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Fourth Moments and Independent
Component Analysis
Jari Miettinen, Sara Taskinen, Klaus Nordhausen and Hannu Oja

Abstract. In independent component analysis it is assumed that the com-
ponents of the observed random vector are linear combinations of latent in-
dependent random variables, and the aim is then to find an estimate for a
transformation matrix back to these independent components. In the engi-
neering literature, there are several traditional estimation procedures based
on the use of fourth moments, such as FOBI (fourth order blind identifica-
tion), JADE (joint approximate diagonalization of eigenmatrices), and Fas-
tICA, but the statistical properties of these estimates are not well known. In
this paper various independent component functionals based on the fourth
moments are discussed in detail, starting with the corresponding optimiza-
tion problems, deriving the estimating equations and estimation algorithms,
and finding asymptotic statistical properties of the estimates. Comparisons
of the asymptotic variances of the estimates in wide independent component
models show that in most cases JADE and the symmetric version of FastICA
perform better than their competitors.

Key words and phrases: Affine equivariance, FastICA, FOBI, JADE, kur-
tosis.

1. INTRODUCTION

In his system of frequency curves, Pearson (1895)
identified different types of distributions, and the clas-
sification was based on the use of the standardized third
and fourth moments. A measure of degree of kurtosis
for the distribution of x was defined as

β = E([x − E(x)]4)

[E([x − E(x)]2)]2 or κ = β − 3,

and Pearson (1905) called the distribution platykurtic,
leptokurtic, or mesokurtic depending on the value of κ .
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In the case of the normal distribution (κ = 0, mesokur-
tic) Pearson also considered the probable error of κ̂ .
Later, kurtosis was generally understood simply as a
property which is measured by κ , which has raised
questions such as “Is kurtosis really peakedness?”; see,
for example, Darlington (1970). Van Zwet (1964) pro-
posed kurtosis orderings for symmetrical distributions,
and Oja (1981) defined measures of kurtosis as func-
tionals which (i) are invariant under linear transforma-
tions and (ii) preserve the van Zwet partial ordering.
Most of the measures of kurtosis, including β , can be
written as a ratio of two scale measures. Recently, ro-
bust measures of kurtosis also have been proposed and
considered in the literature; see, for example, Brys, Hu-
bert and Struyf (2006).

It is well known that the variance of the sample mean
depends on the population variance only, but the vari-
ance of the sample variance depends also on the shape
of the distribution through β . The measure β has been
used as an indicator of the bimodality, for example, in
identifying clusters in the data set (Peña and Prieto,
2001) or as a general indicator for non-Gaussianity,
for example, in testing for normality or in independent
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component analysis (Hyvärinen, 1999). Classical tests
for the normality are based on the standardized third
and fourth moments. See also DeCarlo (1997) for the
meaning and use of kurtosis.

The concept and measures of kurtosis have been ex-
tended to the multivariate case as well. The classical
skewness and kurtosis measures by Mardia (1970), for
example, combine in a natural way the third and fourth
moments of a standardized multivariate variable. Mar-
dia’s measures are invariant under affine transforma-
tions, that is, the p-variate random variables x and
Ax+b have the same skewness and kurtosis values for
all full-rank p × p matrices A and for all p-vectors b.
For similar combinations of the standardized third and
fourth moments, see also Móri, Rohatgi and Székely
(1993). Let next V1 and V2 be two p × p affine equiv-
ariant scatter matrices (functionals); see Huber (1981)
and Maronna (1976) for early contributions on scat-
ter matrices. Then, in the invariant coordinate selection
(ICS) in Tyler et al. (2009), one finds an affine trans-
formation matrix W such that

WV1W′ = Ip and WV2W′ = D,

where D is a diagonal matrix with diagonal elements
in decreasing order. The transformed p variables are
then presented in a new invariant coordinate system,
and the diagonal elements in D, that is, the eigenvalues
of V−1

