4.2.

4. ENVIRONMENTAL MODELS

The environmental models we review aim at repre-
senting changes that affect the entire population. Such
changes can be modeled by randomizing parameters
of the transmission and measurement models, an ap-
proach that can be linked to overdispersion, which we
address in more detail in Sections 5 and 6. While we
distinguish between measurement and transmission en-
vironments, only the latter seem to have been con-
sidered in the literature tackling theoretical aspects of
environmental stochasticity (e.g., Bretó and Ionides,
2011, Braumann, 2010, Bretó et al., 2009, Varughese
and Fatti, 2008, Marion, Renshaw and Gibson, 2000,
Engen, Bakke and Islam, 1998).

4.1 Models for Noisy Parameters in
Transmission Models

The models for noisy parameters in transmission
models that we review aim at capturing white noise,
that is, changes in parameters that are independent over
disjoint intervals of time.

4.1.1 Differential equation models. Additive Gaus-
sian white noise can be introduced in rates of the ordi-
nary differential equations of Section 3.1.1 by combin-
ing those ordinary differential equations

dNij (t)

dt
= ρij

(
X(t)

)
Xi(t)

with diffusions of the form

dρij (t) = ρ̄ij

(
X(t)

)
dt + σij

(
X(t)

)
dW(t)

to define a new diffusion

dNij (t) = ρ̄ij

(
X(t)

)
Xi(t) dt + σij

(
X(t)

)
Xi(t) dW(t).

This approach results in an infinitesimal variance pro-
portional to the square of the initial population size



LIKELIHOOD-BASED INFERENCE FOR INFECTIOUS DISEASE DYNAMICS 63

Xi(t) [while proportionality to Xi(t) would represent
demographic stochasticity, as defined in Engen, Bakke
and Islam, 1998]. In fact, this is the approach that led to
formulating the diffusion models cited in Section 3.1.2,
as well as the models cited in Section 3.1.3 (where mul-
tiplicative gamma white noise is introduced instead).
Environmental noise can be introduced analogously in
stochastic differential equation models.

4.1.2 Continuous-time Markov chain models. Mul-
tiplicative Lévy white noise can be introduced in rates
ρij (x)xi of the continuous-time Markov chains of Sec-
tion 3.1.4 by combining those rates, which lead to tran-
sition probabilities

P
(
Nij (t +h) = nij +1|N(t) = n

) = ρij (x)xih+o(h),

with gamma white noise

ξ(t) = d�(t)/dt

to define a new continuous-time Markov chain based
on new randomized rates ρij (x)xiξ(t) (as in Bretó
et al., 2009, Bretó and Ionides, 2011). That this ap-
proach results in an infinitesimal variance proportional
to the square of the initial population size is not as im-
mediate as with the differential equations of the previ-
ous section, so we postpone arguing so in more detail
to Section 5. These models were introduced in Bretó
et al. (2009) and subsequently used with iterated fil-
tering in He, Ionides and King (2010), Shrestha, King
and Rohani (2011), Shrestha et al. (2013, 2015), and
Magpantay et al. (2016).

4.1.3 Discrete time models. Multiplicative gamma
white noise can be introduced in parameters of the dis-
crete time models of Section 3.1.5 as stochastic differ-
ence equations or as a mixture of the original random
variables with a sequence of independent gamma ran-
dom variables to define new discrete-time models with
conditional variances of increments appropriately scal-
ing as desired with either the initial population size or
with its square (as done with iterated filtering in Lavine
et al., 2013, Martinez-Bakker, King and Rohani, 2015,
Bakker et al., 2016).

4.2 Models for Noisy Parameters in
Measurement Models

For measurement models, introducing noise by ran-
domizing parameters needs to be reconciled with our
assumption of conditional independence of observa-
tions from Section 2. Such independence can be easily
accommodated when introducing noise that is white,
that is, changes in parameters that are independent be-

tween observation times. However, this white noise
nature of the noisy parameters of measurement mod-
els has rarely been explicitly pointed out. Since estab-
lishing a white noise nature is a useful starting point
to consider nonwhite noises, we introduce some no-
tation. This notation introduces an additional hierar-
chical layer—and additional complexity that can dis-
tract from the goals we seek by introducing it. Nev-
ertheless, we consider this notation focusing on the
two things it facilitates: on one hand, establishing that
the models we review are indeed introducing white
noise; and, on the other, our discussion of alternative
noises in Section 6. Noise in the parameters of the
measurement model can be introduced by including it
in the unobserved process. Consider splitting the un-
observed process {X(t)} = {(X(1)(t),X(2)(t))} so that
{X(1)(t)} models the unobserved process in the ab-
sence of noise in parameters of the measurement model
and that {X(2)(t)} models such noise. Note that in-
cluding additional noise in the unobserved process in
this way increases the sequential Monte Carlo vari-
ability and should be avoided if possible, for example,
when introducing white noise. Assuming that {X(2)

