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Filtering and Tracking Survival Propensity
(Reconsidering the Foundations
of Reliability)1

Nozer D. Singpurwalla

Abstract. The work described here was motivated by the need to address
a long standing problem in engineering, namely, the tracking of reliability
growth. An archetypal scenario is the performance of software as it evolves
over time. Computer scientists are challenged by the task of when to release
software. The same is also true for complex engineered systems like aircraft,
automobiles and ballistic missiles. Tracking problems also arise in actuarial
science, biostatistics, cancer research and mathematical finance.

A natural approach for addressing such problems is via the control theory
methods of filtering, smoothing and prediction. But to invoke such methods,
one needs a proper philosophical foundation, and this has been lacking. The
first three sections of this paper endeavour to fill this gap. A consequence is
the point of view proposed here, namely, that reliability not be interpreted as
a probability. Rather, reliability should be conceptualized as a dynamically
evolving propensity in the sense of Pierce and Popper. Whereas propensity is
to be taken as an undefined primitive, it manifests as a chance (or frequency)
in the sense of de Finetti. The idea of looking at reliability as a propensity
also appears in the philosophical writings of Kolmogorov. Furthermore, sur-
vivability which quantifies ones uncertainty about a propensity should be the
metric of performance that needs to be tracked. The first part of this paper
is thus a proposal for a paradigm shift in the manner in which one concep-
tualizes reliability, and by extension, survival analysis. This message is also
germane to other areas of applied probability and statistics, like queueing,
inventory and time series analysis.

The second part of this paper is technical. Its purpose is to show how the
philosophical material of the first part can be incorporated into a framework
that leads to a methodological package. To do so, we focus on the problem
which motivated the first part, and develop a mathematical model for de-
scribing the evolution of an item’s propensity to survive. The item could be
a component, a system or a biological entity. The proposed model is based
on the notion of competing risks. Models like this also appear in biostatistics
under the label of cure models. Whereas the competing risks scenario is in-
structive, it is not the only way to describe the phenomenon of growth; its use
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here is illustrative. All the same, one of its virtues is that it paves the path to-
wards a contribution to the state of the art of filtering by considering the case
of censored observations. Even though censoring is the hallmark of survival
analysis, it could also arise in time series analysis and control theory, making
the development here of a broader and more general appeal.

Key words and phrases: Chance, competing risks, cure models, exchange-
ability, filtering censored observations, frailty, propensity, proportional haz-
ards, time series analysis.

0. INTRODUCTION: MOTIVATION AND
BACKGROUND

The performance of many an engineered system
changes over time due to improvements in design,
manufacture and fault elimination. This is also true of
biological systems which gain immunity after incep-
tion, and subsequent to this, experience ageing; also,
patients undergoing medical therapies. Tracking the
trustworthy performance and survivability of such sys-
tems is of concern in the biological as well as the en-
gineering sciences. Problems like these go under the
label of reliability growth about which much has been
written, both in the engineering and the statistics out-
lets. It turns out that a satisfactory resolution of the
matter of assessing reliability growth raises philosoph-
ical and technical issues whose effects boil down to
a reconsideration of the foundations of reliability and
survival analysis. In what follows, the term reliability
includes survival analysis. The purpose of this paper
is to articulate on the above matter, and to propose a
change in the manner in which one conceptualizes re-
liability and addresses the problems that it spawns.

By way of background, as it is currently understood,
reliability theory pertains to an assessment of the prob-
ability of an item completing its prescribed function
within a specified period of time, under specified con-
ditions. This theory is the basis of reliability engineer-
ing, survival analysis, actuarial science and duration
analysis in finance.

1. FOUNDATIONS OF RELIABILITY THEORY

It may be claimed that the science of reliability be-
gat the field of statistics, in a manner akin to how gam-
bling begat probability. The first treatise on statistics
appeared in 1662, in Graunt’s “London Bills of Mortal-
ity”. This was a life-table whose appearance signaled
the official registration of births, deaths and marriages.
Per Karl Pearson, Graunt was the father of statistics,
and its modern day evolution as “big data”.

Whereas much has been written on the mathemati-
cal and methodological aspects of reliability, it appears
that little has been documented about its foundational
underpinnings; some preliminary (but unsatisfactory)
attempts are in Singpurwalla (1988, 2002). This is un-
derstandable because reliability has been defined as a
probability, and there is plenty written on the meaning
of probability in both the mathematical and the philo-
sophical literatures. The caveat here is that there are
several interpretations of probability. These are: a rel-
ative frequency, a personalistic 2-sided bet, a propen-
sity and to Kolmogorov (1969), who takes refuge in
the principle of “ignotum per ignotius”—an undefined
primitive. Thus per Kolmogorov, were reliability to be
interpreted as a probability—which he did—then re-
liability too would be an undefined primitive. Which
of the above interpretations is germane to performance
assessment, wherein one often deals with a one of a
kind item? This is more a matter of philosophy and
mathematics than of engineering or biostatistics. How-
ever, implicit in the current work in reliability is an
adherence to either the relative frequency or the per-
sonalistic interpretation. The former is embodied in the
comprehensive treatise by Meeker and Escobar (1998),
the latter in the recent monograph by Hamada et al.
(2008). Can these two differently interpretive view-
points be aligned so that they constructively reinforce
each other? The mathematically elegant and classic
books by Barlow and Proschan (1965, 1975) predom-
inantly focus on the structure of probability distribu-
tions taking the notion of probability as a given.

Whereas Popper’s propensity interpretation of prob-
ability has been discarded by philosophers of science,
like Humphreys (1985), and correctly so, the valuable
role that this notion can play in performance assess-
ment remains to be explored. In particular, one can
lean on de Finetti’s theorem (cf. de Finetti, 1937) on
exchangeable sequences, and exchangeability in gen-
eral, to make propensity work in tandem with per-
sonal probability, and produce a workable methodolog-
ical package. It seems that such a linkage can pro-
vide a meaningful foundation for a theory of reliability
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and bring some conceptual clarity to the diverse ap-
proaches to life data analysis. Furthermore, the link-
age can also bring about a rapprochement between
the relative frequency and the personalistic interpreta-
tions.

The linking of propensity and personal probabil-
ity is both appealing and necessary. Appealing be-
cause propensity connotes a causal relationship be-
tween what is observed and the underlying physical
circumstances which produce the observables. Useful,
because the linkage provides a formal platform for in-
voking the techniques of filtering, smoothing and pre-
dictions which are a pathway to tracking survivability,
be it static or dynamic. However, to formalize this link-
age we need to think of reliability as a propensity, and
not as a probability, as is currently done, both in the
frequentist and the personalistic paradigms. Indeed, in
order to formally justify using a proper (personalistic)
Bayesian approach in the contexts of reliability and
survival analysis, it seems necessary to bring into the
foray the notion of propensity or something equivalent.
Not doing so raises the dilemma of placing a 2-sided
bet on a 2-sided bet, making the Bayesian analysis a
circular development.

2. PROPENSITY, FREQUENCY AND DE FINETTI’S
THEOREM

Because the relative frequency theory of probabil-
ity, upon which sample theoretic statistical inference
is based, pertains to observable mass phenomena and
repetitive events, it is unable to address issues pertain-
ing to one of a kind events (cf. von Mises, 1941). Other
difficulties with this theory, like indefinite repetitions
under almost similar—but not exact—conditions, are
outlined by de Groot (1988), and by Gillies (2000). By
contrast, the notion of propensity is germane to one of
a kind events, and this is its most attractive feature.

The basic idea behind propensities appeared in the
early 1900s in the writings of the American philoso-
pher Charles Pierce (cf. Miller, 1975). Its strongest pro-
ponent, however, was the British philosopher Karl Pop-
per (1959). The notion of propensities is grounded in
the objectivity of physical sciences in the sense that
the propensity of an object for exhibiting a particular
outcome is a physical attribute of the object and its
environmental conditions of use. Thus, the notion of
propensity, be it for a component, a system or a bio-
logical entity, encompasses a consideration of all the
key qualities of the object, as well as the manner in
which it is used. To quote Popper (1957), propensity is

“an unobservable dispositional property of the physi-
cal world, which includes its measurable attributes, as
well as the experimental conditions. . . ”. Consequently,
a propensity is like the Newtonian notions of mass, vol-
ume and specific gravity. Stated differently, the propen-
sity of an object is its tendency to yield an outcome of
a certain kind, or to yield a long run frequency of such
outcomes. To Popper (1957), propensities are the pur-
ported causes of relative frequencies. This means that
we may regard relative frequency as the strength of a
propensity, with the value of 1 implying a certainty and
the value of 0 implying impossibility. This interpreta-
tion is important; it connects an observed frequency
with an objective but unobservable dispositional prop-
erty of the physical world.

The notion of propensity was thought useful in quan-
tum mechanics wherein interest centers on isolated
events, like the position of an atom at a particular time.
Indeed, Popper’s motivation for proposing his theory
of propensities, was a dissatisfaction with the Bohr–
Heisenberg subjectivist interpretation of quantum the-
ory (cf. Popper, 1957). Popper wanted an objective in-
terpretation of quantum theory which accommodates
the probability of isolated events. Because propensi-
ties are likened to notions like mass, force and grav-
ity, Good (1950) has called propensity a physical prob-
ability; also see Good and Card (1971) wherein the
term demiurge is used in relationship to the notion of
propensity.

