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Combining Survey Data with Other Data
Sources
Sharon L. Lohr and Trivellore E. Raghunathan

Abstract. Collecting data using probability samples can be expensive, and
response rates for many household surveys are decreasing. The increasing
availability of large data sources opens new opportunities for statisticians to
use the information in survey data more efficiently by combining survey data
with information from these other sources. We review some of the work done
to date on statistical methods for combining information from multiple data
sources, discuss the limitations and challenges for different methods that have
been proposed, and describe research that is needed for combining survey
estimates.
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1. INTRODUCTION

How can we collect data that give accurate and
timely estimates of quantities of interest, and assess
the suitability of those estimates for answering re-
search and policy questions? Probability sampling the-
ory was developed beginning in the 1920s and 1930s
(Neyman, 1934; Duncan and Shelton, 1992) to pro-
vide methods for collecting information efficiently and
assessing the error arising from sampling. The early
books and papers on probability sampling contrasted
it with “judgment sampling,” in which selection of
units depends on an interviewer’s or expert’s judgment,
and with “convenience sampling,” in which the sam-
ple consists of whatever units are conveniently at hand.
Many of the probability surveys in current use were
launched decades ago, and when launched were of-
ten the only reliable source of information on the topic
studied.

Probability samples are often tailored to answer the
research and policy questions of interest but face a
number of challenges. Response rates are decreasing
worldwide and the response rate for a typical tele-
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phone survey is now less than 10% (Kohut et al.,
2012)—far from the 95% response rate for mail sur-
veys thought to be achievable by Deming (1950),
page 35. Even high-quality face-to-face surveys such
as the U.S. National Health Interview Survey (NHIS)
have declining response rates, and the NHIS house-
hold response rate decreased from 92% in 1997 to 70%
in 2015 (National Center for Health Statistics, 2016),
with additional nonresponse occurring among individ-
ual persons within sampled households. Investigations
to date have not found strong relationships between
the response rate and bias, at least for some statistics
(Groves, 2006), but the declining response rates have
contributed to higher costs for data collection. The
increased expense of conducting probability samples
limits the sample sizes. Hence, reliable estimates for
subpopulations of interest may require multiple years
of data, if they can be calculated at all, and the esti-
mates may be out of date when they are produced.

Parallel to these developments in the probability
sampling arena, large amounts of data are now avail-
able in many forms. Traditional administrative sources
such as the U.S. Decennial Census, tax records, or lists
of recipients of social services continue to be avail-
able. Road cameras and satellites provide streams of in-
formation about traffic patterns and movements. Elec-
tronic health records contain the medical history and
diagnosed conditions of large parts of the population.
Police agencies post lists of crimes reported to them—
sometimes within a day of the reporting. Social media
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such as Facebook and Twitter capture expressed senti-
ments of the participants, and internet search engines
track trending search items. Cellular telephone records
provide locations of individuals and details of call lo-
cations and durations. Credit card records and shopper
loyalty cards capture information on financial transac-
tions. Web crawling software gathers information from
web pages. Much of this information can be gathered
faster and cheaper than data from a probability sample.
The large sample sizes of these data sets can provide
finer detail on subpopulations than a typical probabil-
ity sample. Citro (2014) has emphasized the need to
rely on multiple data sources—not just data from tra-
ditional probability samples—for producing statistics.

The field of statistics now faces opportunities (and,
of course, challenges) in developing methods and
frameworks to combine survey and nonsurvey data
sources to produce estimates, while maintaining a
probabilistic framework for drawing inferences of high
quality and rigor. Such developments are important be-
cause the data sources differ in their quality and suit-
ability for answering research questions, and many of
the inexpensive data sources provide convenience sam-
ples. The set of income tax records gives a census of the
entities filing taxes in a country; however, some entries
in tax returns may be incorrect and the records do not
include unreported income or nonfiling entities. The
tax records also do not contain information on behav-
ioral variables that may be of interest to researchers.
Persons without health insurance are underrepresented
in electronic health records. Social media capture the
expressed views of persons who use the platform, but
do not represent nonusers. Administrative records and
large convenient data sets might not have the informa-
tion needed for statistical purposes.

We review statistical methods that have been pro-
posed for combining information from multiple proba-
bility samples and other sources to answer research and
societal questions. All sources have advantages and de-
ficiencies, and it is desired to leverage the advantages
and reduce the deficiencies as much as possible. This
goal accords with Deming’s (1950), page 2, holistic
view of sampling: “Sampling is not mere substitution
of a partial coverage for a total coverage. Sampling is
the science and art of controlling and measuring the
reliability of useful statistical information through the
theory of probability.” We summarize each method,
highlight its potential gains and drawbacks, and assess
the work done to date with respect to the goals of (1) in-
creasing the precision, timeliness and granularity of es-
timates and (2) providing accurate estimates of uncer-
tainty.

Probability samples have long used information
from other sources whenever possible. Stratification
and balanced sampling use auxiliary information in
the design, while poststratification and regression esti-
mation use auxiliary information to improve precision
of estimates and to attempt to compensate for nonre-
sponse and undercoverage. Section 2 briefly reviews
these methods and establishes notation.

Sometimes the information from a survey can be
augmented through linking individual records from the
survey respondents with other data sets, as described in
Section 3. Such linkage requires record identifiers that
can be used to match records across sources. Record
linkage can be thought of as imputing the auxiliary in-
formation from the linked records. Even when records
are not linked, models developed on a high-quality data
source can be used to impute information for responses
of interest in other sources, and these methods are de-
scribed in Section 4.

In other situations, individual records cannot or
should not be linked because of insufficient informa-
tion, privacy concerns, or lack of overlap among data
sources. Many data sources report aggregate statistics
and do not release individual records. In these situa-
tions, summary statistics can be calculated separately
from each source and then combined, often by taking a
weighted average of the summary statistics. Section 5
summarizes multiple frame survey methods used to ag-
gregate estimates across data sources.

Sections 6 and 7 describe hierarchical models that
can be used to combine estimates across studies. Small
area (also called small domain) estimation methods
borrow strength from administrative data to obtain es-
timates in subpopulations where the sample size from
the probability sample is too small to produce reli-
able estimates. Many small area methods combine the
data from the survey with predictions from a regression
model using covariates from the administrative data,
often using a hierarchical model in which the devia-
tion of an area mean from the overall mean is repre-
sented by a random effect. Hierarchical models are also
used for combining data sources, where the individual
records from each data source are nested within data
sources.

There are many potential advantages to using mul-
tiple data sources. These include being able to obtain
information on more parts of the population with finer
detail on subpopulations. Using administrative or sen-
sor data can result in substantial cost savings. An addi-
tional advantage is being able to use multiple sources in
survey design. Section 8 discusses using multiple data
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sources to improve sampling frames and make the de-
sign of the entire data collection effort more efficient.

At the same time, there are also challenges for com-
bining the information. Section 9 describes some of the
statistical research needed for combining data sources.
We recommend a modular approach, in which different
methods may be used with different subpopulations,
reflecting the availability of information.

2. MULTIPLE DATA SOURCES IN DESIGN AND
CALIBRATION

Most probability samples use information from mul-
tiple data sources in the design and estimation as part
of standard survey practice. The sampling frame may
be constructed using information from a census, and
variables in the frame can be used to stratify the sam-
ple and determine selection probabilities. A university
conducting a survey of its students would have demo-
graphic information and information on major and aca-
demic performance for every student. Using the frame
information in design allows better control of the sam-
ple, for example, by specifying a predetermined num-
ber of students from each academic division.

