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Issues in Robustness Analysis
Michael Goldstein

Abstract. How may we develop methods of analysis which address the con-
sequences of the mismatch between the formal structural requirements of
Bayesian analysis and the actual assessments that are carried out in practice?
A paper by Watson and Holmes provides an overview of methods developed
to address such issues and makes suggestions as to how such analyses might
be carried out. This article adds commentary on the principles and practices
which should guide us in such problems.
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The Bayesian statistical approach is justified in two
quite different ways. First, it is considered to be a prin-
cipled approach, deriving procedures from a simple
and natural collection of axioms. Second, it is justified,
pragmatically, on the basis that it seems to give rea-
sonable answers to otherwise difficult problems, which
incorporate all of the information that we consider rel-
evant for our solutions. However, as the problems that
we analyse become increasingly complex, it becomes
correspondingly more difficult to be sure either that we
have represented our prior knowledge in an appropriate
fashion or that our solutions are intuitively reasonable.
Further, the axiomatic basis (based on the prescribed
behaviour of perfectly rational individuals operating in
small worlds) becomes increasingly detached from the
actual conditions under which the statistical analysis is
carried out.

Therefore, it is important to be clear as to the ac-
tual meaning and limitations of a Bayesian (or any
other) calculation in such complex problems. Further,
we must develop methods of analysis which address
the consequences of the mismatch between the formal
structure and the actual assessments that have been car-
ried out. Watson and Holmes (2016) provides a splen-
did overview of methods developed to address these is-
sues and makes some very interesting suggestions as to
how such analyses should be carried out. As such, this
provides an excellent springboard for discussion of the
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principles and practices which should guide us in such
problems.

We first need to unpick the agenda of the paper,
namely the problems that arise when “f (x; θ) may not
be Nature’s true sampling distribution or π(θ) does
not reflect all aspects of prior subjective beliefs. . . ”.
Does Nature have a true sampling distribution? Some-
times, perhaps, but in most cases, surely not. Our like-
lihoods are as much subjective judgements as are our
priors. What does uncertainty in our subjective judge-
ments correspond to? There are two fundamentally dif-
ferent interpretations that are habitually employed. In
the first, there is a “true but unknown” collection of
prior judgements that should be made, given the avail-
able prior information, and our uncertainty follows as
we do not know what this true collection is. The ba-
sic problem with this interpretation is our inability to
define, even in principle, this underlying truth. Second,
we may be uncertain as to the value that we would as-
sign to our prior judgements if we were able to spend
more time and resource in considering the problem.
Such uncertainty can be given an operational meaning
and it will usually be possible to consider and quan-
tify aspects of our beliefs about such refinements to our
prior judgements. This may allow us to develop a prin-
cipled approach for dealing with such uncertainties.

Consider the Ellsberg paradox, which is simple
enough that it allows us to concentrate on basic prin-
ciples without being distracted by technical details. In
the version of the paradox described in the paper, there
are two urns, each with 100 balls. In the first, half
are red and half are blue. In the second, an unknown
number are red and the remainder are blue. You must
choose between a ticket (A) which pays $100 if you
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draw a red ball from the first urn, or a ticket (B) which
pays $100 if you draw a red ball from the second urn. In
practice, people tend to prefer A to B, and the authors
derive this as a robust choice, arising from the princi-
ples that they advocate. If we set aside any real world
practical framing issues for the problem, and suppose,
as in the paper, that you have no information about
the proportion of red balls in the second urn, then this
must be an example of the first interpretation of un-
certainty, as there is no suggestion that further reflec-
tion and analysis would lead to an improved judgement
about the proportions in the second urn.

The authors argue that their robustness assessments
should be driven by real world consequences, which
sounds very reasonable. However, this raises the ques-
tion as to what does a preference for ticket A over ticket
B actually mean? There is no particular guidance on
this question that I could find in the paper, so I shall
interpret the preference as meaning that if you had B,
then you would pay some small amount, w > 0 say,
to trade B for A. (If there was no such value, then
it would be hard to argue that you really held such a
preference.) Such preferences now have consequences.
The standard Bayesian argument for such a problem is
to consider, also, preferences between tickets C and D,
which are the same as A and B, respectively, but with
red replaced by blue. If you have the same preference
between C and D as you do between A and B (and it is
hard to see, from the framing of the problem, how you
could not), then you would also pay w (or at least some
similar positive amount) to trade D for C. Therefore, if
you hold both tickets B and D, it would appear that you
would pay a positive amount to trade them both for A
and C. This does seem paradoxical as B and D together
give exactly the same payoff ($100), with certainty, as
do A and C.