2.1 Propensities Are Not Probabilities

Despite Popper’s insistence on interpreting a propen-
sity as a probability, and Good’s labeling it a physical
probability, a propensity is not a probability! Rather,
a propensity implies a nondeterministic causal rela-
tionship between an event and its generating con-
ditions. Thus, unlike conditional probabilities which
are symmetric in their arguments, in the sense that
both P(A|B) and P(B|A) are meaningful to con-
sider, conditional propensities cannot be symmetric;
see Humphreys (1985). In von Mises’ frequency the-
ory, probability is a property of a collective, whereas
Popper’s propensity is a property of the generating con-
ditions of a sequence, where by the term generating
conditions, we include a description of the key quali-
ties of the object generating the sequence. Because a
conditional probability is a definition in Kolmogorov’s
theory, and a corporate state of mind in the personal-
istic theory, conditional probabilities do not encapsu-
late causality, which propensities do. The inability of
probability to encapsulate causality has prompted the
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philosopher Humphreys (1985) to “reject the current
theory of probability as the correct theory of chance”.
Indeed, Fetzer (1981) in his probabilistic causal calcu-
lus has proposed a set of axioms for propensities that
are unlike the Kolmogorov calculus. Finally, whereas
the strength of a propensity can take the value 0 and 1,
the degree of a personal probability, as reflected via a
2-sided bet, must be between 0 and 1.

Perhaps the closest that the notion of propensity
comes to probability is the view expressed by Kolmo-
gorov (1969), page 123, that probability is an un-
defined primitive (governed by a system of axioms)
which “connects the useful life of a lamp with the ma-
terials and the technological condition of its manufac-
ture”; also see Gillies (2000), and Kendall (1949), who
states that “Any theory of probability which does not
take probability as a primitive idea must, in some form
or other, introduce an equivalent primitive before it can
be applied”. The quote by Kolmogorov is the basis of
our claim that in equating reliability to a probability
Kolmogorov would have interpreted reliability as an
undefined primitive, characterized by the qualities of
an object.

2.2 De Finetti’s Theorem: Linking Propensity and
Probability

Whereas propensity cannot be an interpretation of
probability, there is a connection between the two
which is made explicit by de Finetti’s theorem on ex-
changeable sequences. To appreciate the spirit of the
theorem, consider n tosses of a metaphorical coin con-
ducted under similar conditions. Suppose that the n fu-
ture outcomes of these tosses are judged exchangeable,
in the sense that one’s personal probability of any se-
quence of r heads and s tails, with n = r + s, is the
same as any other sequence of r heads and s tails. For
example, independent Bernoulli trails with a constant
parameter θ is an exchangeable sequence. However,
not all exchangeable sequences are independent, im-
plying that the judgment of independence is stronger
than that of exchangeability. Exchangeability connotes
a sense of similarity, or positive dependence, and with-
out exchangeability, it is not possible to justify induc-
tive statistical inference.

THEOREM 2.1. For every exchangeable probabil-
ity assignment that can be extended to a probabil-
ity assignment on an infinite sequence of zeros and
ones, there corresponds a unique probability distribu-
tion function F , concentrated on [0,1], such that for

all n, and 0 ≤ r ≤ n,

P(X1 = 1, . . . ,Xr = 1,Xr+1 = 0,Xn = 0)

=
∫ 1

0
θr(1 − θ)n−rF (dθ),

where limn→∞
∑

Xi/n exists, and is equal to θ .

Here, F(dθ) = f (θ)dθ , and F(θ) is the probabil-
ity distribution function of θ . The left-hand side of the
theorem is a personal probability, which can be oper-
ationalized via a 2-sided bet. The right-hand side of
Theorem 2.1, represents a mixture of Bernoulli proba-
bilities, with F(dθ) as the mixing distribution.

There are two aspects of the theorem that warrant
discussion. These have to do with θ and F(θ). Clearly,
θ being the limit of a relative frequency cannot be
a personal probability. Rather θ is to be seen as a
property of the world which is a manifestation of the
propensity of any Xi to take the value 1. Alternatively
put, it is the propensity of each Xi , i = 1,2, . . . , to take
the value 1, which spawns θ , making θ a reflection of
the underlying propensity. De Finetti refers to θ as a
chance, a term also used by Pierce, though not in the
same sense as de Finetti. This means that de Finetti’s
theorem can be seen as one which links personal prob-
ability and the strength of the underlying propensity.
The term F(θ) is a personal probability which encap-
sulates one’s uncertainty about θ , which (because of
the caveat that n → ∞) is unobservable. All the per-
sonal probabilities mentioned here are those of the in-
dividual(s) making the judgment of exchangeability.

A final, albeit important, point of note is that the term
θτ (1 − θ)n−τ in de Finetti’s theorem is the Bernoulli
(chance) distribution. Thus, more generally, one may
also interpret probability models with unknown pa-
rameters as the reflection of an underlying propensity,
and de Finetti’s theorem as one which links an objec-
tive probability distribution with a subjective personal
probability. This viewpoint is the basis of the material
of Section 4.

2.3 Generalized Versions of de Finetti’s Theorem

Whereas Theorem 2.1 above serves the purpose of
justifying the point of view that we espouse here, there
are more general and stronger versions of the theo-
rem which further assert our viewpoint. These stronger
versions come about because Theorem 2.1 pertains to
Bernoulli events and is germane under the metaphysi-
cal concept of infinite sequences. In the context of oc-
currence data that is characteristic of the assurance sci-
ences and biostatistics, one encounters sequences other
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than the Bernoulli; furthermore, one also needs to con-
front finiteness. Diaconis and Freedman in a series of
highly influential papers addressed these issues culmi-
nating in their 1987 paper. Here, using arguments of
invariance and symmetry, they produce de Finetti style
theorems for mixtures of distributions other than the
Bernoulli, namely, the geometric, Poisson, exponential
and the Gaussian; also see Smith (1981). In addition to
the above, Diaconis and Freedman (1987) provide er-
ror bounds on the resulting probabilities when the sce-
nario of infinite sequences is replaced by that of finite
sequences. The net effect of these extensions and gen-
eralizations is that a relationship between a subjective
personal probability and the strength of an objective
dispositional propensity holds under a wider set of cir-
cumstances.

In a striking, but less known paper whose theme
is more in tune with lifetime models used in connec-
tion recurrent event data, Barlow and Mendel (1992),
using the principle of indifference derive mixtures of
the gamma and the Weibull distributions. In the for-
mer case, it is the sums of lifetimes that are endowed
with an indifference; in the latter case, indifference
is invoked on the sums of certain utility functions—
maintenance costs in the case of Barlow and Mendel
(1992). A summarization of the above contributions,
plus other related material is in Spizzichino (2001), and
in Chapter 3 of Singpurwalla (2006).

3. RE-INTERPRETING RELIABILITY: METRIC OF
SURVIVABILITY

In the context of reliability, the θ of Theorem 2.1 can
be seen as encapsulating the strength (or degree) of an
item’s propensity to survive. We take this measure of
strength to be the definition of reliability. Thus, as was
claimed in Lindley and Singpurwalla (2002), reliabil-
ity is a chance not a probability.2 The left-hand side
of the theorem is a personal probability which we shall
refer to as an item’s survivability under its key quanti-
ties and the conditions which characterize its propen-
sity. This makes reliability an objective, albeit unob-
servable, physical quantity, whereas its survivability is
a subjective predictive entity. Because personal prob-
abilities can be operationalized via 2-sided bets, it is
an item’s survivability that should be the measure of
performance. Because survivability is a manifestation
of reliability, the latter becomes a stepping stone to the

2This paradigm-changing insight is solely attributed to the late
Dennis Lindley.

former. This change in mode of conceptualizing relia-
bility constitutes the paradigm shift mentioned before.

As stated in Section 2.3, analogues of de Finetti’s
theorem for continuous quantities, like lifetimes, have
been developed; also see, for example, Hewitt and Sav-
age (1955). These bring into play the commonly used
failure models like the exponential, the gamma and the
Weibull, as chance distributions. Such chance distri-
butions are, in principle, unobservable, but serve the
useful purpose of making predictive assessments of an
item’s survival.

Thus, if T denotes an item’s lifetime, then the item’s
survivability assuming an exponential (λ) chance dis-
tribution will be given as: P(T > t) = ∫ ∞

0 e−λtF (dλ).
Here, e−λt is the strength of the item’s propensity to
survive to t , and F(dλ) encapsulates one’s uncertainty
about λ. Here again, the degree of propensity can be ex-
pressed in terms of a probability model with unknown
parameters.