A probability sampling design assigns a probability
P(S) to each potential sample S that can be selected
from the finite population, and these probabilities serve
as the basis for inference. The probability that unit i is
included in the sample is πi = P(i ∈ S), and the design
weight is di = 1/πi . Unit i in the sample is considered
to represent di units in the population, so that the pop-
ulation total of a characteristic y can be estimated by∑

i∈S diyi .
Calibration and poststratification, reviewed in

Särndal (2007) and Brick (2013), use information from
an external data source in the estimation. A vector
of auxiliary variables xi is known for each unit, i, in
the sample, and the external data source is assumed
to provide the exact value of the population totals for
those variables, denoted X. These control totals will be
known if the sampling frame has the value of xi for ev-
ery unit in the population, as in a survey of university
students, or may alternatively be obtained from an in-
dependent external source such as a population census.
Calibration constructs adjusted weights wi that sat-
isfy the calibration constraints

∑
i∈S wixi = X while

minimizing a distance function between the adjusted
weights wi and the design weights di . Poststratification
is a special case of calibration, in which the auxiliary
variables are indicators for poststrata such as combina-
tions of age, race, and sex. After the poststratification,

the survey estimate for the number of persons in each
age/race/sex cell is forced to agree with the control to-
tal for that cell.

Calibration, or other weight adjustment methods
such as raking (Deville, Särndal and Sautory, 1993)
or inverse propensity weighting (Rosenbaum and Ru-
bin, 1983; Lee and Valliant, 2009; Valliant and Dever,
2011), are often used to adjust for nonresponse or un-
dercoverage. The calibration constraints require that
estimated population totals for the x variables, using
the respondents to the survey, equal the external con-
trol totals X: the calibration removes the bias in the
calibration variables. It is hoped that the calibration
will remove bias for other variables, too, but that hope
is sometimes unfounded. Kohut et al. (2012), for ex-
ample, found that estimates of civic engagement from
low-response-rate surveys are higher than correspond-
ing estimates from high-quality surveys, indicating that
the weighting adjustments do not remove bias for these
variables in the low-response-rate surveys. Calibration
and other weighting adjustments are also sometimes
used to attempt to adjust for bias from convenience
samples (Baker et al., 2013). In this case, in the ab-
sence of known inclusion probabilities, the initial de-
sign weights are set to 1 and all weight variation comes
from the calibration. Again, it is hoped that calibra-
tion removes the self-selection bias, although there is
evidence that calibration may be less successful in re-
ducing bias for nonprobability samples (Yeager et al.,
2011).

The advantages of using external data sources in
design and estimation are well known. Stratification
almost always increases precision and allows better
control of sample sizes for subpopulations. When the
response rate is 100 percent, calibration also usually
increases precision. When there is nonresponse, cali-
bration and other weight adjustment methods remove
or reduce bias in the x variables used in the calibration,
and it is hoped that they reduce nonresponse bias in
other variables as well.

These methods also have disadvantages if the ex-
ternal data sources have errors. A frame constructed
from a data source that omits some of the population
will have undercoverage. If that same frame is used to
provide the control totals for the calibration, then the
weight adjustments for the undercovered subpopula-
tion will be too small. Control totals from independent
sources may also have undercoverage or other errors.
The NHIS, which asks respondents about their cellu-
lar and landline telephone usage, is often used to cali-
brate dual frame telephone surveys, discussed in Sec-
tion 5. Yet the NHIS is itself a sample with sampling
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error and potential nonresponse bias, and the errors in
the calibration totals introduce additional uncertainty
into the estimates. Renssen and Nieuwenbroek (1997)
discussed calibrating two surveys to each other using
variables common to both surveys.

When there is nonresponse, the properties of estima-
tors calculated using the calibration weights depend on
how well the calibration model captures the structure
of the population or the response mechanism. Most
published survey estimates report standard errors that
are calculated under the very strong assumption that
the calibration has removed all of the bias. If that as-
sumption is wrong, then the standard errors understate
the uncertainty of the estimates.

3. COMBINING INFORMATION FROM INDIVIDUAL
RECORDS

In some cases, data records for individuals can be
composited from different sources. This can be done
to reduce burden for survey respondents, to fill data
gaps, or to check accuracy of information. Record link-
age, also known as data matching or entity resolution,
merges records from different sources that are believed
to belong to the same entity such as a person, house-
hold, or business. We give two recent examples.

The Canadian Income Survey informed respondents
that Statistics Canada planned to combine the house-
hold’s survey information with tax data (Statistics
Canada, 2014). The questionnaire for the survey could
therefore omit many of the income questions that had
been in previous surveys, reducing the length of the
questionnaire and allowing deeper exploration of other
topics such as employment, housing, and disability.
The information from tax returns was also used to ad-
just for nonresponse through calibration. This is an ex-
ample of exact or deterministic record linkage (DRL),
so called not because the method is always error-free
but because the linked records agree on a set of char-
acteristics (in this case, tax identification number) that
is deemed to determine unique linkage.

Zolas et al. (2015) combined data from university ad-
ministrative records on graduate students who received
research funding with confidential survey information
housed at the Census Bureau. Lacking a unique iden-
tifier across all sources, they used probabilistic record
linkage (PRL, Fellegi and Sunter, 1969) to link per-
sons in the university databases with Social Security
Administration records and Census Bureau informa-
tion by name, address and date of birth. This linkage
then allowed the researchers to study the employment

outcomes of the graduate students in the university
databases. PRL methods typically calculate a similarity
score for pairs of prospective matches using the pattern
of agreements, disagreements, and near-agreements
among the variables used in linking. A record from
source A is linked with a record from source B if
the similarity score exceeds a predetermined thresh-
old. A comprehensive review of PRL methods is be-
yond the scope of this paper, and we refer the reader
to the books of Herzog, Scheuren and Winkler (2007),
Christen (2012), and Harron, Goldstein and Dibben
(2016) for details of how similarity scores may be cal-
culated.

False matches or missed matches can occur in ei-
ther DRL or PRL when the linkage variables do not
uniquely identify entities. Records may have typo-
graphical errors or variations (Robert may be the same
person as Bob), be out of date, or have insufficient in-
formation for unique linkage (multiple persons may
have the same name and date of birth, or date of birth
information may be missing). Zolas et al. (2015) failed
to match 20% of the doctoral recipients in the partic-
ipating universities. Even small amounts of error in
linkage can bias results (Bohensky et al., 2010): for ex-
ample, graduate students who cannot be linked may be
less likely to have found employment. Winkler (2014)
reviewed recent research on accounting for linkage er-
ror in statistical analyses of linked data.

Bayesian record linkage methods calculate the pos-
terior probability that two records match. The uncer-
tainty about the linkage in the posterior distribution
can then be propagated in other analyses. Steorts, Hall
and Fienberg (2016) reviewed Bayesian linkage re-
search and considered a formulation in which records
from each data set are linked to latent “true” individu-
als. Under the assumption that the data sets are condi-
tionally independent given the latent individuals, they
calculated the posterior distributions of linkages with
the latent individuals, which then allowed computation
of linkage probabilities among the different data sets
that preserve transitivity (i.e., if A matches B and B
matches C, then A matches C).

Record linkage can be thought of as a form of im-
putation, in which the data fields from source B fill in
those missing fields for the linked record in source A
(Goldstein, Harron and Wade, 2012). In the Canadian
Income Survey, the tax records supply the information
on income that is no longer collected in the question-
naire.

Statistical matching, sometimes called data fusion,
may be done when individual records cannot be linked.
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Records, or groups of records, from source B are
matched to similar records from source A using vari-
ables common to both sources such as demographic in-
formation. For example, source A might have informa-
tion on heart disease for one set of persons and source
B might have information on nutritional intake for a
different set of persons, but both sources have infor-
mation on each person’s age, sex, race, ethnicity, and
education. By matching records from source A with
records from source B that have similar age, sex, race,
ethnicity, and education, the analyst can explore rela-
tionships between nutritional intake and heart disease.
Correlational relationships between the demographic
variables and nutritional intake in source B, and be-
tween the demographic variables and heart disease in
source A, are used to make inferences about the re-
lationship between nutritional intake and health char-
acteristics (Rodgers, 1984; Moriarity and Scheuren,
2001). Of course, such an analysis requires strong as-
sumptions to be made about the comparability of the
data sets and the nature of the relationship between
nutritional intake and heart disease. A second type of
data fusion involves using information from one source
to impute variables into another source (Rässler, 2002)
and this will be discussed in more detail in Section 4.