n } is
a strict white noise sequence (i.e., all pairs X

(2)
k and

X
(2)
m are independent) and that {X(2)

n } and {X(1)
n } are

independent, we can write the likelihood as

fY1:N =
∫ ∫

fX0:N ,Y1:N dx
(2)
0:N dx

(1)
0:N

=
∫

f
X

(1)
0:N ,Y1:N dx

(1)
0:N,

where

f
X

(1)
0:N ,Y1:N = f

X
(1)
0

N∏
n=1

f
X

(1)
n |X(1)

n−1
f

Yn|X(1)
n

,(4.1)

f
X

(1)
0

=
∫

fX0 dx
(2)
0 ,

f
Yn|X(1)

n
=

∫
fYn,Xn

f
X

(1)
n

dx(2)
n

=
∫ fYn|XnfX

(1)
n |X(2)

n
f

X
(2)
n

f
X

(1)
n

dx(2)
n(4.2)

=
∫

fYn|XnfX
(2)
n

dx(2)
n .

If the stated independence assumptions hold, joint den-
sity (4.1) is an alternative to the original joint den-
sity (2.1). This alternative density gives the same like-
lihood function while avoiding introducing noise for
measurement parameters in the unobserved process.
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This, in turn, enables more efficient implementations
of sequential Monte Carlo tools. However, this gain in
efficiency comes at the cost of a closed-form expres-
sion for measurement density (4.2). A celebrated ex-
ample of such gain through closed-form measurement
densities is the gamma Poisson hierarchy, that is, spec-
ifying fYn|Xn as a conditional Poisson density with rate
�Cn and f

X
(2)
n

as a gamma density for �. This hier-
archy gives for (4.2) the celebrated negative binomial
density of Section 3.2.3. As done in most references
of that section, the negative binomial model can be
specified directly instead of as a gamma Poisson hi-
erarchy. Here, in order to help make our point that this
negative binomial model corresponds to environmental
measurement noise that is white, we have emphasized
the hierarchical representation.

Hierarchies where parameters of the measurement
models of Section 3.2 are randomized can be speci-
fied to relax moment constraints. A two-layer binomial
hierarchy for f

Yn|X(1)
n

can be specified as the binomial
mechanism of (3.4) in the top layer and a bottom layer
with a white noise sequence of success probabilities
�n = X

(2)
n following some distribution with support

the interval (0,1) and E[�n] = π . Observations Yn

have variances (conditional on Cn)

(4.3) Cnπ(1 − π) + (
C2

n − Cn

)
V [�n],

where the first term is the V [Yn|Cn] when V [�n] = 0
and the second term is nonnegative (and equal to zero
if and only if Cn takes values zero or one). Expression
(4.3) can both help interpret parameter estimates from
the multiple flavors of Gaussian approximations de-
scribed in Section 3.2.4 and help assess evidence from
data regarding the appropriateness of randomized bi-
nomial mechanisms, for which V [�] in (4.3) should be
estimated to fall inside the interval (0,1). Correspond-
ing conditional variances can be useful for the same
purposes if other hierarchies are used. A Poisson hier-
archy can be specified with a Poisson density with pa-
rameter �nCn and a white noise sequence of �n with
nonnegative support and E[�n] = π . Observations Yn

then have conditional variances

πCn + C2
nπ2(

E
[
�2

n

]
/π2 − 1

)
,

where again the first term is the V [Yn|Cn] when
V [�n] = 0 and the second term is nonnegative (and
equal to zero if and only if Cn takes values zero or
one). We say that these binomial and Poisson hierar-
chies are overdispersed, meaning that they allow for
more dispersion that the constrained original models.

5. OVERDISPERSION IN TRANSMISSION MODELS

Overdispersion and the potential biases and distor-
tions on confidence levels it entails can be addressed
more effectively in the context of a theoretical frame-
work. Such theoretical considerations on overdisper-
sion in transmission models become more complex
than the hierarchies or mixtures of distributions in-
volved in the measurement models of the previous sec-
tion. This complexity results in part from accounting
for continuous time, which leads to stochastic calculus
and related ideas, including simultaneous transitions
and change of time.