3.1 Some General Remarks on the Paradigm
Change

There are two attractive features of the suggested
paradigm change. The first is conceptual clarity, which
helps justify the use of Bayesian methods in reliabil-
ity and survival analysis. The second is a foundation
for invoking filtering and control theory methods for
tracking reliability growth. In the subsequent sections
of this paper, an argument will be made that all prob-
lems of reliability are essentially a matter of track-
ing survivability, so that assessing reliability growth
is quintessential to the biomedical and the engineering
sciences.

Because we have equated the notion of reliability to
that of an objective chance, a question may arise about
the need to introduce propensities in the discussion.
There are several reasons for doing so. One is inclu-
siveness, in the sense that the notion of propensities
embraces the diverse but similar views of Pierce, Pop-
per and Kolmogorov about the cause of observed fre-
quencies, and causal relationships are the hallmark of
science. The second reason is a facility to think in terms
of one of a kind entities; frequencies are generally as-
sociated with collectives. Finally, in the context of fil-
tering and control, propensities can serve as the state of
nature, and an evolving propensity becomes a rationale
for “system equation” of dynamic models, such as the
Kalman filter model.
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4. THE PHENOMENON OF RELIABILITY GROWTH

Many complex systems experience, over time, a
change in their ability to survive any specified (mis-
sion) time. For example, biological systems first at-
tain increasing levels of immunity, either naturally or
by immunizations, and then experience deterioration
due to ageing. This is also true of engineered systems
and computer software which undergo design changes
and fault elimination, which enhance their ability to
survive. Similarly, businesses and organizations gain
maturity due to improved practices and procedures.
Thus, from a Popperian point of view, the key quali-
ties of an entity, and the conditions of its use change
over time, leading to a change in an item’s propen-
sity to survive. This phenomenon of a time-evolving
propensity is what should be interpreted as reliability
growth. However, since propensities are unobservable,
and nor are the chances they spawn, tracking reliability
growth is not possible. By contrast, survivability can
be tracked. Thus, the commonly discussed procedures
for assessing reliability growth boil down to the mat-
ter of tracking survivability. The change in focus from
tracking reliability to monitoring survivability is not a
mere change of verbiage; the underlying fundamentals
are philosophically different.

The perspective mentioned above provides a founda-
tion for casting the topic of performance assessment in
the general framework of filtering and control. Specifi-
cally, an item’s unobserved reliability (i.e., the strength
of its survival propensity) is viewed as its state of na-
ture, and its survivability as its observable and pre-
dictable quantity. But to implement this framework, we
need to endow an evolutionary feature to the item’s re-
liability. This we do via arguments which parallel a dy-
namic competing risks framework; see Section 5. In
the case of static systems, that is, systems which do
not experience time indexed changes, one may invoke
the steady model of a propensity (cf. Meinhold and
Singpurwalla, 1983).

To summarise, the essential import of this section
is the viewpoint that filtering reliability and tracking
survivability is a generic approach for performance as-
sessment and the treatment of occurrence data in the
biological, the engineering and the actuarial sciences.
Differences in approaches are because of differences
in the models used to characterize the evolving strength
of propensities. Section 5.1 pertains to one such model.
However, this is one among several such possibilities.
The choice of this model is not coincidental. It was
during the process of commenting on a model like this
that the author encountered the foundational issues dis-
cussed in this paper; see Singpurwalla (2010).

5. A COMPETING RISKS MODEL FOR EVOLVING
PROPENSITIES

We develop here a model for describing an evolv-
ing strength of propensity (to survive) of a complex
system. Such a model will form a basis for the state
equation of a dynamic model. In control theory, such
models are specified using arguments based on the sci-
ence of the problem. However, the strategy used here is
suggested by the term θr(1 − θ)n−r of Theorem 2.1, or
the e−λt of Section 3, wherein the strength of propen-
sity is a probability model with unknown parameters.
With the above in mind, our model for the strength of
propensity is based on arguments that are grounded in
the calculus of probability, and is conditioned on un-
known parameters. Doing this has led to a comment—
personal conversation with James Berger—that us-
ing probabilistic arguments to encapsulate propensity
seems circular because doing so makes the two isomor-
phic. Our response is that probability and propensity
are different notions, and that our approach is legislated
by de Finetti’s theorem. Furthermore, there is nothing
in the underpinnings of the notion of propensity which
dictates how its strength should be specified. Also,
there exists a scenario wherein probability based argu-
ments have been used for specifying nonprobabilistic
entities. For example, the likelihood function, which is
not a probability, is often specified by reversing the ar-
guments in a probability model. We are invoking here
a constitutional principle of English Law, namely that
“everything that is not forbidden is allowed”, a theme
spectacularly exploited by the physicist Murray Gell-
Mann in his discovery of the quark particle.

5.1 An Omnibus Model for the Strength of
Evolving Propensities

We start by re-emphasizing that the set-up described
below is very generic and universally applicable, and
especially so in the biomedical and engineering sci-
ences. Furthermore, that even though the arguments
used below are based on the calculus of probability,
the entity of interest is a mathematical model for an
item’s strength of propensity and the evolution of this
propensity over time.

Suppose that a system is prone to failure due to an
unknown number, say M , of faults or defects. The sys-
tem could be a biological entity, a piece of software
(cf. Martin, 2012), an algorithm or an engineered unit
like an airplane. We regard these faults as the causes of
failure in the sense that whenever the system fails, one
or more of the M faults are revealed. To achieve reli-
ability growth, one attempts to eliminate these faults,
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and with the hope of not introducing new faults; how-
ever, this does not always happen. The dynamics of the
proposed model is governed by a parameter whose dis-
tribution changes over time, to reflect the possibilities
of eliminating or not the observed fault and/or intro-
ducing new faults. We assume that M is Poisson with
parameter μ > 0. This assumption makes provision for
a fault-free system, but doing so causes the model to
have a positive mass at infinity.

Suppose that fault i (i = 1, . . . ,M) spawns a discrete
random quantity Ti taking the value ti = 1,2, . . . . We
take Ti to be the number of trials (or runs) of the system
until it encounters a failure which reveals i as the fail-
ure causing fault. Before testing, the nature of the faults
is unknown. This means that we are a priori unable
to a priori discern any systematic pattern to the pos-
sibly infinite number of Ti ’s. It therefore makes sense
to assume that the Ti’s are infinitely exchangeable, and
we construct an exchangeable sequence via mixtures
of independent and identically distributed random vari-
ables. To do so, we assume that each Ti has a geometric
distribution with parameter Pi , where Pi is the strength
of the propensity of fault i to cause a failure in any par-
ticular run of the system. Consequently,

P(Ti = ti |Pi = pi) = (1 − pi)
ti−1pi, i = 1,2, . . . .

To generate an exchangeable sequence of the Ti’s,
we assume that the Pi ’s are random draws from a
beta distribution with specified parameters α and β .
Then it is easily seen that the joint probability mass
of (T1, . . . , TM ) at (t1, . . . , tm) is

P(T1, . . . , TM;α,β)

=
M∏
i=1

�(α + β)

�(α)�(β)

�(α + 1)�(β + ti − 1)

�(α + β + ti)
.

This is the product of independent Beta-Geometric dis-
tributions (cf. Dubey, 1966), implying that exchange-
ability here is due to independence of the Ti ’s. To
achieve exchangeability without independence, we
need to either generate a dependent collection of Pi ’s,
i = 1, . . . ,M from a multivariate beta distribution, or
we may set P1 = P2 = · · · = PM = P , and generate
a single P from a beta distribution. Doing the former
requires prior knowledge about a relationship between
the Pi’s. The latter can be justified if and only if, for
every M , the joint distribution of (T1, . . . , TM), given
SM = ∑M

1 Ti , is a Bose–Einstein distribution; that is,

P(T1 = t1, . . . , TM = tM |SM) = 1

k
,

where k is the total number of M-tuples whose sum
is SM . This means that the joint distribution of (T1, . . . ,

TM) given SM is judged to be equiprobable over
all nonnegative M-tuples of integers whose sum is
SM (Diaconis and Freedman, 1987, Theorem 4.7,
page 414). Whereas symmetry judgements like this are
difficult to conceptualize, the act of generating a depen-
dent sequence of Ti’s via the mechanism of sampling
via a single P seems attractive. Because dependence
among Ti ’s poses challenges namely a theory of ex-
treme values, we continue with the assumption that the
Pi ’s are random draws from a common beta distribu-
tion, making the Ti’s an independent sequence.

With the above in place, we next assume that the
Ti ’s compete with each other to cause a failure of
the system. Thus, if T denotes the number of runs
(or demands) of the system until its first observed
failure, then a competing risks model for T , condi-
tioned on M = m ≥ 1, will be a consequence of T =
min(T1, . . . , TM). Thus,

P(T > t |M = m ≥ 1;α,β)

=
m∏

i=1

P(Ti > t |M = m ≥ 1;α,β)

=
m∏

i=1

∞∑
s=t+1

P(Ti = s|M = m ≥ 1;α,β)

=
[ ∞∑

s=t+1

�(α + β)�(α + 1)�(β + s − 1)

�(α)�(β)�(α + β + s)

]m

.