When records can be linked across sources with a
high degree of accuracy, the linked data sets can pro-
vide information on many more variables than would
be available from any of the data sources by them-
selves, and this allows researchers to explore multivari-
ate relationships among these extra variables. Record
linkage methods can also be used to augment the num-
ber of records in the combined data set, if records that
cannot be linked are deemed to be separate entities.

However, it is often difficult to link records accu-
rately, especially when there is little identifying in-
formation in the data files. The creation of linked
databases also raises concerns about privacy and in-
formed consent, and these issues will be discussed fur-
ther in Section 9.

4. IMPUTATION

Combining information from multiple data sources
naturally fits within the missing data framework given
that not all variables are typically measured in every
data set. Thus, a standard missing data pattern is ob-
tained when the data sets are concatenated. In addition,
many variables in each data set may also be subject to
item missing data. Given this scenario, it is not surpris-
ing that an imputation-based approach offers a distinct

advantage in creating estimates based on combining in-
formation from multiple data sources.

In this approach, variables that are missing from a
data source are “filled in,” or imputed. Many tech-
niques are available for filling in the missing values
(Durrant, 2009; Andridge and Little, 2010; Carpenter
and Kenward, 2012), and the goal of all of these meth-
ods is to use information available in the survey and
other sources to accurately predict missing items. Most
of the applications of imputation for combining infor-
mation across sources have relied on multivariate mod-
els to predict and then impute the missing items. Mod-
els developed on one data source may be used to im-
pute missing variables in other sources. Alternatively,
all records may be concatenated into one large data set
and all missing items in the concatenated data may be
imputed using one multivariate model or a sequence of
regression models.

There are many advantages to being able to impute
the missing items. The primary advantages of impu-
tation are the abilities to augment the amount of in-
formation available for analysis, and to produce data
sets without “holes” in them. Suppose that Survey A
provides data on x and y, Study B provides data on
y and z, and administrative data provide information
about x and z. An imputation model making use of
the bivariate relationships estimable from the individ-
ual sources can provide information about the relation-
ship among all three variables. Clearly, combining data
from these sources provides a means for inferring be-
yond the scope of each individual study.

Kim and Rao (2012) imputed a variable of interest
y in a large survey that does not measure y directly
but that does measure covariates x. A second, smaller,
survey measures both x and y, and a regression model
predicting y as a function of x is fit to the data in this
survey. That model is then applied to the x variables in
the large survey to obtain imputed values for y. These
imputed values are then used together with the weights
from the large survey to estimate the population total
for y; the standard error of the estimate depends on the
sampling variability from the large survey and on the
lack of fit of the regression model. This model has the
strong assumptions that the x variables for the two sur-
veys measure the same quantity (i.e., there is no mea-
surement error due to mode effects or other sources of
incomparability discussed below), and that the regres-
sion model developed on data from the small survey
applies to the large survey.

Gelman, King and Liu (1998) used multiple impu-
tation to combine information from a series of cross-
sectional surveys where some questions are not asked
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in some surveys. The particular problem involved com-
bining data from 51 election polls conducted during the
six months prior to the election. The goal was to as-
sess the changes in vote intentions over time for dif-
ferent subgroups based on gender, age, party affilia-
tions, etc. Using a hierarchical model to incorporate
study differences, a fully Bayesian approach was used
to draw values from the posterior predictive distribu-
tion of not asked or not answered items conditional on
the observed data.

Raghunathan (2006) and Schenker, Raghunathan
and Bondarenko (2010) used multiple imputation to
correct for possible bias in self-reports of health con-
ditions (such as diabetes, hypertension, or hyperlipi-
demia) in the NHIS using data from the National
Health and Nutrition Examination Survey (NHANES)
which collects data using both self-reports and clinical
measures. An added advantage of this approach is that
the national estimates of undiagnosed health conditions
borrow strength from both surveys.

Another example is given in He, Landrum and Za-
slavsky (2014), where data from surveys, medical
records, Medicare claim data, and cancer registries
were combined to study hospice use in terminal can-
cer patients. All data sources had missing data and the
multiple imputation relied on observed data from all
sources.

There are number of challenges when implement-
ing multiple imputation approach for combining in-
formation from multiple survey data sources. For ex-
ample, surveys usually involve stratification, clustering
and weighting for selection and nonresponse. Though
each survey may represent the same or a similar pop-
ulation, the complex survey design differences have to
be taken into consideration in deriving the combined
estimates. The recent work of Dong, Elliott and Raghu-
nathan (2014a, 2014b) proposed “uncomplexing” the
survey data by simulating populations from each sur-
vey data and then combining using the superpopulation
modeling framework. Zhou, Elliott and Raghunathan
(2015) extended the approach when variables in each
survey data are subject to item missing values.

Estimates based on combining information from
multiple data sources are subject to errors due to in-
comparability as well as issues in modeling of those er-
rors. Early references to address the issue of compara-
bility in pooling data are Bancroft (1944) and Mosteller
(1948). The latter is perhaps the first to discuss the
bias-variance trade-off in pooling data and lay out con-
ditions for deciding whether to pool or not. Here, we
raise five potential sources of incomparability that need

to be considered. These are raised in the context of im-
putation, but also apply to other methods for combining
data sources.

A first source of potential incomparability is the dif-
ferences in the types of respondents and the sources
of respondent information. For example, in a house-
hold survey, the respondents may be interviewed face-
to-face and report health conditions based on memory
and recall. The data from the other source may be pro-
vided by physicians who may be consulting medical
records to check for health conditions.

A second potential source of incomparability may
arise due to mode of the interview. For example, one
survey may be based on random digit dialing, the sec-
ond survey may be based on face-to-face interviews,
and the third survey may begin with a telephone mode
but switch over to face-to-face interviews on a subset.
Based on the effect of mode on the measurement of
outcomes, pooling may introduce bias, if there is one
preferred “gold standard” approach for collecting the
information. In the absence of such a gold standard,
combining data may be a better reflection of the popu-
lation quantity since it accounts for differences among
sources.

A third source of potential incomparability may
arise due to survey contexts. For example, nation-
ally representative data collected by a federal agency
that is well known and well publicized may have dif-
ferent response error properties than a survey con-
ducted through a reputable institution that is not as well
known. The advance letter that is usually sent may also
affect the measurement error properties.

A fourth source of potential incomparability may
arise from differences in the survey design. For exam-
ple, NHIS collects information in an interview setting
whereas NHANES collects information in an interview
setting but with an advance knowledge provided to the
respondent that he/she may be selected for medical ex-
amination and specimen collection. Recalling abilities
of the respondents may differ in these two survey set-
tings.

A final source of potential incomparability may arise
due to different wordings of the questions asking the
same information. Other issues relate to placement of
the questions in the survey instrument, protocol differ-
ences for the interviewer prompts, and additional ques-
tionnaire features.

These and other sources of incomparability af-
fect combining information from multiple survey data
sources. If nonsurvey data sources are also brought into
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the mix, a lack of a probability survey framework to as-
sess representativeness can be an additional source of
incomparability.

The above discussion may appear to discourage
combining information from multiple sources. On the
contrary, the advantage of combining information is
the ability to address analytic problems beyond the
scope of any single survey, and imputation can pro-
vide a richness of data unavailable from any single
source. Direct estimation techniques may not be ap-
plicable and some modeling approach may have to
be used to properly harness and pool the information.
There are no assumption-free approaches in statistics.
The modeling framework provides a means for incor-
porating the study differences and one or more issues
of incomparability in an explicit manner. An explicit
modeling framework provides transparency. With lim-
ited data and complicated modeling, it is important to
consider issues such as covariate selection, features to
be incorporated, collection of auxiliary variables, and
incorporation of model uncertainty.