Dispersion constraints of the Markov chain transmis-
sion models from Section 3.1.4 {X(t)} are inherited
from the counting processes involved {N(t)}, which
have equal infinitesimal means and variances. These
constraints necessarily follow from the combination of
not allowing for simultaneous transitions and having
exponential inter-event times (Bretó et al., 2009, Bretó
and Ionides, 2011). These two conditions still hold
for mixed processes (Snyder and Miller, 1991, Daley
and Vere-Jones, 2003) where parameters are held con-
stant over time at some random initial value. Such
mixing produces differences between trajectories but
not within them (see, e.g., Hougaard, Lee and Whit-
more, 1997) and hence does not produce overdisper-
sion (Bretó and Ionides, 2011). The assumption of ex-
ponential inter-event times has been questioned (Lloyd,
2001) and an alternative approach consisting in chain-
ing artificial sequences of compartments has been ex-
plored (Wearing, Rohani and Keeling, 2005, Keeling
and Rohani, 2008). Alternatively, one might explore
the possibility of some transitions occurring at the
same time (possibly as an approximation to models
with clustered transitions relative to exponential inter-
event times).

Simultaneous transitions can occur under some con-
ditions (see, e.g., Bretó, 2012b, Kozubowski and Pod-
górski, 2009, Lee and Whitmore, 1993) when time
is changed by a stochastic process or clock (see,
e.g., Bochner, 1949, Barndorff-Nielsen and Shiryaev,
2010). In particular, simultaneous transitions arise nat-
urally when individual transitions are accumulated and
released at once at discontinuity points of paths of the
new time, as happens when time is changed by a Pois-
son clock (Bretó, 2014b) or by the gamma clock of
Section 4.1. Although such simultaneous transitions
are necessary for overdispersion of continuous-time
Markov chains (Bretó and Ionides, 2011), overdisper-
sion can be described in different terms, for example,
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in terms of randomized transition rates, as in the fol-
lowing example.

Consider a continuous-time Markov chain defined
by (3.3) with a single compartment (of initial size x)
and a single possible transition (out of the compart-
ment). The corresponding univariate counting process
{N(t)} counts individuals who, at rate λ(n) = (x−n)ρ,
have left the compartment by time t . {N(t)} has in-
crements that follow a binomial distribution (Renshaw,
1991) and satisfies Kolmogorov’s Backward Differen-
tial System (KBDS; Brémaud, 1999). Since {N(t)} is
simple (i.e., it increases by no more than one count
at a time; Daley and Vere-Jones, 2003), this KBDS
is uniquely specified by λ(n). Now define a new pro-
cess {N�(t)} for which the same KBDS holds but with
λ(n) replaced by a new, noisy rate λ(n)ξ(t), that is, the
original rate is multiplied by gamma continuous-time
white noise ξ(t) = d�(t)/dt . This multiplication de-
fines a stochastic version of the original KBDS that, af-
ter appropriately defining stochastic integration against
gamma processes, is also satisfied by time-changed
process {N(�(t))}. Writing H = �(t + h) − �(t), the
increment N�(t + h) − N�(t) has variance conditional
on N�(t) = n� given by(

x − n�)2
V

[
e−ρH ] + (

x − n�)E[
e−ρH (

1 − e−ρH )]
,

and a Taylor series expansion of the moment gener-
ating function of the gamma distributed H confirms
that neither of these two terms vanishes infinitesimally.
Note that these terms might vanish if the time change
had continuous paths or if rates were randomized by
the derivative of paths of such time change (e.g., ran-
domized by stationary Ornstein–Uhlenbeck processes,
as in Nisbet and Gurney, 1982, Marion, Renshaw and
Gibson, 2000, Varughese and Fatti, 2008). This prop-
erty of this univariate binomial death process can be
extended to the multivariate compartment models used
in applications, for which transition probabilities are
no longer binomially distributed. To do this, instead of
changing time of the now multivariate Markov chain,
multivariate models can be defined directly as systems
of interacting univariate time-changed counting pro-
cesses (as in Bretó, 2012a).

The preceding theoretical considerations regarding
overdispersion in transmission models were largely
motivated by the data analysis in Bretó et al. (2009).
This illustrates how data-based evidence obtained from
infectious disease mechanistic modeling and plug-and-
play methodology can guide and point in directions in
which to pursue theoretical contributions.

6. DISCUSSION

Overdispersion has been studied from multiple per-
spectives, including applications involving count data,
applied probability involving stochastic processes of
counts, and statistical modeling involving both. The
study of overdispersion in the context of infectious dis-
ease dynamics has been and can be further facilitated
by the synergy between mechanistic models and iter-
ated filtering algorithms.