Unconditioning on M ≥ 0 via its Poisson (μ) distribu-
tion, we have, for t = 0,1,2, . . . ,

P(T > t |μ;α,β)

= P(T > t |M = 0,μ;α,β)P (M = 0)

+
∞∑

m=1

P(T > t |M = m ≥ 1,μ;α,β)P (M ≥ 1)

= 1 · e−μ

+
∞∑

m=1

[ ∞∑
s=t+1

�(α + β)�(α + 1)�(β + s − 1)

�(α)�(β)�(α + β + s)

]m

· e−μμm

m! .

Conditional on μ, and with α and β specified, the
above expression is the reliability (or the strength of
propensity to survive) of the system, when it is born.
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As pointed out by a referee, and correctly so, these pa-
rameters can be interpreted as being spawned by epis-
temic considerations.

Simplification results of α = β = 1, so that the
pi ’s are random draws from a uniform distribution on
(0,1). Now

P(T > t |μ) = e−μ +
∞∑

m=1

[ ∞∑
s=t+1

1

s(s + 1)

]m
e−μμm

m!

= e−μ +
∞∑

m=1

(
1

t + 1

)m e−μμm

m!(5.1)

= exp
(
− μt

t + 1

)
def= F̄μ(t),

is the system’s nascent reliability (or strength of
propensity) function.

5.2 Exploring the Nascent Reliability Function

A plot of F̄μ(t) versus t , for μ = 1,3 and 5, is shown
in Figure 1.

A noteworthy feature of F̄μ(t) is that it takes a value
greater than 0 when t → ∞. This implies that the sys-
tem has a nonzero strength of propensity for indefi-
nite survival. This property is atypical of the comple-
mentary distribution functions used in the literature,
wherein F̄μ(t) must tend to zero as t → ∞, or else the
underlying distribution is improper. Thus, F̄μ(t) can-
not be interpreted as a complementary probability dis-
tribution function; rather, as stated before, it is to be
seen as a strength of propensity to survive until t .

Being able to accommodate the feature of indefinite
survival is attractive, because indefinite survival can be

FIG. 1. The nascent reliability function.

realistic. In our case, it is a consequence of the Poisson
distribution having mass e−μ at M = 0. With M = 0,
we are making provision for a fault free system. Since

P(T = t |μ, ·)
= P(T > t − 1|μ, ·) − P(T > t |μ, ·)(5.2)

= e−μ(
eμ/t − eμ/(t+1)),

the right-hand side of the above expression is the
strength of an item’s propensity to fail at t . Note that
this expression is undefined at t = 0, and it tends to
zero as t → ∞. However, since P(T > t |μ, ·) > e−μt ,
when t → ∞, the model reflects a strength of propen-
sity to survive, of at least e−μ, at t = +∞.

As a parallel to the model failure rate (Singpurwalla,
2006, page 66), it is tempting to define the model
propensity rate of F̄μ(t), at T = t , for t = 1,2, . . . , as

P(T = t |T > t − 1,μ; ·) = P(T = t |μ; ·)
P (T > t − 1|μ; ·) ,

where

P(T = t |μ; ·) = P(T > t − 1|μ; ·) − P(T > t |μ; ·).
Thus,

P(T = t |T > t − 1,μ; ·) = 1 − P(T > t |μ; ·)
P (T > t − 1|μ; ·) ,

from which it follows that the model propensity rate of
F̄μ(t), at T = t , is of the form:

P(T = t |T > t − 1,μ; ·) = 1 − e−μ/t(t+1).

This rate is undefined at t = 0; it takes the value
1 − e−μ/2 at t = 1, and decreases to 0 as t → ∞, sug-
gesting a growth in an item’s propensity to survive over
time.

But the above feature is contrary to intuition, because
in the absence of an external intervention, one expects
a propensity to be constant over (calendar) time. A con-
tradiction such as this arises because unlike conditional
probabilities (which are a corporate state of mind) con-
ditional propensities do not carry a meaningful inter-
pretive import. The notion of a model propensity rate
must therefore be viewed as being mainly technical. It
is presented here to underscore the fact that propensi-
ties are not probabilities.

5.3 The System Survivability Function

Section 5.1 pertained to the system’s reliability,
interpreted as its strength of propensity to survive.
A model for this is F̄μ(t); it is based on the premise
that α = β = 1, and that μ is known. A prior for μ
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should be based on one’s subjective opinion about the
number of possible faults in the system, μ being the
parameter of the Poisson distribution of M . For pur-
pose of discussion, suppose that μ is endowed with an
exponential distribution with a scale parameter λ > 0.

Were F̄μ(t) to be a proper survival function (it is
not, because it has a mass e−μ at t = +∞), then the
system’s survivability would be given by averaging out
F̄μ(t) with respect to the exponential (λ) distribution
of μ. This means that to obtain the system’s survivabil-
ity, the probability calculus requires that we normalize
F̄μ(t) to make it a proper survival function, and then
interpret it as a probability. This is achieved by consid-
ering lifetimes that do not survive indefinitely, namely,
by considering

P(T > t |T < +∞,μ) = P(t < T < +∞|μ)

P (T < +∞|μ)

= F(+∞|μ) − F(t |μ)

F(+∞|μ)
,

where F(t |μ) = P(T ≤ t |μ) = 1 − P(T > t |μ) = 1 −
e−μ(t/(t+1)). Thus,

(5.3) P(T > t |T < +∞,μ) = e−μτ − e−μ

1 − e−μ
,

where τ = t/(t + 1).
Verify that as t ↑ +∞, P(T > t |T < +∞,μ) ↓ 0,

and that at t = 0, P(T > t |T < +∞,μ) = 1, making
P(T > t |T < +∞,μ) a proper probability survival
function.

We may now average out P(T > t |T < +∞,μ)

over the exponential (λ) distribution of μ, to obtain
P(T > t |T < +∞;λ), the system’s survivability. That
is, obtain

P(T > t |T < +∞;λ) =
∫ ∞

0

e−μτ − e−μ

1 − e−μ
λe−λμ dμ.

The above expression is cumbersome to evaluate.
However, for μ large (i.e., for M large—a system with
many faults) we may consider the approximation

P(T > t |T < +∞;λ) ≈
∫ ∞

0
e−μτλe−λμ dμ

= λ

λ + τ
,

(5.4)

for τ = 0,1/2,2/3, . . . ,1. Since λ
λ+τ

→ λ
λ+1 , as t ↑

∞, the above approximation results in a survival func-
tion that is defective. To correct for this defect, we sub-
tract λ

λ+1 and normalize (details in Appendix A) to ob-
tain the system’s survivability function as

P(T > t |T < +∞;λ) = λ(1 − τ)

λ + τ
.

Since λ(1 − τ)/(λ + τ) = 1 when t = 0, and it ↓ 0 as
t ↑ ∞, the survivability function is proper.

To summarize, under the assumption that μ is large
(i.e., λ is small), the system survivability function is
approximated as

P(T > t |T < +∞;λ)

= λ(1 − τ)

λ + τ
, τ = 0,

1

2
,

2

3
, . . . ,1.

(5.5)

5.3.1 The conditional reliability and survivability
functions. The matter of filtering reliability and track-
ing survivability (see Section 6) entails an assessment
of quantities like P(T > t +k|T > t,T < +∞,μ) and
P(T > t + k|T > t,T < +∞;λ). Using the fact that
P(T > t |T < +∞,μ) is given by equation (5.3), it is
easy to verify that

P(T > t + k|T > t,T < +∞,μ)

= e−μτ∗ − e−μ

e−μτ − e−μ
,

(5.6)

where τ ∗ = (t + k)/(t + k + 1).
Using L’ Hospital’s rule, it can be verified that for

any value of k, P(T > t + k|T > t,T < +∞,μ)

equals to one, as t → ∞, and this is intuitively satis-
fying.

Averaging the right-hand side of equation (5.6) with
respect to �(μ|T > t,T < +∞;λ)—the posterior dis-
tribution of μ—gives us the conditional survivability
function

P(T > t + k|T > t,T < +∞;λ)

=
∫ ∞

0

e−μτ∗ − e−μ

e−μτ − e−μ
�(μ|T > t,T < +∞;λ)dμ.

Here again, this expression is cumbersome to evaluate,
but for large μ, it can be approximated as

P(T > t + k|T > t,T < +∞;λ)

≈
∫ ∞

0

e−μτ∗

e−μτ
�(μ|T > t,T < +∞;λ),

where by Bayes’ law

�(μ|T > t,T < +∞;λ)

∝ P(T > t |T < +∞,μ)�(μ;λ).

The middle term of the above expression is given by
the right-hand side of equation (5.3), and the last term
is the prior for μ, namely, λe−λμ. For μ large, the
middle term can be approximated as e−μτ , and so the
posterior of μ is approximated as �(μ|T > t,T <

+∞;λ) = c∗ · e−μτ · λe−λμ = c∗λe−μ(λ+τ), where c∗
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is the constant of proportionality; its value turns out to
be c∗ = (λ + τ)/λ. With the above in place, the poste-
rior distribution of μ is

�(μ|T > t,T < +∞;λ)

≈ (λ + τ)e−(λ+τ)μ, τ = 0,
1

2
,

2

3
, . . . ,1.