5. MULTIPLE FRAME METHODS

In a multiple frame survey, samples are selected from
each of F sampling frames and estimates from the
samples are combined. A sample is selected from each
of the frames, and the estimates from the different sam-
ples are combined. The different frames often include
different subsets of the population. For example, frame
A might cover the entire population of interest, such
as the frame for the face-to-face NHIS; frame B might
be a set of electronic medical records; frame C might
consist of tax records. Some frames might not be well
defined in advance, as would occur if the sample from
frame D consists of volunteers responding to an inter-
net survey. For some frames, such as electronic medical
records or tax records, the frame itself may have the in-
formation of interest so that the entire data set may be
used rather than sampling from it.

Multiple frame survey methods have several poten-
tial advantages. If each data source includes only a part
of the population of interest, using multiple sources as
frames can give better coverage of the population. Tele-
phone surveys often take one sample from a frame of
landline telephone numbers and an independent sam-
ple from a frame of cellular telephone numbers; using
just the landline (or cellular) frame would exclude per-
sons with exclusively cellular (or landline) telephone
service from the survey. Multiple frame surveys can
increase precision for little additional cost if data col-
lection is inexpensive for some of the frames. This is

particularly beneficial if the population being studied
is a small component of the general population. Data
collection has already been done for electronic med-
ical records and tax records, and using them can in-
crease the precision for the parts of the population they
contain. The large sample size from these sources also
provides more information on subpopulations such as
persons with rare disorders or taxpayers who hold tax-
exempt bonds. Lesser, Newton and Yang (2008) inves-
tigated use of lists of individuals belonging to disability
organizations as sampling frames in their study of im-
proving public transportation access for persons with
disabilities. While these lists do not include all persons
with disabilities, they reduce screening costs that are
needed if respondents to a random digit dialing survey
are asked questions to determine if they are in the popu-
lation of interest. However, multiple frame surveys are
more complicated than single frame surveys, and must
be carefully analyzed to take advantage of the potential
increased efficiency and to avoid bias.

The easiest way to use multiple frames, if feasible, is
to create a single frame from the different sources be-
fore sampling by concatenating the frames and remov-
ing duplicates. This is not always possible, however:
for a dual frame cellular/landline telephone survey,
typically the sampling frames would consist of land-
line and cellular telephone numbers, and one would
not know before sampling whether a person associ-
ated with a cellular telephone number also has access
to landline service. If a single frame cannot be con-
structed using the frame information, then an alterna-
tive is to take independent samples from the different
frames and then combine the data or estimates after
sampling.

In multiple frame methods, the union of the frames is
assumed to be the population of interest. The overlap of
the frames creates overlap sets1 consisting of the pop-
ulation units accessible through different combinations
of the frames. Using the notation in Hartley (1974),
overlap set a consists of the population units in frame
A but none of the other frames; set ab consists of the
units in frames A and B but not C or D; set abcd con-
sists of the units that could be accessed through each
of the four frames. The overlap sets are disjoint and
together comprise all of the population units that can
be reached through at least one of the frames. If each
of the F frames consists of the same set of population

1The multiple frame literature typically calls these domains
rather than overlap sets; however, in this paper we use the term
domain to denote a subpopulation of interest.
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units, as would happen when all frames cover the entire
population, there will be one overlap set. If all frames
overlap but none has complete coverage, there can be
up to 2F −1 overlap sets. With F = 2 frames, there can
be 3 overlap sets: units in frame A but not in B (set a),
units in frame B but not in A (set b), and units in both
(set ab).

Lohr and Rao (2006) and Metcalf and Scott (2009)
summarized estimators for combining information
from the F samples taken from the frames. The com-
plications come in because units in more than one
frame have multiple chances to be selected; in a dual
frame survey, the units in overlap set ab can be sam-
pled from either or both frames. If we simply concate-
nated the data sets without adjusting for the multiplic-
ity, then the individuals in set ab would be overrepre-
sented in the combined samples. The population total
in overlap set k can be estimated by a weighted average
of the estimated population totals from the individual
frames that have observations in overlap set k:

Ŷk = ∑

f ∈k

λkf Ŷkf ,(5.1)

where
∑

f ∈k λkf = 1. Then the overall population total

is estimated by summing the pieces Ŷk from the distinct
overlap sets.

The λkf ’s can be thought of as adjusting the respon-
dents’ weights for the multiplicity that occurs because
units can appear in multiple frames. The estimate Ŷkf

from each source is assumed to be approximately un-
biased after calibration has been performed. The rel-
ative importance λkf assigned to source f may be
fixed in advance (it is common to use λ = 1/2 for the
overlap set ab in dual frame surveys), based on the
surveys’ selection probabilities (Bankier, 1986; Kalton
and Anderson, 1986), or determined so as to mini-
mize the variance of the aggregated estimate (Hartley,
1962; Skinner and Rao, 1996). Chauvet and de Marsac
(2014) studied estimators for two-stage dual frame sur-
veys where the two surveys share some of the same
primary sampling units.

To apply the appropriate weighting factor λkf to
each sampled unit, one must be able to identify which
overlap set it belongs to, or at the very least one
must know how many sampling frames it belongs to
(Mecatti, 2007; Rao and Wu, 2010). We know that a
respondent to the NHIS is in the frame for that survey,
but do we know whether he or she is represented in the
set of electronic health records? In other words, how
many times could the same person be represented in the
combined data sets? We do not need to be able to link

records across surveys, but we do need to know how
many chances an individual has to be in the data set.
The overlap sets for a multiple frame survey are often
determined by asking respondents about their member-
ship in other frames, and that sometimes introduces
measurement error into the determination. For exam-
ple, respondents to a dual frame cellular/landline tele-
phone survey are usually asked about their relative us-
age of cellular and landline telephones to receive calls,
but that determination may be imprecise. Lohr (2011)
showed that dual frame methods can have less preci-
sion than using estimates from just one data source if
individuals are misclassified in the wrong overlap set,
and she and Stokes and Lin (2015) considered esti-
mators that account for misclassification bias in dual
frame surveys.

The additional complexity of multiple frame surveys
has implications for nonresponse adjustments. Brick
et al. (2011) discussed choosing the compositing fac-
tor λ to reduce nonresponse bias. It is often assumed
that the weights from all samples are individually pre-
adjusted for nonresponse using methods such as those
described in Section 2; if desired, the weights can
be calibrated again after the estimators are combined
(Ranalli et al., 2016).

Much of the literature on multiple frame surveys as-
sumes that the survey conducted from each frame asks
the same questions, and that estimates from the overlap
sets from different sources measure the same quantity.
In a dual frame survey, this means that the expected
value of the estimated population total from overlap
set ab is the same for the estimator from frame A
and the estimator from frame B. But the sources of
survey incomparability discussed in Section 4 apply
to multiple frame surveys as well. If the sample se-
lected from frame A is collected using different sur-
vey questions, modes, or procedures than the sample
from frame B, the estimated population totals in ab

may differ because of the procedures or nonsampling
error rather than because of sampling variability. These
differences are of particular concern for the sources in
which data collection is inexpensive, because the es-
timates may have different measurement error proper-
ties than the estimates from the expensive sources. It
is important that these nonsampling errors be included
in the measures of uncertainty about the survey esti-
mates. Typically, it is recommended that the variance
of the multiple-frame estimate for an overlap set k be
estimated by summing the variances λ2

kf V (Ŷkf ) for the
components of the weighted sum in that set, but this
formula accounts only for sampling error and does not
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consider differences that may be due to different survey
procedures or questions.

One method for evaluating potential bias is to use
multiple frame methods on the different subpopula-
tions, called domains, of the surveys. These domains
can be distinct from the overlap sets. For example, in
a dual frame telephone survey, the overlap sets would
be persons with a landline phone only, persons with
a cell phone only, and persons with both landline and
cell phone. The domains studied could be different ge-
ographic regions or demographic subgroups. This al-
lows the analyst to compare estimates from the differ-
ent surveys in those domains. Merkouris (2004, 2010)
used regression methods to adjust two surveys being
combined, using the common variables from the sur-
veys. Merkouris (2010) used regression estimators to
combine information from multiple surveys and ob-
tain small domain estimators. He considered the case
in which there are multiple surveys of the same pop-
ulation, and calibrated the surveys to each other using
variables that are common to both surveys.