The interaction between plug-and-play algorithms
and mechanistic modeling is similar to a mutualistic
symbiosis: mechanistic modeling often involves de-
scribing mechanisms as sequences of actions or events
that result in change. Such descriptions naturally trans-
late into simulation algorithms that in turn are the ba-
sis of plug-and-play methods. In return, plug-and-play
methods extract evidence from data that might sug-
gest changes to the initially hypothesized mechanisms
and, accordingly, to the simulation algorithms. For the
transmission models described in Section 3.1, exact
(or at least accurate) simulation is often possible using
appropriate numerical algorithms, like Runge–Kutta
methods for ordinary differential equations, Euler-type
algorithms for diffusions and Lévy-driven differen-
tial equations, and exact (Gillespie, 1977) or approx-
imate algorithms (Gillespie, 2001) for continuous-time
Markov chains. Such synergy exists between mecha-
nistic modeling and iterated filtering but it does not
address issues that in general affect likelihood maxi-
mization or sequential Monte Carlo, including rough
surfaces (Fasiolo, Pya and Wood, 2016), small mea-
surement variances, system dimensionality and param-
eter identifiability. This synergy can be exploited to fur-
ther explore overdispersion in measurement models.

6.1 Overdispersion in Measurement Models

Approaching overdispersion in measurement models
by randomizing parameters as in Section 4.2 can be
complemented by other model variations that exploit
plug-and-play methodology. Accounting for overdis-
persion in measurement models can facilitate separat-
ing measurement variability from the rest of variability
sources. It has been pointed out that failing to sepa-
rate these sources entails dangers, both in the context of
population dynamics in general (Nadeem et al., 2016)
and of infectious disease dynamics in particular (see,
e.g., Fujiwara, 2009, Gibbons et al., 2014). Moreover,
measurement models have been receiving more atten-
tion motivated by the access to massive datasets related
to infectious diseases in recent times (Huang, 2016).
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Here, we focus on two variations on the models of Sec-
tion 3.2 for noisy parameters in measurement models
that seem to have been so far unexplored: dependent
environmental noise and diagnosis error.

Temporal dependence in the environment affecting
measurements can be easily implemented in the POMP
and plug-and-play frameworks, for example, as in Sec-
tion 4.2 but replacing the white noise model for {X(2)

n }
by some other models. Environmental dependence has
received attention in the population dynamics litera-
ture but only regarding transmission models (Fujiwara,
2009, Lande, Engen and Saether, 2003), for example,
in the form of random-walk rates (Renshaw, 1991).
Random-walk dependence in measurement models has
been considered in other fields as well (see, e.g., Bretó,
2014a, Müller and Petalas, 2010). Random walks are a
form of strong dependence. As another example for ex-
treme environmental dependence, consider a random-
ized binomial measurement model with �0 following
some distribution and �n = �0 for all n. Other forms
of dependence have also been considered in other
fields, for example, integer ARMA (or INARMA) pro-
cesses (McKenzie, 1985, Scotto, Weiß and Gouveia,
2015), which illustrate that there is a range of depen-
dence levels compatible with binomial (or Poisson) ob-
servation marginal distributions.

Diagnosis error can be incorporated into the bino-
mial sampling mechanism of Section 3.2. This results
in a mechanism that, like negative binomial models
and unlike alternative binomial mixtures (like the beta
binomial), assigns a nonzero likelihood to observing
more cases than new infectious individuals between
observation times (as does, e.g., the additive constant in
the measurement variance of Blackwood et al., 2013a).
To account for false negative diagnoses, let π be the
probability of an infectious individual being sampled
and correctly diagnosed (as opposed to that of sim-
ply being sampled). False positive diagnoses might
be accounted for by letting observations Yn be the
sum of (conditionally independent) false (Fn) and true
(Tn) positive diagnoses. If Fn|Cn,Tn ∼ Poisson(λ) and
Tn|Cn,Fn ∼ Binomial(Cn,π), this approach leads to
convenient closed-form expressions

P(Yn = y|Cn = c)

=
y∑

t=0

I{t ≤ c}
(
c

t

)
πt(1 − π)c−t e

−λλ(y−t)

(y − t)!
which are nonzero for c < y. This mechanism is an
analogy at the measurement level of immigration of

infectious from outside the population at the trans-
mission level, albeit it lacking dynamic effects. This
example illustrates the potential for further explo-
ration based on scientific understanding of measure-
ment models and overdispersion.
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illustration of how to apply IF2 for an infectious dis-
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