The only way to avoid this unpleasant consequence
is to allow that your preference between A and B might
change if you must also make a choice between C
and D, and perhaps this is what the authors intend.
However, this is problematic for several reasons. At the
foundational level, in establishing the basic property of
probability (that the probability of the union of disjoint
events is the sum of the probabilities for the individual
events), we specify probabilities for two disjoint events
by considering our betting prices on these events in-
dividually. We then deduce that our betting price on
the union of the events is the sum of our prices on the
individual events precisely by holding the view that
our betting prices on the collection of events is sim-
ply the corresponding betting prices that we have spec-
ified on the events individually. It seems problematic to

carry out a principled probabilistic analysis for which
the outcome of the analysis denies the basic arguments
from which the axioms of probability are derived. Fur-
ther, at a practical level, it would seem difficult to keep
modifying our inference as we change the collection of
outputs that we are concerned with. Indeed, we might
even suspect that the collection of outputs selected for
the analysis could have been chosen in order to achieve
a preferred result for some particular outcomes of spe-
cial interest.

As we are moving outside the conventional formal-
ism, deriving robustness measures from explicit basic
principles is a natural and worthwhile approach. The
principles suggested in the paper raise various ques-
tions.

Principle 1b (Consequence). This specifies that we
should only be concerned with sensitivity to the states,
θ , which enter into the loss function, and thus restrict
attention to analyses which vary the marginal prior
over these states. This is not obvious to me. All the
states and, therefore, the resulting inference, are linked
through the prior specification. Is there some “meta
theorem” to the effect that uncertainty over the prior
specification for the nuisance parameters factors out of
the process? If not, then it would be easy to imagine
problems where the uncertainty in the “nuisance” pa-
rameter specification was the driving feature of the ro-
bustness calculation for the expected loss over θ . This
would arise, for example, in any problem in which it is
difficult to observe direct outputs from the likelihood
of interest, but it is easy to observe outputs from likeli-
hoods for related quantities which have an indirect, but
important, relationship with the quantities of interest.

Principle 2 (Coherence). This is an important idea,
based on the argument that two different analyses of
the same data, and approximate joint model should
lead to the same answer. However, this raises the is-
sue as to the interpretation of the “robust” solution that
the theorems derive. That the outcome satisfies a par-
ticular optimisation property for the given loss function
carries no implication that this should reflect our actual
posterior judgements over different options. Therefore,
we cannot automatically employ that posterior distri-
bution in any calculations beyond that of minimising
the specific expected loss. However, according to my
understanding, the computed posterior judgements are
used in precisely this way, in the statement and deriva-
tion of the uniqueness result, Theorem 4.2, for the au-
thors’ suggested solution. This proceeds by comparing
the posterior assessment of all of the data, made as a
single calculation, with the two stage update in which
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we observe part of the data, update our judgements by
the suggested formula, then update again with the re-
mainder of the data. Do the authors have any further
justifications that can be given for such an interpreta-
tion of their calculations?

I would like to add a few comments on my pre-
ferred approach to these issues. The Bayesian approach
should be viewed as a model for an actual inference
when dealing with a complex real world problem. For
any model, we must consider the extent to which it
supports its larger purpose. Typically, this will involve
reducing our uncertainty as to real world system be-
haviour, which therefore can serve as the basis for real
world decisions. For an extensive treatment of these
issues, see Goldstein and Rougier (2009), and the ac-
companying discussion. (The paper is concerned with
the use of complex computer models, but, for the pur-
pose of the current discussion, this is simply a problem
with a likelihood which is expensive to evaluate at any
choice of parameter values.)

It is therefore natural and appropriate to consider ex-
plicitly the ways in which our Bayesian modelling fails
to address the reasoning and analysis which would be
required in order for us to have confidence in our anal-
ysis and decision making, and to incorporate such con-
siderations explicitly into our posterior assessments.
For a detailed discussion, moving from fundamental
considerations to a pragmatic simulation based ap-
proach to the implementation of such principles, see

Williamson and Goldstein (2015). To illustrate the ba-
sic ideas, the chosen example is based around the use
of an ocean model of realistic size and complexity in
order to quantify our beliefs about aspects of global
mean temperature in the real ocean. In contrast with
most robustness studies, this approach is directly con-
cerned to improve the quality of the posterior uncer-
tainty assessments, and to quantify the potential bene-
fits from the resulting analysis. Such assessments raise
important questions as to the purpose and meaning of
a Bayesian inference [e.g., the analysis in Williamson
and Goldstein (2015) requires us to view expectation
rather than probability as the primitive for the theory
and is based on explicit principles of temporal coher-
ence]. This more general treatment allows us to move
beyond sensitivity and robustness analyses, which may
be interesting and revealing but have limited inter-
pretability as a guide for decision choice.
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