1 V2, provide measures of multivariate kurtosis.
This procedure is also sometimes called the general-
ized principal component analysis and has been used
to find structures in the data. See Caussinus and Ruiz-
Gazen (1993), Critchley, Pires and Amado (2006),
Ilmonen, Nevalainen and Oja (2010), Peña, Prieto and
Viladomat (2010), and Nordhausen, Oja and Ollila
(2011). For the tests for multinormality based on these
ideas, see Kankainen, Taskinen and Oja (2007). In in-
dependent component analysis, certain fourth moment
matrices are used together with the covariance matrix
in a similar way to find the transformations to inde-
pendent components [FOBI by Cardoso (1989) and
JADE by Cardoso and Souloumiac (1993)]. See also
Oja, Sirkiä and Eriksson (2006).

In this paper, we consider the use of univariate and
multivariate fourth moments in independent compo-
nent analysis (ICA). The basic independent compo-
nent (IC) model assumes that the observed components
of xi = (xi1, . . . , xip)′ are linear combinations of la-
tent independent components of zi = (zi1, . . . , zip)′.
Hence, the model can be written as

xi = μ + �zi , i = 1, . . . , n,

where the full rank p × p matrix � is called the mix-
ing matrix and z1, . . . , zn is a random sample from
a distribution with independent components such that
E(zi ) = 0 and Cov(zi ) = Ip . Similarly to the model of
elliptically symmetric distributions, the IC model is a
semiparametric model, as the marginal distributions of
the components of z are left fully unspecified except
for the first two moments. For the identifiability of the
parameters, one further assumes that at most one of the
components has a normal distribution. Notice also that
� and z are still confounded in the sense that the or-
der and signs of the components of z are not uniquely
defined. The location center, the p-vector μ, is usually
considered a nuisance parameter, since the main goal in
independent component analysis is, based on a p × n

data matrix X = (x1, . . . ,xn), to find an estimate for
an unmixing matrix W such that Wx has independent
components. Note that all unmixing matrices W can be
written as C�−1, where each row and each column of
the p × p matrix C has exactly one nonzero element.

The population quantity to be estimated is first de-
fined as an independent component functional W(F ).
The estimate W(Fn), also denoted by W(X), is then
obtained by applying the functional to the empirical
distribution Fn of X = (x1, . . . ,xn). In the engineer-
ing literature, several estimation procedures based on
the fourth moments, such as FOBI (fourth order blind
identification) (Cardoso, 1989), JADE (joint approxi-
mate diagonalization of eigenmatrices) (Cardoso and
Souloumiac, 1993), and FastICA (Hyvärinen, 1999),
have been proposed and widely used. In these ap-
proaches the marginal distributions are separated us-
ing various fourth moments. On the other hand, the
estimators by Chen and Bickel (2006) and Samworth
and Yuan (2012) only need the existence of the first
moments and rely on efficient nonparametric estimates
of the marginal densities. Efficient estimation methods
based on residual signed ranks and residual ranks have
been developed recently by Ilmonen and Paindaveine
(2011) and Hallin and Mehta (2015). For a parametric
model with a marginal Pearson system approach, see
Karvanen and Koivunen (2002).

This paper describes in detail the independent com-
ponent functionals based on fourth moments through
corresponding optimization problems and estimating
equations, provides fixed-point algorithms and the lim-
iting statistical properties of the estimates, and spec-
ifies the needed assumptions. Also, a wide compari-
son study of the estimates is carried out. As far as we
know, most of the results in the paper are new, includ-
ing the asymptotical properties of the JADE estimate.
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The asymptotical properties of the FOBI estimate have
been derived earlier in Ilmonen, Nevalainen and Oja
(2010). The limiting variances and the limiting multi-
normality of the deflation-based version of the Fas-
tICA estimate have been studied in Ollila (2010) and
Nordhausen et al. (2011), respectively.

2. NOTATION AND PRELIMINARY RESULTS

Throughout the paper, we use the following notation.
First write, for independent zik , k = 1, . . . , p,

E(zik) = 0, E
(
z2
ik

) = 1, E
(
z3
ik

) = γk and

E
(
z4
ik

) = βk,

and

κk = βk − 3, πk = sign(κk) and Var
(
z3
ik

) = σ 2
k .

