
Statistical Science
2016, Vol. 31, No. 4, 541–544
DOI: 10.1214/16-STS583
Main article DOI: 10.1214/16-STS565
© Institute of Mathematical Statistics, 2016

On Software and System Reliability
Growth and Testing
Frank P. A. Coolen

Abstract. Singpurwalla presents an insightful proposal on foundations of
reliability [Statist. Sci. 31 (2016) 521–540], suggesting to consider reliability
not as a probability but as a propensity, in particular as the unobservable
parameter in De Finetti’s famous representation theorem. One specific issue
considered is reliability growth, with example scenario the performance of
software as it evolves over time. We briefly discuss some related aspects,
mainly based on applied research on statistical methods to support software
testing and insights from our research on system reliability.

Key words and phrases: Reliability growth, software testing, system relia-
bility.

1. INTRODUCTION

Singpurwalla [8] presents an interesting contribution
to the foundations of reliability theory, proposing that
reliability is not a probability but a propensity, also re-
ferred to as a chance. The main issue is that reliabil-
ity is considered to be “an objective, albeit unobserv-
able, physical quantity” [8]. The essential proposal by
Singpurwalla is that this reliability is the parameter ap-
pearing in De Finetti’s famous representation theorem;
see Theorem 1 in [8]. This theorem involves an infi-
nite sequence of exchangeable observable binary ran-
dom quantities and plays a central role in (subjective)
Bayesian statistics. The proposal to consider reliabil-
ity as a propensity suggests that it is a property of the
system or unit under consideration. As reliability of a
system typically changes over time, this should be re-
flected through a time-evolving propensity, for which
Singpurwalla presents a competing risk model.

In Section 2, we discuss some aspects of reliabil-
ity of software systems based mainly on experience in
supporting software testers. While Singpurwalla’s pro-
posal is of theoretical interest, our experiences point to
possible difficulties, or at least major challenges, for its
implementation. In Section 3, we briefly discuss some

Frank P. A. Coolen is Professor of Statistics, Department of
Mathematical Sciences, Durham University, Durham,
DH1 3LE, United Kingdom (e-mail:
frank.coolen@durham.ac.uk).

further related issues on general aspects of system reli-
ability including competing risk models.

2. SOFTWARE TESTING AND RELIABILITY

Singpurwalla’s [8] proposal to consider reliability
as a propensity is linked to a possible interpretation
of the parameter appearing through De Finetti’s rep-
resentation theorem. This is an interesting proposal,
yet its practical relevance for modelling reliability re-
quires careful consideration. Typically, a system may
have to perform many different tasks, possibly under
a wide range of circumstances, and these may not all
be carefully described; this is certainly the case for
software systems. About two decades ago, we started
considering reliability of software systems in collabo-
ration with an industrial partner, and soon it became
clear that the main challenges, apart from the develop-
ment of the software, were in testing it. From a back-
ground in statistics, we were surprised at the lack of
suitable methods in the literature with regard to care-
ful modelling of the tasks software testers had, indeed
it seemed that many mathematical and statistical meth-
ods for software reliability, presented in the literature,
were of little practical use. One approach that had re-
ceived much attention in the literature was so-called
partition testing; one defines a partition of the input
space, so of all inputs the software system has to deal
with, in such a way that all inputs in one set of the
partition are “identical”. This was surprisingly often

541

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/16-STS583
http://dx.doi.org/10.1214/16-STS565
http://www.imstat.org
mailto:frank.coolen@durham.ac.uk


542 F. P. A. COOLEN

interpreted in a “one-test-tests-all” sense, but also the
more general exchangeability setting where each input
in one set of the partition has the same probability of
leading to a fault, was considered. Generally, it seemed
to be assumed that the software’s success on dealing
with inputs in different sets of the partition was com-
pletely independent, which led us to present a quite ba-
sic method to overcome this unrealistic assumption [4].
In order to guide software testing and assess the relia-
bility of most substantial practical software systems, it
is crucial to model the inputs it has to deal with. One
cannot assume that the system’s success or failure to
deal correctly with an input is exchangeable over all
inputs, although we have encountered this assumption
frequently in the literature. A clear consequence of that
assumption would be that it is irrelevant which specific
input one tests, reducing the test effort mostly to decid-
ing on when enough tests have been performed. Soft-
ware testers know that their job is more complicated,
and mainly consists of deciding which specific inputs
to use for testing a system, and ideally also in which
specific order.