Lohr and Brick (2012) considered dual frame esti-
mation when one of the sources is considered to be
unbiased but with small sample sizes in domains. The
other data sources have larger sample sizes but poten-
tially have differential bias across domains. The rela-
tive contributions of sources toward each domain esti-
mator depend on the relative variances and the amount
of differential bias. These methods allowed the differ-
ences among estimators that arose from nonsampling
error to be included in the mean squared error estimates
for the domains.

Multiple frame survey methods have great potential
for combining information from data sources that are
measuring the same quantities. As with all the other
methods discussed in this paper, however, they have
strong assumptions about the comparability of the data
sources, and extending the methods to relax those as-
sumptions is a promising area for research.

6. SMALL AREA ESTIMATION

A pressing need for many policy makers is obtaining
estimates of important quantities at small geographic
levels such as counties or states, or for a subgroup
based on certain demographic characteristics (such as
gender, age or race). Many national surveys are in-
adequate for constructing such estimates because the
sample size in many domains of interest is too small,
or may even be zero. Combining data from multiple
sources provides the only meaningful way to develop

estimates for domains, or areas, with small sample
sizes.

Small area estimation methods combine information
from a survey with auxiliary information from admin-
istrative data sources to calculate domain-level statis-
tics. Fay and Herriot (1979) estimated the mean θd

in domain d using a weighted average of estimates
from two sources. The first estimate is ȳd , which is
the estimated mean in domain d calculated directly
from the survey. For many small domains, ȳd is based
on a small sample size and is imprecise; for some
domains such as large states, however, ȳd may have
high precision. The second estimate uses a regression
model predicting θd from domain-level covariates xd

that are available from an administrative data source
to obtain prediction θ̂d . The Fay–Herriot estimator of
θd is λdȳd + (1 − λd)θ̂d , where λd ∈ [0,1] is larger if
V (ȳd) is small or if the regression model does not fit
the data well (and, therefore, does not provide accurate
predictions). The Fay–Herriot estimator is thus of the
same form as (5.1), combining the direct estimate ȳd

from the survey with a regression prediction based on
covariates from an administrative data source. A two-
stage model underlies the Fay–Herriot estimator. First,
the area-level means from the survey are assumed to
follow a distribution with mean θd and sampling vari-
ance ψd , where ψd is estimated using the survey de-
sign and weights. The second stage relates the θd ’s to
the external-source covariate information through a re-
gression model, θd = x′

dβ + vd , where vd represents
the error in prediction from using the regression model
and is assumed to have mean 0.

The U.S. Small Area Income and Poverty Estimates
(SAIPE) program (United States Census Bureau, 2016)
uses a variant of this method to provide annual poverty
statistics for states, counties and school districts. The
direct estimates are one-year estimates from the Amer-
ican Community Survey (ACS), and the regression pre-
dictions use covariates from the Decennial Census,
from tax records collected by the Internal Revenue
Service, from the Supplemental Nutrition Assistance
Program, and from population estimates. The use of
the administrative data sources allows the U.S. Census
Bureau to publish poverty statistics for every county
and school district each year, even though the sample
sizes for many of these areas are too small for the ACS
estimate to be published.

When estimates are produced for nested areas of dif-
ferent sizes, it is often desirable to adjust estimates at
finer levels of geography so that they aggregate to es-
timates at coarser levels of geography. In general, the
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estimates for larger geographic areas are thought to be
more reliable because they have a larger sample size
from the survey and rely less on the model-based pre-
dictions which are based on model assumptions. The
SAIPE program state-level estimates of the number
of children in poverty are ratio-adjusted so that they
sum to the national estimate of number of children in
poverty that is calculated from the ACS. The county
estimates within a state are also ratio-adjusted to sum
to the state estimate, and the school district estimates
are similarly benchmarked to the county estimates. In
this way, the estimated counts of children in poverty are
consistent across school districts, counties, and states,
and the nation as a whole. Datta et al. (2011) reviewed
benchmarking methods for small area estimates, and
proposed a class of Bayesian small area estimators that
constrain a weighted average of the posterior means
to equal prespecified estimates. Pfeffermann and Tiller
(2006) and Hyndman, Lee and Wang (2016) described
methods that may be used to benchmark time series.

The Fay–Herriot model makes use of statistics com-
puted for each area using the sampling weights from
the survey, and uses individual records only through the
area-level summaries. A unit-level small area model
(Battese, Harter and Fuller, 1988) may be used when
covariates are available for each population unit. A hi-
erarchical model is used for the individual responses of
survey participant j in area d:

ydj = x′
djβ + vd + edj ,

where the area-specific random effects vd are assumed
to have mean 0 and variance σ 2

v , and the individual-
level errors edj are assumed to have mean 0 and vari-
ance σ 2

e . In this hierarchical model, individual respon-
dents from an area are considered to be nested in that
area. Rao and Molina (2015) provided a comprehen-
sive description of models commonly used in small
area estimation, including empirical Bayes, hierarchi-
cal Bayes, time series and spatial models. For most of
these models, the x information is assumed to be mea-
sured exactly, and different methods are needed if the
x information comes from another survey or a source
with differential measurement error.

Ybarra and Lohr (2008) used a Fay–Herriot-type
model, accounting for measurement error in the co-
variates, to estimate mean body mass index (BMI)
for age/race/sex domains. NHANES calculates BMI
from direct measurements of height and weight, and
thus is thought to be more accurate than the measure
of BMI from the larger NHIS that is calculated from

self-reported weight and height. The measurement er-
ror models accounted for the sampling error in NHIS
both in the calculation of λd (which was smaller if the
NHIS estimate had higher variance) and in the mean
squared error of the small area estimates. You, Datta
and Maples (2014) used a bivariate Fay–Herriot model
to incorporate the error from multiple sources when es-
timating disability.

Elliott and Davis (2005) and Raghunathan et al.
(2007) further developed small area estimation by
combining data from two surveys, NHIS and the Be-
havioral Risk Factor Surveillance System (BRFSS).
Elliott and Davis (2005) used a model-assisted frame-
work to match the respondents in the two surveys us-
ing propensity score methods and then used the com-
bined data to develop Fay–Herriot-type estimates. On
the other hand, Raghunathan et al. (2007) used an ex-
plicit Bayesian hierarchical model framework to model
NHIS, which was assumed to provide unbiased es-
timates for telephone and nontelephone households,
but for only a few counties. The NHIS was com-
bined with BRFSS data, which provides biased esti-
mates for the telephone households but for all the coun-
ties. Using auxiliary county and state level covariates,
the estimands (the population-size-weighted county-
level population means of telephone and nontelephone
households) were simulated from their posterior distri-
bution using Markov Chain Monte Carlo methods.

The arcsine square root transformation was applied
to the county level direct estimates, in part to sim-
plify the modelling by stabilizing the variances of the
outcomes. However, the theory behind the variance
stabilizing properties of the arcsine square root trans-
formation is a large-sample theory, and thus the trans-
formation might be less effective for some of the coun-
ties in the project that have sparse samples. To avoid
making large sample approximations, the logit-normal
model was also used which resulted in similar es-
timates but with an enormous increase in computa-
tional time and complexity. Current work is consid-
ering small area estimates by combining three differ-
ent subpopulations within each area: households with
a landline (with or without cell phones), nontelephone
households, and cell-only households. Chen, Wake-
field and Lumely (2014) reduced the computational
complexity for Bayesian hierarchical small-area mod-
els by using an integrated nested Laplace approxima-
tion. Mercer et al. (2014) incorporated spatial random
effects in models estimating smoking prevalence at the
zip code level from BRFSS, and compared different
model structures in a simulation study.
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Small area methods use multiple sources to augment
the information available at the domain level. As with
imputation and multiple frame methods, this augmen-
tation requires the use of model assumptions and we re-
fer the reader to Rao and Molina (2015) for discussion
of model misspecification in small area estimation.