(5.7)

Note that as t → ∞, this posterior converges to a fixed
distribution, namely, an exponential distribution with
scale parameter (λ + 1). The implication of this result
is that when μ is large, there is a limit to what can be
learned about μ, irrespective of how many successful
runs of the system are observed. Interestingly, when
there is no restriction placed on μ, the posterior dis-
tribution of μ is proportional to [(e−μτ − e−μ)/(1 −
e−μ)]λe−λμ, and this approaches zero as t goes to in-
finity.

Plugging the exponential (λ + τ) distribution in the
expression for the conditional survivability function
given before, we have

P(T > t + k|T > t,T < +∞;λ)

≈
∫ ∞

0
e−μ(τ∗−τ)(λ + τ)e−(λ+τ)μ dμ(5.8)

= λ + τ

λ + τ ∗ .

Analogous to equation (5.6), the result of equation
(5.8) is intuitively satisfying, because as t → ∞,
λ+τ
λ+τ∗ → 1; similarly, for k = 0. Furthermore, when
t = 0,

λ + τ

λ + τ ∗ = λ(k + 1)

λ(k + 1) + k
,

which is what we would also obtain via equation (5.4),
when τ is taken to be k/(k + 1). Note that λ(k +
1)/[λ(k + 1) + k] is not the result we will get using
equation (5.5) with τ taken as k/(k + 1). This is be-
cause the right-hand side of equation (5.6) is tanta-
mount to taking the ratio of the improper distribution
of P(T > t |T < +∞;λ)—namely, equation (5.4).

5.3.2 Failure rate of the survivability function. Anal-
ogous to the material of Section 5.2, we consider
here the predictive failure rate (Singpurwalla, 2006,
page 66) of the survivability function at T = τ , namely,

P(T = t |T > t − 1, T < +∞;λ)

= 1 − P(T > t |T < +∞;λ)

P (T > t − 1|T < +∞;λ)
,

where

P(T > t |T < +∞;λ) = λ(1 − τ)/(λ + τ);

see equation (5.5). It now follows that the predictive
failure rate at T = t is

1 − (t − 1)(λ + 1)

t (λ + 1) + λ
· λ

t(λ + 1) + λ
.

Verify that the failure rate function decreases in t ,
starting from 1 at t = 1, and decreasing to zero as t →
∞. This is to be expected because having not observed
a failure over several trials, increases our strength of
belief that the number of faults in the system is small,
and also that the P which spawns the Ti’s is small.

5.4 Relationship to Cure and Frailty Models of
Biostatistics

The scenario leading to equation (5.1) has a parallel
in the “cure models” of biostatistics (cf. Chen, Ibrahim
and Sinha, 1999). Conceptually, consider an individ-
ual possessing an unknown number, say M , of carcino-
genic cells, each of which can spawn a continuous la-
tent random variable Ti , i = 1, . . . ,M . Each Ti is the
time for cell i to produce a detectable cancer. The Ti’s
are (perhaps unrealistically), assumed independent and
identically distributed with distribution function F(T ),
where F(0) ≡ 0. If T is the time for the cancer to re-
lapse, then T = min(T1, . . . , Tm), and

P(T > t |M) = [
1 − F(t)

]M
.

If M is assumed Poisson (μ), then

Ḡ(t;μ) = P(T > t;μ) = exp
(−μF(t)

)
.

As suggested by a referee, the above formula can also
be reproduced via alternate arguments involving addi-
tive hazard rates.

As t → ∞, F(t) → 1, and so Ḡ(t;μ) → e−μ, im-
plying a nonzero probability mass at t = ∞. In bio-
statistical contexts, t = ∞ is interpreted as an indi-
vidual being cured of the disease, and thus Ḡ(t;μ) is
known as a cure model. The quantity e−μ is known
(cf. Tsodikov, Ibrahim and Yakovlev, 2003) as the cure
fraction.

It is common to assume that F(t) is a Weibull distri-
bution with unknown parameters. However, if F(t) =
t/(t + 1), a location-shifted Pareto distribution with
scale 1, then

Ḡ(t;μ) = exp
(−μt/(t + 1)

)
, t > 0,

which parallels our equation (5.1). Thus, in the spirit
of this paper, a cure model of biostatistics would be
interpreted as the strength of propensity to survive of
an individual undergoing medical therapy.
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Despite the above parallel, there are differences, two
minor and one substantive. Regarding the minor dif-
ferences, the first pertains to the fact that the T in
our case is discrete because it represents the number
of successful trials an entity experiences, whereas the
T of cure models represents survival times. The sec-
ond difference is brought about by the feature that the
Beta-Geometric distribution of Section 5.1 has a con-
structive development, whereas the F(t) in cure mod-
els is assumed, and then statistically validated. Infer-
ence in cure models pertains to the estimation of μ

and the unknown parameters of F(t). For the former,
it is common to assume a link function of the form
μ = exp(x′β), where x is a (k×1) vector of covariates,
and β a vector of unknown parameters. This heavy in-
frastructure of parameters is typical of work on cure
models. It makes the task of inference challenging, a
task admirably well addressed in the biostatical litera-
ture (cf. Section 7 of Tsodikov, Ibrahim and Yakovlev,
2003).

The key point of departure between the material of
this paper, and that on cure models pertains to dynam-
ics. The μ in cure models is assumed unknown, fixed,
and dependent only on the values of the covariates at
the time T is assessed. This means that the cure frac-
tion e−μ remains static throughout the course of the
therapy. Because the effect of the therapy would be to
eliminate or transform cancerous cells, it is meaning-
ful to make μ a function of the time of assessment.
This would be akin to how, in the model of this paper,
μ is assumed to change because of fault elimination.
Thus, from a synergestic viewpoint, our proposed en-
hancement of cure models would be to endow a dy-
namic to μ. A way to do this would be via a system
equation of a filtering mechanism. A strategy for doing
so is the topic of Section 6. For now, it suffices to say
that the nature of the system equation should encapsu-
late the perceived character (aggressive or benign) of
the cure therapy. Connection with the commonly con-
sidered cure models, and a possible approach for en-
hancing them, can be seen as an added motivation for
considering the model proposed here.

5.4.1 The incorporation of key qualities and frailty
models. A referee of this paper inquired about its pos-
sible relationships with frailty models of biostatistics,
whereas a second referee expressed concerns via the
claim that any concept of propensity should entail a
description of an item’s key qualities. Interestingly, and
fortuitously, the two matters are linked. This is because
expressions for the strength of propensity can also be

produced via the proportional hazards model of Cox
(1972).

Specifically, recall, that up until now we have dis-
cussed two directions via which a model for the
strength of propensity can be developed. One is by in-
voking the judgment of indifference and symmetry of
lifetimes; Sections 2.2 and 2.3 embody this approach.
The second direction is via a constructive development
based on probability modeling. The material of Sec-
tion 5.1 and the cure model of this section are exam-
ples. There is a third approach popular in biostatistics
(cf. Clayton, 1991), and in accelerated life testing (cf.
Escobar and Meeker, 2006). The virtue of this third
approach is its facility to incorporate biological covari-
ates and the physical qualities of the entity of interest
into the analysis.

This third approach focusses on the failure rate of an
item’s survival function, instead of the lifetimes them-
selves, as the first two approaches do. Specifically, it
parameterizes the failure rate function in terms of an
item’s biometric covariates, or its physical qualities,
depending on the situation at hand. Thus, in the context
of this paper, if h(t) denotes an item’s model propen-
sity rate (see Section 5.2), then h(t) is parameterized
as

(5.9) h
(
t |β;λ0(t),z

) = λ0(t) exp
(
β ′z

)
,

where h0(t) is some baseline propensity rate, z a vec-
tor of covariates (or an item’s physical quantities), and
β a vector of unknown parameters. Implicit to equation
(5.9) is the assumption that λ0(t) and z are specified,
the latter by direct measurement, so that the only un-
known is the vector β . Conditional on β , an analogue
of equation (5.1) would be

P(T > t |β; ·) = exp
(
−

∫ t

0
h(t |β; ·) dt

)
,

and unconditioning on β with respect to its prior or
posterior distribution will yield an item’s survivability
function—an analogue of equation (5.5). The relation-
ship of equation (5.9) generalizes to the case wherein z
is a function of time, and even when z is an unknown
function of time, so that Z(t) is a stochastic process
(cf. Singpurwalla, 1995).

Another kind of generalization of the proportional
hazards model leads to frailty models (see Clayton and
Cuzick, 1985). Such models allow for positive asso-
ciation between survival times, an association similar
to that of exchangeability. To see why, recall that an
exchangeable sequence can be generated via mixtures
of independent identically distributed random variables
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in the spirit of Theorem 2.1, and the related theorems
of Hewitt and Savage (1955). A frailty model gener-
ates a dependent sequence of lifetimes by considering
mixtures of failure rates, in the sense described be-
low.

Suppose that the relationship of equation (5.9) is ex-
tended to include an additional unknown and unobserv-
able parameter ξ which is endowed with a prior distri-
bution; ξ is called a fraility. Now

(5.10) h
(
t |β, ξ ;λ0(t),z

) = λ0(t)ξ exp
(
β ′z

)
.