In a long-running project with an industrial partner,
we developed a Bayesian graphical model (BGM) ap-
proach for support of testing a substantial software sys-
tem close to release. The core method, with exam-
ple of its application, has been presented by Wooff
et al. [9], some further aspects of the project were
discussed by Coolen et al. [5]. A discussion of chal-
lenges for statistical methods related to software test-
ing was presented by Coolen [1]. The actual nature
of the task was so-called integration testing, where
new functionality had been added to existing systems
and some minor corrections had also been applied.
These were mainly database activities, and commu-
nication between databases. For example, some func-
tions needed to be performed on numbers of different
length, where the testers distinguished between short
and long numbers. They also expected that some func-
tionality might be affected by whether the starting digit
of a number was a zero or not. Functionalities consid-
ered included adding or deleting a customer to one or
more databases, and also changing a customer number,
which was expected to be done by a combination of
adding and deleting the relevant numbers with appro-
priate transfer of the information related to the num-
ber. The software system consisted of different subsys-
tems, some programmed in house and some bought in,
the latter being mainly “black-box”. On existing func-
tionality there was quite some experience, including
knowledge of what had gone wrong before and which

actions had been taken to resolve the problems. The
newly added functionality had been tested on its own
but not as part of the fully integrated system. After sev-
eral discussions with the software testers, and detailed
study of the literature, we found that adequate statis-
tical methodology was available for the required sup-
port, which was mainly on developing test suites to be
used under great time pressure, but we did not find it
being used in the literature on software engineering.
Questions of interest included not only which inputs to
test but, crucially, also the sequencing of testing, where
re-testing in case failures appeared needed to be taken
into account, and possible also guidance on further
tests in such cases to get a better idea on the location of
the fault in the software system which caused the fail-
ure. This re-testing was needed to check if a previous
failure on an input had been resolved, a correspond-
ing major problem for the testers was to assess if ear-
lier tests would also require re-testing. An even more
challenging question for test design was with regard to
checking the model and (partial) exchangeability as-
sumptions. In our specific applications, there was very
little time to add such tests, but we noticed from pre-
vious testing that even in extreme cases where testers
believed that testing one input would reveal the soft-
ware’s reliability on the specific functionality for all in-
puts in the same set in the partition of the input space,
they would sometimes test two such inputs reflecting
that they were not entirely sure about the one-test-tests-
all assumption. In an ideal scenario, one would want
to create a test approach where checking of the model
assumptions, on which the test design is based, is im-
plicit, and in case of any test results which lead to doubt
about the assumptions one would want a level of ro-
bustness which would allow information from previous
tests still to be useful. We have not come across work
addressing this challenging aspect of software test de-
sign in the literature.

We were quite surprised that there was no detailed
list reporting which specific functioning would be
tested when a specific input was used, creating this
took a considerable effort but the testers did acknowl-
edge that it was a useful exercise. The BGMs we
created were on functionality, where for each func-
tion of the software (partial) exchangeability beliefs
of the testers were represented. For example, a node
“problems due to number length” had two child nodes,
“problems due to short length” and “problems due to
long length”, and similarly for other characteristics
such as starting digit (zero or nonzero). Such child
nodes each had a further parent node, to represent a



COMMENT 543

problem specifically due to the stated length in the
child node, so not a common problem due to length.
At the bottom of these BGMs were the observation
nodes, so the test results for specific combinations of
the aspects considered in the combined parent nodes,
for example, test results for a long number starting with
zero in the BGM for the add function. The standard
Bayesian methodology was used for the inverse infer-
ence to update the BGM given test information, for
quite many functionalities combined, and this provided
a tool for support of test design.

The main point of summarizing this earlier work
here is how the proposition by Singpurwalla [8], to
consider reliability to be a propensity, would fit with
such practical work. It is clear that the realistic soft-
ware systems we considered did not have a single reli-
ability propensity such that all possible observations in
the testing process were exchangeable. Indeed the main
task was to model the partial exchangeability which we
did using the BGMs for each functionality. One could
argue that, for the whole system, there are many such
propensities, one each for every node at the very bot-
tom of a BGM (which indeed has observable test re-
sults as child nodes); the main issue is the modelling of
the interconnections of these propensities. Then, when
a failure is observed and action is taken to remove the
fault, which may be successful or not and may even in-
troduce other faults, the information about the propen-
sities changes but also the exchangeability assump-
tions themselves may change: the observation of a spe-
cific failure could lead to more detailed specification
of an input partition, for example, testers may become
aware of a feature affecting numbers starting with one
or long numbers ending with zero. This is just men-
tioned to emphasize the dynamic nature of such testing
processes, which are at the heart of software reliability
growth. It will be interesting to see whether or not the
new foundational approach proposed by Singpurwalla
will open new insights and methods for modelling for
support of software testing.