7. HIERARCHICAL MODELS FOR COMBINING
DATA SOURCES

In the hierarchical models used in Section 6 to ob-
tain small area estimates, random effect terms are used
to model the means of different domains. Hierarchical
models can also be used to synthesize data from mul-
tiple sources: in this usage, random effect terms repre-
sent the means from different data sources, and indi-
vidual data records from the studies (if available) are
nested in the studies. The problem is structurally sim-
ilar to that of random effects models used for meta-
analysis (Sutton and Higgins, 2008), in which sum-
mary statistics from different studies are assumed to
come from a normal distribution with mean θ , and
a weighted average of the summary statistics from
the different studies is used to estimate the underly-
ing effect size of the treatment. The weights may be
inversely proportional to variances, or experts’ judg-
ments may be used to assess the quality of the stud-
ies and downweight studies with lower quality (United
States General Accounting Office, 1992; Turner et al.,
2000; Greenland, 2005).

A number of models have been proposed that com-
bine summary statistics—usually means—from differ-
ent studies. Methods that rely upon summary statistics
do not require access to the individual data records that
comprise the studies, and thus can be used when access
to the individual data records is restricted. The mean
and its estimated variance for the subpopulation of in-
terest is calculated separately for each data source us-
ing the design and the nonresponse-adjusted weights
for that source.

Manzi et al. (2011) used a Bayesian analysis to es-
timate θd , the smoking prevalence in local area (do-
main) d , for each of 48 local areas in England. Preva-
lence estimates were available from seven different
studies, but these studies differed in methodology and
quality, and there was concern that estimates from
some of the studies could be biased. The estimated
prevalence for domain d from data source j , udj , is
assumed to follow the model

udj = θd + δdj + edj ,(7.1)

where the bias δdj is assumed to follow a normal dis-
tribution with mean �j and variance τ 2

j . The error
term edj is the sampling error for the estimate udj ,
assumed to have mean 0 and variance σ 2

dj , where the
variance is calculated from the sample design. Note
that the model in (7.1) is similar to the Fay–Herriot
model for small area estimation, with the additional
feature that the model-based deviation component is
allowed to have mean �j rather than mean 0. Many
of the properties of the estimates of θd depend on the
constraints put on the mean bias �j from source j .
Manzi et al. (2011) adopted a vague prior distribution
for the bias �j , and constrained the mean prevalence
over all domains to equal the prevalence estimate from
the UK General Household Survey, which was con-
sidered to be highly accurate. Alternatively, one of the
sources could be considered to be a gold standard with
zero bias. Turner et al. (2009) discussed a framework
for eliciting prior information on bias for multiple data
sources.

Many hierarchical models that treat different studies
as random effects incorporate the between-source vari-
ability into the measures of uncertainty. Thus, the esti-
mate of smoking prevalence obtained from combining
multiple studies may have larger standard error than an
estimate constructed from one probability sample. The
standard error of the estimate from a single probability
sample includes the within-survey error, while the stan-
dard error of the estimate obtained by pooling surveys
also includes the between-survey error.

Wang et al. (2012), Nandram, Berg and Barboza
(2014), and Cruze (2015) discussed hierarchical
Bayesian methods for combining information from
multiple repeated surveys to obtain benchmarked es-
timates of state and regional crop yields in the United
States. The quantity of interest is the true annual yield
in year t , denoted as μt , and it is desired to estimate
μt at different time points in the growing season. The
first survey takes monthly field measurements, includ-
ing acres planted, from a sample of sites in states that
are the top producers for the crop being studied. The
second survey is a monthly national interview survey
asking farmers to estimate their expected yields for a
range of crops. The measurements from the first and
second surveys are taken throughout the growing sea-
son. Estimates of μt derived from these two sources
tend to be biased; however, the biases are assumed to
be consistent across years, and depend only on num-
ber of months before harvest. The third national survey
occurs after harvest, and asks farmers about yield of
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different commodities as well as other quantities. Be-
cause the third survey has large sample size and oc-
curs after harvest, it is considered the gold standard for
yield estimates—but it is not available for making pre-
harvest estimates in the current year. The model uses
the historical relationship between the gold standard
estimate and the monthly estimates of crop yield from
the other two surveys, so that the accruing information
from the first two surveys can be used to update the
forecast yield μt for the current year. The estimated
crop yields for month m, year t , and survey j are as-
sumed to be normally distributed with mean given by
μt plus a bias term for the first two surveys that varies
by survey and month. The bias term is assumed to be
zero for the gold standard survey. The posterior dis-
tribution of μt for the current year is calculated by
conditioning on the data available at the time of the
forecast and including covariates such as weather in-
formation. This model uses the estimates of bias from
the first and second surveys from previous years to ad-
just the current-year forecast for those biases. The pos-
terior mean for crop yield is a weighted average of the
bias-corrected estimates from the first and second sur-
veys, the information from the third survey when avail-
able, and predictions using covariate information, with
higher weights assigned to more precise sources. This
methodology allows biased surveys to be used to pro-
duce more accurate and timely estimates of crop yield,
along with measures of uncertainty.

The models discussed above combine summary
statistics to improve the precision of estimates. Other
studies have combined individual records with aggre-
gated statistics through a hierarchical model. Wakefield
and Salway (2001) presented a framework for using
aggregated data, with attention to potential bias com-
ing from variability of covariates in the different ar-
eas; Wakefield (2004) argued that sometimes informa-
tive priors are needed when fitting hierarchical models
using aggregated data. Jackson, Best and Richardson
(2008) used a hierarchical logistic model to study the
risk of hospital admission for heart and circulatory dis-
ease. They had individual-level data on risk-behavior
and socioeconomic covariates, and the outcome of hos-
pital admission from the Health Survey for England;
individual-level data on covariates from the UK cen-
sus; and aggregate counts of hospitalization, and so-
cioeconomic covariates, at the ward and district level.
The individual-level logistic model had terms for area-
level covariates; the model for aggregate-level data re-
lied on the summary statistics for different areas as well
as the within-area variability in covariates.

Finucane et al. (2014) combined information using
a hierarchical Bayesian framework to estimate trends
in mean systolic blood pressure for different countries.
They had surveys and other data sources, of varying
quality, from almost 200 countries. Some data sources
contained individual records, while others only had
summary statistics; some were rigorous national prob-
ability samples with high response rates, while others
were less representative community studies. The hi-
erarchical model used the estimated mean and stan-
dard deviation from each data source and year as in-
put. Random effects terms captured the study-level het-
erogeneity. Finucane et al. (2014) used an informative
prior distribution to account for the quality of the data
sources; they constrained the variances of the differ-
ent terms so that national probability samples were
assumed to have lower model variance than regional
studies, which in turn had lower model variance than
community studies. This did not model the bias explic-
itly, but resulted in the community studies that were
thought to be less reliable having less influence on
the estimates of health characteristics. Finucane et al.
(2015) used related methodology to estimate the distri-
bution of child malnutrition for different countries.

The malaria atlas project (Bhatt et al., 2015) em-
ployed a Bayesian hierarchical model to study the
infection prevalence of the malaria-causing parasite
Plasmodium falciparum in sub-Saharan Africa from
2000 to 2015. Data sources included community-level
measurements of the parasite rate from published lit-
erature (see http://www.map.ox.ac.uk/explorer/), na-
tional household surveys, and historical records that
provided environmental covariates (such as tempera-
ture, surface wetness, and population) at a 5 km · 5 km
spatial resolution. Spatial and temporal correlations
were included in the model through a Matérn covari-
ance function and first-order autoregressive terms. This
model allowed the investigators to include uncertainty
that arose from small sample sizes, information on ob-
served clinical incidence rates, and the estimated pa-
rameters in the posterior distribution predicting preva-
lence.