As seen later, the limiting distributions of the unmixing
matrix estimates based on fourth moments depend on
the joint limiting distribution of

√
nŝkl = n−1/2

n∑
i=1

zikzil,

(1) √
nr̂kl = n−1/2

n∑
i=1

(
z3
ik − γk

)
zil

and

√
nr̂mkl = n−1/2

n∑
i=1

z2
imzikzil,

for distinct k, l,m = 1, . . . , p. If the eighth moments of
zi exist, then the joint limiting distribution of

√
nŝkl ,√

nr̂kl , and
√

nr̂mkl is a multivariate normal distribu-
tion with marginal zero means. The nonzero variances
and covariances are

Var(
√

nŝkl) = 1, Var(
√

nr̂kl) = σ 2
k ,

Var(
√

nr̂mkl) = βm,

and

Cov(
√

nŝkl,
√

nr̂kl) = βk,

Cov(
√

nr̂kl,
√

nr̂lk) = βkβl,

and

Cov(
√

nŝkl,
√

nr̂mkl) = 1,

Cov(
√

nr̂kl,
√

nr̂mkl) = βk and

Cov(
√

nr̂lk,
√

nr̂mkl) = βl.

We also often refer to the following sets of p × p

transformation matrices:

1. D = {diag(d1, . . . , dp) : d1, . . . , dp > 0} (heteroge-
neous rescaling),

2. J = {diag(j1, . . . , jp) : j1, . . . , jp = ±1} (hetero-
geneous sign changes),

3. P = {P : P is a permutation matrix},
4. U = {U : U is an orthogonal matrix},
5. C = {C : C = PJD,P ∈ P,J ∈ J ,D ∈ D}.
Next, let ei denote a p-vector with ith element one
and other elements zero, and define Eij = eie′

j , i, j =
1, . . . , p, and

Jp,p =
p∑

i=1

p∑
j=1

Eij ⊗ Eij = vec(Ip)vec(Ip)′,

Kp,p =
p∑

i=1

p∑
j=1

Eij ⊗ Eji,

Ip,p =
p∑

i=1

p∑
j=1

Eii ⊗ Ejj = Ip2 and

Dp,p =
p∑

i=1

Eii ⊗ Eii .

Then, for any p × p matrix A, Jp,p vec(A) = tr(A) ·
vec(Ip), Kp,p vec(A) = vec(A′), and Dp,p vec(A) =
vec(diag(A)). The matrix Kp,p is sometimes called
a commutation matrix. For a symmetric nonnega-
tive definite matrix S, the matrix S−1/2 is taken to
be symmetric and nonnegative definite and to satisfy
S−1/2SS−1/2 = Ip .

3. INDEPENDENT COMPONENT MODEL
AND FUNCTIONALS

3.1 Independent Component (IC) Model

Throughout the paper, our p-variate observations
x1, . . . ,xn follow the independent component (IC)
model

xi = μ + �zi , i = 1, . . . , n,(2)

where μ is a mean vector, � is a full-rank p×p mixing
matrix, and z1, . . . , zn are independent and identically
distributed random vectors from a p-variate distribu-
tion such that:

ASSUMPTION 1. The components zi1, . . . , zip of
zi are independent.

ASSUMPTION 2. Second moments exist, E(zi ) =
0 and E(ziz′

i ) = Ip .
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ASSUMPTION 3. At most one of the components
zi1, . . . , zip of zi has a normal distribution.

If the model is defined using Assumption 1 only,
then the mixing matrix � is not well-defined and can
at best be identified only up to the order, the signs,
and heterogenous multiplications of its columns. As-
sumption 2 states that the second moments exist, and
E(zi ) = 0 and E(ziz′

i ) = Ip serve as identification con-
straints for μ and the scales of the columns of �. As-
sumption 3 is needed, as, for example, if z ∼ N2(0, I2),
then also Uz ∼ N2(0, I2) for all orthogonal U and the
independent components are not well-defined. Still, af-
ter these three assumptions, the order and signs of the
columns of � remain unidentified, but one can identify
the set of the standardized independent components
{±zi1, . . . ,±zip}, which is naturally sufficient for prac-
tical data analysis.