3. SYSTEM RELIABILITY

In recent years, we have been considering many as-
pects of system reliability and proposed several new
(statistical) methods in the literature. For example, in
order to enable reliability quantification for large sys-
tems consisting of different component types, where
at least some of the components have exchangeable
failure times, we proposed the survival signature [2],

which enables substantially larger systems to be con-
sidered than previously available methods. The sur-
vival signature generalizes Samaniego’s system signa-
ture [7], which has become a popular tool in the liter-
ature on mathematical methods for reliability, to sys-
tems with multiple types of components, which most
practical systems are and which includes networks. In
presenting such work and discussing it with practition-
ers, we repeatedly had to consider what “system reli-
ability” really is, due to a variety of issues not really
addressed by existing methods in the literature. This
has led us to two propositions [3]. First, to mainly fo-
cus on one or more future tasks, so to consider the
ability of the system to deal with these correctly, in-
stead of defining reliability as an underlying property
of the system. This can also take into account a range
of such tasks, and even include the possibility to take
unknown or undefined tasks into account. Second, we
proposed to generalize the classical concept of a de-
terministic structure function, which models whether
or not the system functions given the states (function-
ing or not) of all its components, by allowing it to be
probabilistic. So, for specific states of the system com-
ponents, one models a probability that the system will
function for its next task. This has several advantages,
for example, it can take into account if successful func-
tioning depends on external aspects and it can also be
used if only part of the full system is being modelled,
for example, to focus on major components in a sys-
tem. Singpurwalla [8] proposes further to model evolv-
ing propensities via competing risks methods. This is
an interesting view which corresponds quite well with
our experiences with support of practical software test-
ing as discussed above. We would like to point out
that competing risks methods bring many challenges
for statistics, in particular where some of the risks may
be unobserved or unknown, or where faults or failure
modes have been removed or re-defined; see Coolen-
Maturi and Coolen [6] for further discussion and some
proposals for dealing with such cases. It will be inter-
esting to see if these issues and proposals can be linked
to Singpurwalla’s view of reliability as a propensity,
and if there is a benefit for the modelling and related
statistical inferences resulting from changing the foun-
dations of reliability along Singpurwalla’s proposal.

REFERENCES

[1] COOLEN, F. P. A. (2012). On some statistical aspects of soft-
ware testing and reliability. In Complex Systems and Depend-
ability (W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak
and J. Kacprzyk, eds.) 103–113. Springer, Berlin.



544 F. P. A. COOLEN

[2] COOLEN, F. P. A. and COOLEN-MATURI, T. (2012). On gen-
eralizing the signature to systems with multiple types of com-
ponents. In Complex Systems and Dependability (W. Zamojski,
J. Mazurkiewicz, J. Sugier, T. Walkowiak and J. Kacprzyk,
eds.) 115–130. Springer, Berlin.

[3] COOLEN, F. P. A. and COOLEN-MATURI, T. (2016). The
structure function for system reliability as predictive (impre-
cise) probability. Reliab. Eng. Syst. Saf. 154 180–187.

[4] COOLEN, F. P. A., GOLDSTEIN, M. and MUNRO, M. (2001).
Generalized partition testing via Bayes linear methods. Inf.
Softw. Technol. 43 783–793.

[5] COOLEN, F. P. A., GOLDSTEIN, M. and WOOFF, D. A.
(2007). Using Bayesian statistics to support testing of software
systems. J. Risk Reliab. 221 85–93.

[6] COOLEN-MATURI, T. and COOLEN, F. P. A. (2011). Unob-
served, re-defined, unknown or removed failure modes in com-
peting risks. J. Risk Reliab. 225 461–474.

[7] SAMANIEGO, F. J. (2007). System Signatures and Their Appli-
cations in Engineering Reliability. International Series in Op-
erations Research & Management Science 110. Springer, New
York. MR2380178

[8] SINGPURWALLA, N. D. (2016). Filtering and tracking sur-
vival propensity (reconsidering the foundations of reliability).
Statist. Sci. 31 521–540.

[9] WOOFF, D. A., GOLDSTEIN, M. and COOLEN, F. P. A.
(2002). Bayesian graphical models for software testing. IEEE
Trans. Softw. Eng. 28 510–525.

http://www.ams.org/mathscinet-getitem?mr=2380178

	Introduction
	Software Testing and Reliability
	System Reliability
	References