The motivation behind the above relationship is that
it is often the case that disease occurrence happens
in clusters within families, either because of shared
environmental exposures or genetic dispositions. The
frailty parameter ξ is therefore shared by all mem-
bers within a family. Furthermore, individual members
have different frailties, and those who are the most frail
will experience adverse effects earlier than the oth-
ers. Consequently, it makes sense to endow a proba-
bility distribution to ξ , and such distributions serve a
purpose similar in spirit to the mixing distributions of
de Finetti’s theorem and its generalizations. A conse-
quence is that a hierarchical construction is induced
on an item’s model propensity rate. Alternatively put,
frailty models entail mixtures of failure rates, whereas
exchangeability entails mixtures of lifetime distribu-
tions. The net effect of both is a collection of inter-
dependent lifetimes.

In frailty models, a commonly used distribution for
ξ is the gamma distribution; see equation (4.2) of
Clayton (1991). Aalen (1988) discusses other mixing
distributions for ξ and invokes these in the context of
analyzing two data sets of interest to him.

In the context of reliability, frailty models have ap-
peared in connection with models for system reliabil-
ity (cf. Lindley and Singpurwalla, 1986) and in mat-
ters pertaining to burn-in testing; see Block and Savits
(1997). Whereas a connection between frailty model-
ing and burn-in testing remains to be articulated, it does
seems to be there all the same. This is because the pur-
pose of burn-in is to eliminate components that are the
most frail in order to obtain a batch of items that have
more robust lifetimes.

6. FILTERING RELIABILITY AND TRACKING
SURVIVABILITY

By filtering, we mean the updating of one’s assess-
ment of uncertainty about an unknown state of nature
in the light of data and/or the physical dynamics of

a system. Filtering entails two relationships, an ob-
servation equation, and a state (or system) equation.
The former describes a connection between what is ob-
served and the state of nature. The latter—irrespective
of the basis on which it is specified—is tantamount to
a prior distribution on the state of nature. This distribu-
tion changes over time, either due to the added knowl-
edge gleaned from observations, or due to the physical
evolution of the system. The basic idea underlying the
above conceptualization dates back to Laplace, who
claimed that the Bernoulli parameter P was the cause
of an observed binary random variable, and that one’s
knowledge about P changes as more and more binary
observations are obtained. With filtering, the added di-
mension is to make provision for the P itself to change
over time due to the physics of the scenario.

In the context of our set-up for reliability growth, the
unknown state of nature is μ, where μ is embedded in
equation (5.1). The dynamics of μ are the result of the
fault removal/addition process, and is encapsulated in
the prior for μ. In any scenario pertaining to filtering
based on lifetimes, one encounters two types of obser-
vations, censored or uncensored. That is, at any trial
t > 0, one either observes a success, wherein {T > t},
or a failure wherein {T = t}. Each case spawns its own
observation equation and this may one strike as being
anathema to the Bayesian paradigm, because the model
that is used for inference depends on the observed data.
However, this is not an issue, because it is the prior on
μ that should not depend on the observed data.

In Section 6.1, we discuss the case of filtering under
{T > t}, and in Section 6.2, the case of {T = t}. Sec-
tion 6.3 describes the more realistic case of filtering
under the mixed case of both complete and censored
observations.

6.1 Filtering under Censorship

Suppose that a system under consideration is ob-
served to have survived t > 0 demands. Then tracking
its survivability entails assessing, at time t , the uncon-
ditional probability P(T > t + k;T > t,T < +∞, λ),
for any specified k = 0,1,2, . . . . Contrast this proba-
bility to the conditional probability P(T > t + k|T >

t,T < +∞;λ), conditioned on the event {T > t}.
An assessment of this conditional probability was dis-
cussed in Section 5.3.1. In the filtering scenario, the
event {T > t} has actually been observed.

To proceed formally, we adopt the irrealis (see
Singpurwalla, 2016) mood and start by considering
the conditional probability P(T > t + k|T > t,T <
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+∞;λ), and follow the development of Section 5.3.1
to write
P(T > t + k|T > t,T < +∞;λ)

=
∫ ∞

0

e−μτ∗ − e−μ

e−μτ − e−μ
�(μ|T > t,T < +∞;λ)dμ,

where the middle term on the right-hand side can be
interpreted as the observation equation

P(T > t + k|T > t,T < +∞,μ) = e−μτ∗ − e−μ

e−μτ − e−μ
,

and the last term, namely,
�(μ|T > t,T < +∞;λ)

∝ P(T > t |T < +∞,μ)�(μ;λ),

as the system equation.
The above is straightforward, save for the caveat

that since {T > t} is actually observed, P(T > t |T <

+∞,μ) cannot be a probability. Rather, it is the like-
lihood of μ with {T > t} known, written L(μ;T >

t,T < +∞). Thus, the system equation gets re-written
as

�(μ;T > t,T < +∞, λ)

∝ L(μ;T > t,T < +∞)�(μ;λ),
(6.1)

and the expression for tracking survivability gets writ-
ten as P(T > t + k;T > t,T < +∞, λ).

Were one to subscribe to the philosophical principle
of conditionalization (cf. Howson and Urbach, 2006,
page 81), commonly invoked in Bayesian inference,
then the likelihood of μ is obtained by reversing the ar-
guments in the probability model for {T > t}, namely
equation (5.3). When such is the case

L(μ;T > t,T < +∞) = e−μτ − e−μ

1 − e−μ
≈ e−μτ ,

for μ large, and τ = t/(t + 1). Since τ takes the values
1
2 , 2

3 , . . . ,1, the likelihood of μ is enveloped between
e−μ and e−μ/2; see Figure 2.

Under this choice of the likelihood function, the pos-
terior distribution of μ, with {T > t} observed, is an ex-
ponential distribution with a scale parameter (λ + τ).
This means that under censorship, a change in μ is
purely due to a change of opinion brought about by
added information. It is not due to the dynamics of the
system—a matter that arises when the observation is a
complete one, namely, {T = t}; see Section 6.2.

As a consequence of the above posterior distribution,
the system’s survivability function (having assumed
that μ is large), can be approximated as

(6.2) P(T > t + k;T > t,T < +∞, λ) ≈ λ + τ

λ + τ ∗ ,

where τ = t
t+1 and τ ∗ = λ+k

t+k+1 .

FIG. 2. The likelihood envelope for any fixed τ .

The development above parallels that of Section
5.3.1, the only difference being that the T > t is no
longer a conditioning event, and that the conditional
probability P(T > t |T < +∞,μ) of Section 5.3.1 is
now interpreted as a likelihood. However, there is a
philosophical import of the result of equation (6.2). It
has to do with the claim that no amount of observa-
tion can ever prove a law (e.g., Laplace’s rule of suc-
cession), and the dilemma this posed to the likes of
Jeffreys (see Singpurwalla and Wilson, 2004). Since
P(T > t +k;T > t,T < +∞, λ) tends to 1 as t → ∞,
irrespective of whether k < 0 or k > 0, we have here a
scenario wherein an infinite number of successful tests
do prove a law, namely, the law that the system is in-
fallible.

6.2 Filtering under Observed Failures

Suppose that the system under test experiences a fail-
ure at T = t , for some t > 0. Associated with the event
{T = t}, one will also observe nt number of faults,
where nt ≥ 1; in what follows we do not account for
the nature and the type of faults. Once a system failure
is encountered, the failure-causing faults are attempted
to be eliminated. However, the fault elimination pro-
cess may also result in the introduction of new faults.
It is the process of fault elimination and introduction
which gives the system its dynamics, because the net
effect of these actions is to cause μ to change. The
dynamics of μ are encapsulated via a hierarchically
constructed prior for μ; see Section 6.2.1. This prior
distribution will go to determine the filtering mecha-
nism’s observation equation. Under the above set-up,
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one’s assessment of the uncertainty about μ will be up-
dated based on the consequence of observing the event
{T = t}, and also on the value of t itself. A large t

signals a small μ and vice-versa. Alternatively put, a
failure causes μ to change because of the dynamics
of fault removal, and the exact time of failure changes
one’s opinion of μ.

Following the line of reasoning adopted in Sec-
tion 6.1, tracking the system’s survivability having ob-
served a failure at say T ∗ = t , and nt the number of
faults, and having attempted to eliminate the faults, we
inquire as to what T > t + k is. That is, we need to as-
sess P(T > t +k;T ∗ = t, nt , ·). To do so, we adopt the
irrealis mood by conditioning on T ∗ = t , and extend-
ing the conversation to μ (see Lindley, 1990), obtain
P(T > t + k|T ∗ = t;nt , ·) as∫ ∞

0
P

(
T > t + k|T ∗ = t,μ

)
· �(

μ|T ∗ = t;nt , ·)dμ.