One of the key results in independent component
analysis is the following.

THEOREM 1. Let x = μ + �z be an observation
from an IC model with mean vector μ and covariance
matrix � = ��′, and write xst = �−1/2(x−μ) for the
standardized random variable. Then z = Uxst for some
orthogonal matrix U = (u1, . . . ,up)′.

The result says that, starting with standardized ob-
servations xst , one only has to search for an unknown
U ∈ U such that Uxst has independent components.
Thus, after estimating �, the estimation problem can
be reduced to the estimation problem of an orthogonal
matrix U only.

3.2 Independent Component (IC) Functionals

Write next X = (x1, . . . ,xn) for a random sample
from the IC model (2) with the cumulative distribution
function (c.d.f.) Fx. As mentioned in the Introduction,
the aim of independent component analysis (ICA) is to
find an estimate of some unmixing matrix W such that
Wxi has independent components. It is easy to see that
all unmixing matrices can be written as W = C�−1 for
some C ∈ C. The population quantity, which we wish
to estimate, is defined as the value of an independent
component functional W(F ) at the distribution of Fx.

DEFINITION 1. The p × p matrix-valued func-
tional W(F ) is said to be an independent component
(IC) functional if (i) W(Fx)x has independent com-
ponents in the IC model (2) and (ii) W(Fx) is affine
equivariant in the sense that{(

W(FAx+b)Ax
)
1, . . . ,

(
W(FAx+b)Ax

)
p

}
= {±(

W(Fx)x
)
1, . . . ,±

(
W(Fx)x

)
p

}

for all nonsingular p × p matrices A and for all p-
vectors b.

Notice that in the independent component model,
W(Fx)x does not depend on the specific choices of z
and �, up to the signs and the order of the components.
Notice also that, in the condition (ii), any c.d.f. F is al-
lowed to be used as an argument of W(F ). The corre-
sponding sample version W(Fn) is then obtained when
the IC functional is applied to the empirical distribu-
tion function Fn of X = (x1, . . . ,xn). We also some-
times write W(X) for the sample version. Naturally,
the estimator is then also affine equivariant in the sense
that, for all nonsingular p × p matrices A and for all
p-vectors b, W(AX + b1′

n)AX = PJW(X)X for some
J ∈ J and P ∈P .

REMARK 1. As mentioned before, if W is an un-
mixing matrix, then so is CW for all C ∈ C, and we
then have a whole set of matrices {CW : C ∈ C} equiv-
alent to W. To find a unique representative in the class,
it is often required that Cov(CWx) = Ip but still the
order and signs of the rows remain unidentified. Of
course, the assumption on the existence of second mo-
ments may sometimes be thought to be too restrictive.
For alternative ways to identify the unmixing matrix,
see then Chen and Bickel (2006), Ilmonen and Pain-
daveine (2011), and Hallin and Mehta (2015), for ex-
ample. For a general discussion on this identification
problem, see also Eriksson and Koivunen (2004).

4. UNIVARIATE KURTOSIS AND INDEPENDENT
COMPONENT ANALYSIS

4.1 Classical Measures of Univariate Skewness
and Kurtosis

Let first x be a univariate random variable with mean
value μ and variance σ 2. The standardized variable is
then z = (x − μ)/σ , and classical skewness and kur-
tosis measures are the standardized third and fourth
moments, γ = E(z3) and β = E(z4). For symmetrical
distributions, γ = 0, and for the normal distribution,
κ = β − 3 = 0. For a random sample x1, . . . , xn from a
univariate distribution, write

μj = E
(
(xi − μ)j

)
and

mj = n−1
n∑

i=1

(xi − x̄)j , j = 2,3,4.