The Global Burden of Disease Study used similar
hierarchical Bayesian models to combine data from
thousands of epidemiological sources as well as avail-
able national surveys in approximately 200 countries
in order to study levels and trends of disease inci-
dence, prevalence, and mortality (Vos et al., 2015;
Wang et al., 2016). The hierarchical Bayesian pop-
ulation reconstruction method described by Wheldon
et al. (2016) reconciled census counts with population

http://www.map.ox.ac.uk/explorer/
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projections based on vital rates. The prior information
came from expert opinion about the relative error of the
data sources, and the methodology provided a mecha-
nism for assessing biases in the different data sources.

Sweeting et al. (2008) used hierarchical models (see
also Ades and Sutton, 2006) to evaluate the consis-
tency of data sources (one capture-recapture study on
intravenous drug users, four national household sur-
veys asking about drug use, medical clinic data, blood
donation records, and testing data) for estimating the
prevalence of hepatitis C. The model included param-
eters for the bias from each sources. They re-estimated
the model, leaving each data source out in turn, to in-
vestigate whether omitting sources changed the esti-
mates.

Although it does not use an explicit hierarchical
model, Brick’s (2015) design-based framework for
compositing multiple surveys is related to this work.
Each source is weight-adjusted, using poststratifica-
tion or inverse propensity weighting, and the variability
among sources is used to estimate the variance of the
mean estimated from the sources.

Strauss et al. (2001) studied hierarchical models
to estimate the relationship between residential lead
exposure and children’s blood lead levels. NHANES
provided information on blood lead concentrations,
but not exposure; the U.S. Department of Housing
and Urban Development (HUD) National Survey on
Lead-Based Paint in Housing had exposure informa-
tion but no information on lead levels in children.
They used a third source that related lead exposure and
blood lead concentration (but only for Rochester, New
York). An additional complication occurred because
the Rochester study measured lead exposure differently
than the HUD study. The authors assumed that the true
value of the lead exposure level was a latent variable,
and modeled the Rochester and HUD lead exposure us-
ing covariates available in both sources. Adopting the
strong assumption that the exposure/blood lead rela-
tionship found in Rochester held nationally, the model
allowed the researchers to predict a national distribu-
tion of blood lead in children.

There has been a great deal of work in biostatistics
on pooling information from different studies. Pocock
(1976), Raghunathan (1991), and Prentice et al. (1992)
pooled information from a randomized trial with retro-
spective data from historical controls, using Bayesian
methods to model potential bias in the historical con-
trols. Stuart (2010) reviewed research on methods that
may be used to match treatment and control groups
across multiple sources. Dugoff, Schuler and Stuart

(2014) extended propensity-based matching methods
to complex surveys.

One challenge when combining individual records
from different sources is how to treat the survey
weights from individual sources (Rao et al., 2008).
When summary statistics are combined, the individual-
source survey weights are used to calculate the means
for each domain and then a weighted average is taken
of these means. When combining individual records
across data sources, two sets of weights are used:
(1) the weights used to generalize each survey to its
population, described in Section 2, which are based
on the inverse of the selection probabilities with ad-
justments for nonresponse and calibration; and (2) the
relative contribution of each individual source toward
the combined estimate. In multiple frame methods, the
weights within each overlap set are multiplied by the
value of λ for that frame and overlap set to account for
the multiplicity. A similar method could be used with
hierarchical models, but more research on this topic
is needed. Korn and Graubard (1999), Chapter 8, dis-
cussed the calculation of weights when pooling multi-
ple surveys.

Hierarchical models have many advantages for com-
bining data. As with imputation methods, they provide
a transparent model framework for combining the in-
formation with explicit assumptions. The model as-
sumptions can be strong, however, and the measures
of uncertainty, while accounting for variability among
sources, often do not account for potential model defi-
ciencies.

8. DESIGNING STUDIES TO LEVERAGE MULTIPLE
DATA SOURCES

The increasing availability of multiple data sources
opens up new options for survey design. As described
in Section 5, data sources may have information on dif-
ferent but overlapping parts of the population. Elec-
tronic medical records might provide information on
persons who have used certain medical services, but
other sources are needed to provide information about
the health characteristics of persons who have not used
those medical services. A data source may provide ac-
curate information for some populations, but may be
thought to have bias for other subpopulations.

With multiple sources available, the goal of the de-
sign is to leverage the strengths of each source to pro-
vide an accurate picture of the population and of sub-
populations of interest. In this section, we consider the
situation in which administrative data sources are avail-
able for some subpopulations and it is desired to use
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those sources when designing a probability sample that
will (1) provide a check on the accuracy of the other
sources for variables of interest and (2) provide ac-
curate information on subpopulations that are under-
represented in the administrative sources. There is a
danger that all administrative sources may undercover
the same subpopulations: for example, persons without
health insurance may be missing from electronic health
records and from insurance records. The survey design
needs to capture the subpopulations underrepresented
in other sources.

The administrative data sources may be used in sev-
eral ways during the design process. First, they may
be used when constructing the frame. Section 5 dis-
cussed combining estimates from multiple frame sur-
veys when the information could not be consolidated
prior to sampling. But of course in some situations, the
information from the sources can be linked and consol-
idated to form a better sampling frame with rich aux-
iliary information. This auxiliary information may be
used to improve the efficiency of the stratification of
the sample, or may be used in conjunction with bal-
anced sampling (Valliant, Dorfman and Royall, 2000).
This also provides higher quality information for sur-
veys of particular subpopulations. If it is desired to take
a survey of persons with asthma, the data sources may
provide better information for screening eligibility of
the sample.

A second use of the information from other sources
is to provide contextual variables for the survey.
Nachman and Parker (2012) linked respondents from
the NHIS to information from the U.S. Environmental
Protection Agency AirData system to study the rela-
tionship between exposure to pollutants and outcomes
such as asthma and bronchitis. They linked the latitude
and longitude of the survey respondent to the kriged
prediction of fine particulate matter at that latitude and
longitude. This linkage provided important contextual
variables for interpreting the NHIS data.

Third, the administrative data may provide informa-
tion for dealing with nonresponse in the survey. If sur-
vey records can be linked, the administrative data may
be used to impute information for nonrespondents. Tax
records, for example, could be used to impute missing
income information for nonrespondents to the survey.

The information from the administrative sources
may also provide valuable information for nonresponse
assessment and follow-up in surveys. Adaptive (also
called responsive) survey design often uses informa-
tion from multiple sources (Groves and Heeringa,
2006; Wagner and Raghunathan, 2007; Wagner et al.,

2012; Tourangeau et al., 2017) to modify the proto-
col for survey data collection while in the field. These
methods often use paradata—data about the process
of collecting the survey data, such as number of con-
tact attempts or neighborhood observations—to adapt
the survey design. Data from external sources such as
sensor data could also be used for these design modifi-
cations.

Smith (2011) reported the recommendations of an
international workshop on using auxiliary data to de-
tect and adjust for nonresponse bias in surveys. Aux-
iliary data from population registers, linked databases,
the sampling frame, or paradata can provide case-level
information for assessing potential nonresponse bias,
while independent population estimates from censuses
or high-quality surveys such as the ACS can be com-
pared with survey estimates. The report noted, how-
ever, that adding more auxiliary data “increases the
likelihood of deductive disclosure and thus potentially
undermines confidentiality” (Smith, 2011, page 395).

Fourth, the entire data collection can be designed to
make use of the multiple sources of data. If the records
from different sources can be linked and merged before
sampling to construct a rich sampling frame, then the
sample can be allocated optimally using stratification
or balanced sampling. Thus, if frame A is nearly com-
plete but expensive to sample, frame B is incomplete
but less expensive, and the frames can be combined
before sampling, then the design can specify obtaining
the information from overlap sets b and ab from frame
B, and only using the expensive frame A to collect in-
formation on overlap set a.