(6.3)

Using equation (5.3), and assuming that μ is large and
t is moderate, the first term in the above expression
can be approximated as e−μτ̂ , where τ̂ = k+1

t (t+k+1)
; see

Appendix B for details. Thus, equation (6.3) simplifies
as

P
(
T > t + k|T ∗ = t;nt , ·)
≈

∫ ∞
0

e−μτ̂�
(
μ|T ∗ = t;nt , ·)dμ.

(6.4)

The last term in the above expression is the posterior
distribution μ, and the challenge is to obtain this dis-
tribution incorporating the nuances of the fault elim-
ination/introduction process. Recall that this posterior
distribution is to be interpreted as the system equation
of the filtering and tracking mechanism.

6.2.1 A hierarchically constructed prior on μ. We
start with the assumption that conditional on some
δ > 0, and with λ specified, μ has an exponential dis-
tribution with a scale parameter δλ. That is,

�(μ|δ;λ) = δλ exp(−δλμ), μ > 0.

We next assume that δ itself has an exponential dis-
tribution with parameter ω, where ω is also specified.
That is,

�(δ;ω) = ω exp(−ωδ), δ > 0.

The rationale for these choices is the following. When
δ > 1, μ decreases (stochastically); this accommo-
dates the feature that the failure-causing faults are
eliminated. When δ < 1, μ increases (stochastically),

and this incorporates the feature that new faults could
be introduced into the system. When δ = 1, μ does
not experience a physically caused change; this hap-
pens when T > t is observed. The behavior of δ

therefore captures the dynamics of the fault elimi-
nation/introduction process. As a consequence of the
above, the prior on μ is a location-scale Pareto distri-
bution with λ and ω as specified parameters; that is,

(6.5) �(μ;λ,ω) = λω

(λμ + ω)2 , μ > 0.

This prior distribution is heavy tailed, and has no mo-
ments. Its virtue is a type of conjugacy which simplifies
the process of obtaining a closed form posterior distri-
bution of μ; see Section 6.2.2 below.

6.2.2 Subjective likelihood of δ and induced pos-
terior of μ. Since the parameter δ influences μ, and
since δ controls the dynamics of the process, it makes
sense to specify a likelihood of δ under the observed
(T = t) and nt , and to then obtain its posterior distri-
bution. This posterior distribution can be used to in-
duce the posterior distribution of μ. Such a schemata
obviates the need for specifying a likelihood of μ—
which can be a cumbersome exercise—and then ob-
taining a posterior distribution of μ. In what follows,
we describe the mechanics of the above process.

Likelihood functions are conventionally specified by
leaning on the principle of conditionalization, which
boils down to reversing the arguments in a probabil-
ity model. However, likelihood functions can also be
specified via subjective arguments (cf. Singpurwalla,
2007), and this is what is done in the case of δ. Specif-
ically, the likelihood of δ in its posterior distribution

�(δ;T = t, nt ,ω) ∝ L(δ;T = t, nt )�(δ;ω),

is subjectively specified as

L(δ;T = t, nt ) = exp
(−δf (t)g(nt )

)
,

where f (t) is a decreasing function of t and g(nt ) an
increasing function of nt . As an example, f (t) = 1/t

and g(nt ) = nt . This likelihood is an exponentially de-
creasing function of δ, with the rate of decrease de-
termined by J = f (t)g(nt ). The rationale behind this
choice is:

(i) When t is large, J is small, and thus δ is large
signaling a growth in reliability, because E(μ|δ;λ) =
1/λδ.

(ii) When nt is large, J is large, and this encapsu-
lates the feature that in the process of eliminating a
large number of the nt faults, a large number of new
faults may also be introduced in the system.
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(iii) When both nt and t are large, their effects tend
to cancel out, suggesting that at the later stages of test-
ing, there is a greater tendency to eliminate faults with-
out introducing new ones.

Other forms of the likelihood are of course possible.
With the likelihood given above, the posterior distri-
bution of δ is an exponential with a scale parameter
(ω + nt/t). That is,

�(δ;T = t, nt ,ω) =
(
ω + nt

t

)
exp

(
−δ

(
ω + nt

t

))
.

From the hierarchical construction which resulted in
the location-scale Pareto as a prior distribution of μ—
namely, equation (6.5)—the posterior distribution of μ

with T = t and nt specified, is also a location-scale
Pareto; specifically,

�(μ;T = t, nt , λ,ω)

= λ(ω + nt/t)

(λμ + ω + nt/t)2 , μ > 0,
(6.6)

and as mentioned before, this is the system equation of
the filtering algorithm. As pointed out by a referee, the
relationship between equations (6.5) and (6.6) suggest
a connection between the proposed construction of the
prior, and the theory of invariant conditional distribu-
tions due to Bather (1965).

6.2.3 Assessing the survivability function. The pen-
ultimate step of this section is assessing the system’s
survivability, namely, assessing the predictive distribu-
tion of T , having observed T = t , and nt . This would
entail invoking the result of equation (6.6) in the con-
text of equation (6.4), suitably re-written to account for
the fact that (T = t) has actually been observed. That is
we need to assess P(T > t + k;T = t, nt , λ,ω), which
for large μ can be approximated [see equation (6.4)] as

P(T > t + k;T = t, nt , λ,ω)

≈
∫ ∞

0
e
−μ[ k+1

t (t+k+1)
]
�(μ;T = t, nt , λ,ω)dμ.

If we set ω̃ = (ω + nt/t), then with τ̂ = k+1
t (t+k+1)

, the
above relationship becomes∫ ∞

0
e−μτ̂ λω̃

(λμ + ω̃)2 dμ

= 1 + eτ̃ ω̃/λ

(
τ̃ ω̃

λ

)
Ei

(
− τ̃ ω̃

λ

)
,

where Ei(z) = − ∫ ∞
−z

e−u

u
du is the exponential integral

function; see Appendix C for details.

To obtain a closed form expression for the surviv-
ability function, one possibility is to approximate the
expression for the posterior distribution of μ, namely,
λω̃/(λμ + ω̃)2 by an exponential function θe−μθ ,
where θ = λ/ω̃ and λ  ω̃. The rationale behind this
latter choice is that when μ = 0, λω̃/(λμ+ ω̃)2 = λ/ω̃,
whereas with μ = 0, θe−μθ = θ . Thus to match the
two functions at μ = 0, we set θ = λ/ω̃. The require-
ment that λ  ω̃ is motivated by the feature that the
location-scale Pareto distribution has an infinite first
moment, which is tantamount to the requirement that
1/θ—the mean of the exponential distribution—be in-
finite. This can happen when λ  ω̃. Because small
values of λ and large values of ω̃ correspond to large
values of μ, the proposed approximation is appropriate
when the prior assumption that the system has many
faults is germane. The quality of the approximation is
discussed in Appendix D.

As a consequence of the proposed approximation,
the system’s predictive distribution is given as P(T >

t + k;T = t, nt , λ,ω) ≈ ∫ ∞
0 e−μτ̂ θe−θμ dμ, from

which it follows that for λ  ω̃ = (ω + nt/t),

(6.7) P(T > t + k;T = t, nt , λ,ω) = θ

θ + k+1
t (t+k+1)

,

where θ = λ/ω̃. Verify that when t gets large, the
above probability becomes closer to one, as is to be
expected. Furthermore, when k = 0, this probability is,
for any t < +∞, less than one, and this makes sense.
Equation (6.7) prescribes the survivability of a system
that has encountered a failure at t with nt observed
faults, which have been attempted to be eliminated.

6.3 Filtering Under Censored and Complete
Observations

In this section, we propose an algorithm for ad-
dressing the more realistic scenario of filtering when
censored and complete observations get intermingled.
That is, an observed failure at t is, after suitable at-
tempts at fault elimination, followed by a survival at
(t + 1), or a survival at t is followed by a failure at
(t +1). The matter is less than straightforward because
the posterior distributions of μ under censored and un-
der complete observations are members of different
families, exponential per Section 6.1, and a location-
scale Pareto, per Section 6.2. An observed survival
adds to the parameter λ whereas an observed failure
adds to the parameter ω. The lack of a common fam-
ily poses a difficulty when transiting from an observed
survival at trial t , to an observed failure at trial (t + 1).
A way out of this difficulty is to make the schemata of
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Sections 6.1 and 6.2 work in concert via an algorithm
described below. The algorithm entails an approxima-
tion, the basis of which is the material of Appendix D
which pertains to a strategy for replacing a location-
scale Pareto with a suitably matched exponential. In the
case of observed failures, the location-scale Pareto pro-
vides a prescription for updating the underlying param-
eters, whereas the approximating exponential provides
a mechanism for transiting from a prior to a posterior
in closed form.

In the interest of clarity, it is desirable to index the
parameters λ and ω by their associated trial numbers,
so that with λ0 and ω0 denoting their starting values,
λt−1 denotes the value of λ prior to an observation at
t , and λt the value of λ posterior to an observation at t .
In principle, the posterior value of a parameter at t , be-
comes its prior value at (t + 1), similarly, with the pa-
rameter ω.