Then the limiting distribution of
√

n(m2 − μ2,m3 −
μ3,m4 − μ4)

′ is a 3-variate normal distribution with
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mean vector zero and covariance matrix with the (i, j)

element

μi+j+2 − μi+1μj+1 − (i + 1)μiμj+2

− (j + 1)μi+2μj + (i + 1)(j + 1)μiμjμ2,

i, j = 1,2,3. See Theorem 2.2.3.B in Serfling (1980).
Then in the symmetric case with μ2 = 1, for example,

√
n

⎛
⎝ m2 − 1

m3
m4 − μ4

⎞
⎠

→d N3

⎛
⎝

⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ μ4 − 1 0 μ6 − μ4

0 μ6 − 6μ4 + 9 0
μ6 − μ4 0 μ8 − μ2

4

⎞
⎠

⎞
⎠ .

If the observations come from N(0,1), we further ob-
tain

√
n

⎛
⎝m2 − 1

m3
m4 − 3

⎞
⎠ →d N3

⎛
⎝

⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 2 0 12

0 6 0
12 0 96

⎞
⎠

⎞
⎠ .

The classical skewness and kurtosis statistics, the nat-
ural estimates of γ and β , are γ̂ = m3/m

3/2
2 and β̂ =

m4/m
2
2, and then

√
nγ̂ = √

nm3 + oP (1) and
√

nκ̂ = √
n(β̂ − 3)

= √
n(m4 − 3) − 6

√
n(m2 − 1) + oP (1)

and we obtain, in the general N(μ,σ 2) case, that

√
n

(
γ̂

κ̂

)
= √

n

(
γ̂

β̂ − 3

)

→d N2

((
0
0

)
,

(
6 0
0 24

))
.

Consider next p-variate observations coming from an
IC model. The important role of the fourth moments is
stated in the following:

THEOREM 2. Let the components of z = (z1, . . . ,

zp)′ be independent and standardized so that E(z) = 0
and Cov(z) = Ip , and assume that at most one of the
kurtosis values κi = E(z4

i ) − 3, i = 1, . . . , p, is zero.
Then the following inequalities hold true:

(i) ∣∣E((
u′z

)4) − 3
∣∣

≤ max
{∣∣E(

z4
1
) − 3

∣∣, . . . , ∣∣E(
z4
p

) − 3
∣∣}

for all u such that u′u = 1. The equality holds only
if u = ei for i such that |E(z4

i ) − 3| = max{|E(z4
1) −

3|, . . . , |E(z4
p) − 3|}, and

(ii) ∣∣E[(
u′

1z
)4] − 3

∣∣ + · · · + ∣∣E[(
u′

pz
)4] − 3

∣∣
≤ ∣∣E[

z4
1
] − 3

∣∣ + · · ·+∣∣E[
z4
p

] − 3
∣∣

for all orthogonal matrices U = (u1, . . . ,up)′. The
equality holds only if U = JP for some J ∈ J and
P ∈ P .

For the first part of the theorem, see Lemma 2 in
Bugrien and Kent (2005). The theorem suggests natu-
ral strategies and algorithms in search for independent
components. It was seen in Theorem 1 that in the IC
model xst = Uz with an orthogonal U = (u1, . . . ,up).
The first part of Theorem 2 then shows how the com-
ponents can be found one by one just by repeatedly
maximizing∣∣E((

u′
kxst

)4) − 3
∣∣, k = 1, . . . , p

(projection pursuit approach), and the second part of
Theorem 2 implies that the same components may be
found simultaneously by maximizing∣∣E[(

u′
1xst

)4] − 3
∣∣ + · · · + ∣∣E[(

u′
pxst

)4] − 3
∣∣.

In the engineering literature, these two approaches are
well known and important special cases of the so-
called deflation-based FastICA and symmetric Fas-
tICA; see, for example, Hyvärinen, Karhunen and Oja
(2001). The statistical properties of these two estima-
tion procedures will now be considered in detail.