If the population source information is unknown be-
fore sampling, however, the design needs to ensure that
all parts of the population are represented in the sam-
ple. Hartley (1962) derived the optimal sample sizes
along with the optimal compositing factor λ for dual
frame designs where overlap-set membership is un-
known in advance. When frame A is nearly complete
but expensive to sample, and frame B is incomplete, a
larger sample size should be taken from frame A when:
(1) the cost per unit is higher in frame B, or (2) a larger
proportion of the population is in overlap set a, and
thus cannot be sampled from frame B. Lohr and Brick
(2014) found that for many cost structures it made eco-
nomic sense to use a two-phase screening survey for
the expensive frame A, where the interview was ter-
minated after determining that the unit was also in the
less expensive frame B. This is of course less efficient
than if the frame membership is known before sam-
pling, because extra effort must be expended to obtain
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screening interviews for persons sampled from frame
A whose data are not used in the estimation.

We recommend a modular approach to survey de-
sign, in which the design makes use of the different
information sources available for different parts of the
population. With data collection planned to take advan-
tage of administrative sources, the survey design can
concentrate on parts of the population less represented
in other sources.

9. OPPORTUNITIES

All of the methods for combining information re-
viewed in this paper have strengths and shortcomings.
Linking records allows the most efficient use of in-
formation, but accurate linkage is not always possible
and linkage can raise privacy concerns. Imputation can
allow use of data sources that contain some but not
all of the variables of interest by imputing the miss-
ing variables through multivariate relationships deter-
mined from sources that have the other variables, but
the imputation models are strong: if the imputation
model is developed on a source that has different re-
lationships than the source where the imputation is
applied, then the imputed values may be misleading.
Multiple frame methods allow information from many
sources to be composited, but require accurate infor-
mation about the frame membership of the sampled
units. Hierarchical models are powerful tools for com-
bining information from surveys, but a big challenge
with these methods is accounting for bias from differ-
ent sources. All of the methods other than deterministic
record linkage rely on models, and the results need to
be investigated for sensitivity to those models.

The survey designer and analyst may wish to use
different methods for different subpopulations, reflect-
ing the availability and quality of sources available for
those subpopulations. In the United States, most per-
sons aged 65 and over are on Medicare, and so are
represented in the records of the Centers for Medi-
care and Medicaid Services (CMS). It may be possi-
ble to link those records with records from electronic
health records to obtain more detailed information
about that subpopulation. Younger persons, however,
are less likely to be in the CMS records and for
those subpopulations hierarchical modeling or multiple
frame methods may be needed. Thus, we see the prob-
lem of combining information from different sources
as a mosaic, where different sources contribute to con-
structing the entire picture.

Much of the literature on meta-analysis and on com-
bining surveys discusses having higher reliance on

“high-quality” data sources when they are available,
and downweighting the contributions of low-quality
data sources. This raises the question of how to deter-
mine the quality of a data source. Berlin and Rennie
(1999) listed qualities of well-designed, high-quality
clinical trials. Citro and Straf (2013) and the American
Association of Public Opinion Research (2015) gave
characteristics of high-quality surveys but did not pro-
vide metrics for quantifying survey quality. The devel-
opment of metrics for the quality of estimates from dif-
ferent data sources—going beyond sampling variabil-
ity to consider measurement error, nonresponse bias,
and stability over time—is a crucial area for research.

Estimates calculated from different sources are of-
ten further apart than can be explained by the sam-
pling error of the respective sources. These extra dif-
ferences are often due to nonsampling errors such as
undercoverage, nonresponse, different question word-
ing or modes, and measurement errors, as discussed
in Section 4. Making use of estimates from different
sources, then, can be used to provide a measure of un-
certainty about estimates that includes some of the non-
sampling error. Some of the hierarchical models dis-
cussed in Section 7 incorporate the estimated bias from
sources into the posterior uncertainty about the param-
eters. These do not always capture all of the potential
sources of bias, however, and more research is needed
in this area.

Another area for research is the use of multiple
sources to improve nonresponse bias assessment and
adjustment. The standard practices of calibration and
poststratification make use of a single external source,
considered to be a gold standard, to adjust weights of
respondents so that survey estimates conform to the
external population totals. In the absence of a single
gold standard, however, it may be possible to use the
information from different sources to calibrate survey
data. In related work, it may be possible to use multiple
sources of data in adaptive design or to assign protocols
dynamically.

We discussed linking records among sources that
have identifying information. Such linkage raises con-
cerns about the confidentiality of respondents’ data.
The information contained in a single data source
might be insufficient to identify an individual, but the
extra variables contained in the linked sources may
increase the chances of disclosure. Fellegi (1999),
page 6, described record linkage as “intrinsically in-
trusive of privacy.” Daas et al. (2015) discussed con-
cerns about privacy that can arise when using large
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nonsurvey data sources for official statistics. Some-
times, privacy concerns can be lessened if aggregated
statistics are combined instead of linking individual
records, although these methods too can compromise
the confidentiality of individuals’ or subpopulations’
information. Duncan, Jabine and de Wolf (1993) pro-
vided guiding principles for balancing the needs of
data access with the need to protect the confiden-
tiality of survey respondents’ information. Many of
the statistical techniques for reducing disclosure risk
in that report, however, were conceived in an era in
which fewer data and less sophisticated identification
techniques were available. More research is needed
on privacy-preserving methods for releasing data; the
differential privacy framework of Dwork (2011) can
provide a mathematical foundation for such work
(Machanavajjhala and Kifer, 2015). One possible area
for research is on use of hierarchical models to obtain
aggregate statistics that protect privacy.

In this article, we have concentrated on statistical
methods for combining information. An important fac-
tor not discussed here is the issue of obtaining con-
sent from participants to have their information com-
bined with information from other sources. Several
of the studies we cited (e.g., Nachman and Parker,
2012; Zolas et al., 2015) linked records across multiple
sources. When should consent be obtained from sur-
vey respondents for their survey-provided information
to be linked with other sources? Even if the information
released from the analysis is in the form of aggregated
statistics, the linkage creates a database that could po-
tentially be obtained by hackers.

Record linkage and other methods for combining
information across sources also raise questions about
data ownership. Does a college student own the data
about her test scores, class attendance, analytics from
online classes, library usage, and cafeteria purchases,
or do those belong to the educational institution (Jones,
Thomson and Arnold, 2014)? How should society
balance patients’ ownership of their electronic health
records, fitness tracking data, and genetic information
with potential benefits that could arise from sharing
data (Kish and Topol, 2015; Kostkova et al., 2016)?
Hurst (2015) discussed data ownership issues in his
testimony to the U.S. House of Representatives Com-
mittee on Agriculture, and proposed a “Transparency
Evaluator” that would accompany data collection.
Farmers providing data would be told who controls
their data, who can access them, and how the data will
be used, along with other information about the data
curation.

Increasingly, rich administrative data sources such as
credit card transactions, electronic health records and
social media are owned and harnessed by private com-
panies. At the same time, increasing costs, decreasing
budgets, and lower cooperation of the public in pro-
viding data for federal and state surveys are threaten-
ing the federal statistical system. Thus, for the methods
reviewed in this paper to be useful, a framework of a
private-public partnership will need to be forged to use
all available data for the benefit of society.

Many of the probability sampling designs in current
use were developed at a time when other sources of in-
formation were not available. If these data collections
were designed starting over, it is likely that the de-
signs would make use of the wealth of information now
available from multiple data sources. The availability
of multiple data sources opens multiple opportunities
for research on designing the data collection using a
systems-based approach; on linking records; on de-
veloping imputation, multiple frame, and hierarchical
models for combining data; on developing measures
of uncertainty that reflect the nonsampling errors from
various data sources; and on preserving privacy for in-
dividuals who contribute their data. The use of multi-
ple data sources has great potential for capturing more
of the population, saving resources by making use of
cheaper sources of information, obtaining more infor-
mation on subpopulations, and improving the temporal
and spatial granularity of information used for research
and public policy.
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