6.3.1 The filtering algorithm. For purposes of dis-
cussions, focus on trial t . Prior to an observation at
t , we have at hand λt−1 and ωt−1. Were a survival
to be observed at t , that is, T > t , then the poste-
rior distribution of μt would be an exponential (λt ),
where λt = λt−1 + t

t+1 . By contrast, were T = t to
be observed, then the posterior of μt would be a
location-scale Pareto with parameters λt = λt−1 and
ωt = ωt−1 + nt/t , where nt is the observed number
of faults at t .

Now suppose that at trial (t + 1) we observe a sur-
vival, that is, T > (t + 1). Then the posterior distri-
bution of μt+1 will depend on what was observed at
trial t . If it was a survival, then the posterior of μt+1
will be an exponential with parameter λt+1 = λt + t+1

t+2 .
If, however, T = t , the posterior of μt+1 will be the
approximating exponential λt+1 where λt+1 = λt

ωt
+

t+1
t+2 .

By contrast, suppose that the trial at (t + 1) results
in an observed failure, that is, T = (t + 1). Then, the
posterior distribution of μt+1, should T = t , will be a
location-scale Pareto with λt+1 = λt and ωt+1 = ωt +
nt+1
t+1 , where nt+1 is the number of faults associated with
the observed failure at (t + 1). However, were T > t

to be observed at trial t , then the posterior distribution
of μt+1 would also be a location-scale Pareto but with
λt+1 = λt and ωt+1 = ωt−1 + nt+1

t+1 ; we use here ωt−1
and not ωt , because the observed survival at t does not
update the parameter ω.

Appendix E provides a graphic of the proposed al-
gorithm.

6.3.2 Discussion of the algorithm. The proposed al-
gorithm is atypical of filtering, because of the switch in
the prior of μ from an exponential to a Pareto, depend-
ing on whether a survival of a failure is observed. This
could, from a Bayesian point of view, be objectionable.
Priors are supposed to be chosen before observing any
data.

However, such an objection can be overruled on two
grounds:

(i) The switched priors pertain to two different ob-
servation equations: one for censored observations, and
the other for complete observations.

(ii) The switched priors carry information about μ

from its immediately preceding posterior, and the strat-
egy of when to switch is declared in advance, contin-
gent on what will be observed.

Indeed, the filtering procedure proposed here is unique,
because it entails two types of observation and sys-
tem equations. These are necessitated by the intermin-
gled occurrence of censored and complete observa-
tions. Such observations are characteristic of survival
time data. To the best of our knowledge, there appears
to be a dearth of literature on filtering under censor-
ship. Thus, it is our view that the approach proposed
here is a prototype for filtering, prediction and control
under complete and censored observations.

7. SUMMARY AND CONCLUSIONS

In essence, this paper comprises of two parts, a con-
ceptual part and a methodological part. In principle,
each part may be appreciated independently of the
other. The conceptual part is spawned by the method-
ological part. The latter is motivated by the need to ad-
dress a class of problems that occur in the actuarial,
the biological and the engineering sciences. To address
such problems, a conceptual framework is needed, and
the philosophical part of the paper pertains to develop-
ing the framework. But the process of doing so raises
issues that question the foundational underpinnings of
reliability and of survival analysis. These issues stem
from the meaning of probability, the methods of quanti-
fying uncertainty and their relevance in the contexts of
the life sciences. Embedded within these issues are the
long ignored notions of propensity and chance. Also
overlooked, or perhaps unrecognized, are some paral-
lels in the perspectives of Pierce, Popper, de Finetti and
Kolmogorov on matters of uncertainty and causality.
The viewpoint arrived upon in this paper is that the no-
tions of chance and propensity need to work in con-
cert with that of personal probability to produce the
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framework we need. A consequence is that reliabil-
ity should be interpreted as a strength of propensity—
and not as a probability—the strength of propensity be-
ing quantified via a mathematical model with unknown
parameters. Often this model is a well-known failure
model like the exponential and the Weibull, though this
need not be so. One’s uncertainty about the strength of
propensity, encapsulated as a personal probability, is
known as survivability. Since survivability can be op-
erationalized via a 2-sided bet, it is the survivability of
an item that should be of relevance in practice. There
are broader implications to this paradigm shift because
it goes beyond the life sciences and sits at the doorstep
of applied probability itself. In particular, topics such
as inventory, queueing, Kalman filtering and time se-
ries analysis need to be revisited, namely their founda-
tional underpinnings.

From a methodological point of view, this paper
makes the claim that an item’s performance character-
istics change over time due to the acquisition of im-
munity, clinical therapies and defect elimination, and
must therefore be time indexed. This means that the
lifetime characteristics of an item should be analyzed
using the techniques of filtering and tracking. An illus-
tration of how this can be done, albeit with a plethora
of approximations, occupies the bulk of the latter part
of this paper. The filtering algorithm presented here is
by no means a final word. It is merely an indication
of possibilities without resorting to numerical methods
or heavy computing via Monte Carlo. More important,
the algorithm presented here has the makings of a pro-
totype approach for filtering and control in the presence
of complete and partial observations, a topic on which
there appears to be a dearth of literature.

APPENDIX A: NORMALIZING THE APPROXIMATE
SYSTEM SURVIVABILITY FUNCTION

Subtracting λ/(λ + 1) from λ/(λ + τ) and normal-
izing via a constant C, we have

P(T > t |T < +∞;λ) = C

(
λ

λ + τ
− λ

λ + 1

)

= λ

λ + 1

(1 − τ)

λ + τ
C,

which for t ↑ ∞ (i.e., τ = 1) must be 0 for any value
of C, which it is. However, when t = 0 (i.e., τ = 0),

λ

λ + 1

(1 − τ)

λ + τ
C = 1,

only when C = (λ + 1). Thus, the normalized sys-
tem survivability function is P(T > t |T < +∞;λ) =
λ(1−τ)
λ+τ

.

APPENDIX B: ASSESSING CONDITIONAL
PROBABILITY UNDER FAILURE

We need to assess

P(T > t + k|T = t,μ,T < +∞)

= P(T > t + k|μ,T < +∞)

P (T = t |μ,T < +∞)
,

where [see equation (5.3)],

P(T > t + k|μ,T < +∞) = e−μ( t+k
t+k+1 ) − e−μ

1 − e−μ
,

and

P(T = t |μ,T < +∞) = P(T > t − 1|μ,T < +∞)

− P(T > t |μ,T < +∞).

Thus, the required probability, when μ is large, is ap-

proximately e−μ( t+k
t+k+1 )/[e−μ( t−1

t
) − e−μ( t

t+1 )]. Divid-

ing the numerator and denominator by e−μ( t−1
t

), we
have

P(T > t + k|T = t,μ,T < +∞)

≈ e
−μ[ k+1

t (t+k+1)
]

1 − e−μ( t
t+1 )

≈ e
−μ[ k+1

t (t+k+1)
]
,

if μ � t .

APPENDIX C

To evaluate the quantity
∫ ∞

0 e−μτ̂ λω̃
(λμ+ω̃)2 dμ, where

τ̂ = (k + 1)/[t (t + k + 1)] and ω̃ = (ω + nt/t), we

FIG. D.1. The plot of D(�) as a function of �.
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FIG. E.1. Schemata of the filtering algorithm.

integrate by parts to obtain

∫ ∞
0

e−μτ̂ λω̃

(λμ + ω̃)2 dμ = 1 −
∫ ∞

0
e−μτ̂ τ̂ω

λμ + ω
dμ

= 1 − τ̂ω

λ
eτ̂ω/λ

∫ ∞
τ̂ω/λ

e−u

u
du,

from which it follows that∫ ∞
0

e−μτ̂ λω̃

(λμ + ω̃)2 dμ = 1 + τ̂ω

λ
eτ̂ω/λEi

(
− τ̃ ω̃

λ

)
,

where Ei(z) = − ∫ ∞
−z

e−u

u
du.

APPENDIX D: APPROXIMATING A
LOCATION-SCALE PARETO BY AN EXPONENTIAL

We wish to approximate the function λω̃
(λμ+ω̃)2 by

θe−μθ , where θ = λ/ω̃. If we set � = 1/θ = ω̃/λ,
then λω̃

(λμ+ω̃)2 = �
(μ+�)2 = h(μ), say, and θe−μθ =

1
�e−μ/� = �(μ), say.

Define D(�) = ∫ ∞
0 |h(μ) − �(μ)|2 dμ. Then a plot

of D(�) as a function �—shown in Figure D.1—
reveals the feature that as � increases D(�) decreases,
and that when � > 3, D(�) < 0.001. Thus, the larger
the ratio ω̃/λ, the better the approximation.
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APPENDIX E: A GRAPHIC OF THE FILTERING
ALGORITHM FOR μ

In Figure E.1, S(F ) denotes survival (failure), where
survival means that T > t and failure means that T = t .
Furthermore, E(λ) denotes an exponential distribu-
tion with scale parameter (λ) and P(λ,ω) denotes a
location-scale Pareto distribution with parameters λ

and ω. The state of nature μ, encapsulated via a pos-
terior distribution and its parameters, is encased in the
rectangular boxes, whereas the circles denote random
nodes at which either an S or an F is observed; asso-
ciated with an F is also nt , the number of observed
faults.
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