4.2 Projection Pursuit Approach—Deflation-Based
FastICA

Assume that x is an observation from an IC model (2)
and let again xst = �−1/2(x − μ) be the standardized
random variable. Theorem 2(i) then suggests the fol-
lowing projection pursuit approach in searching for the
independent components.

DEFINITION 2. The deflation-based projection
pursuit (or deflation-based FastICA) functional is
W(Fx) = U�−1/2, where � = Cov(x) and the rows
of an orthogonal matrix U = (u1, . . . ,up)′ are found
one by one by maximizing∣∣E((

u′
kxst

)4) − 3
∣∣

under the constraint that u′
kuk = 1 and u′

j uk = 0, j =
1, . . . , k − 1.
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It is straightforward to see that W(Fx) is affine
equivariant. In the independent component model (2),
W(Fx)x has independent components if Assumption 3
is replaced by the following stronger assumption.

ASSUMPTION 4. The fourth moments of z exist,
and at most one of the kurtosis values κk , k = 1, . . . , p,
is zero.

Thus, under this assumption, W(F ) is an inde-
pendent component (IC) functional. Based on The-
orem 2(i), the functional then finds the independent
components in such an order that∣∣E((

u′
1xst

)4) − 3
∣∣ ≥ · · · ≥ ∣∣E((

u′
pxst

)4) − 3
∣∣.

The solution order is unique if the kurtosis values are
distinct.

The Lagrange multiplier technique can be used to
obtain the estimating equations for U = (u1, . . . ,up)′.
This is done in Ollila (2010) and Nordhausen et al.
(2011) and the procedure is the following. After find-
ing u1, . . . ,uk−1, the solution uk thus optimizes the La-
grangian function

L(uk, θk) = ∣∣E((
u′

kxst

)4) − 3
∣∣ − k∑

j=1

θkj

(
u′

j uk − δjk

)
,

where θk = (θk1, . . . , θkk)
′ is the vector of Lagrangian

multipliers and δjk = 1 (0) as j = k (j 
= k) is the Kro-
necker delta. Write

T(u) = E
[(

u′xst

)3xst

]
.

The solution for uk is then given by the p+k equations

4πkT(uk) −
k−1∑
j=1

θkj uj − 2θkkuk = 0 and

u′
j uk = δjk, j = 1, . . . , k,

where πk = sign(κk). One then first finds the solutions
for the Lagrange coefficients in θk , and substituting
these results into the first p equations, the following
result is obtained.

THEOREM 3. Write xst = �−1/2(x − μ) for the
standardized random vector, and T(u) = E[(u′xst )

3 ·
xst ]. The orthogonal matrix U = (u1, . . . ,up)′ solves
the estimating equations

(
u′

kT(uk)
)
uk =

(
Ip −

k−1∑
j=1

uj u′
j

)
T(uk),

k = 1, . . . , p.

The theorem suggests the following fixed-point al-
gorithm for the deflation-based solution. After finding
u1, . . . ,uk−1, the following two steps are repeated until
convergence to get uk :

Step 1: uk ←
(
Ip −

k−1∑
j=1

uj u′
j

)
T(uk),

Step 2: uk ← ‖uk‖−1uk.

The deflation-based estimate W(X) is obtained as
above but by replacing the population quantities by the
corresponding empirical ones. Without loss of general-
ity, assume next that |κ1| ≥ · · · ≥ |κp|. First note that,
due to the affine equivariance of the estimate, W(X) =
W(Z)�−1. In the efficiency studies, it is therefore suf-
ficient to consider Ŵ = W(Z) and the limiting distri-
bution of

√
n(Ŵ − Ip) for a sequence Ŵ converging

in probability to Ip . As the empirical and population
criterion functions

Dn(u) =
∣∣∣∣∣n−1

n∑
i=1

(
u′xst,i

)4 − 3

∣∣∣∣∣ and

D(u) = ∣∣E[(
u′z

)4] − 3
∣∣

are continuous and supu′u=1 |Dn(u) − D(u)| →P 0,
one can choose a sequence of solutions such that
û1 →P e1 and similarly for û2, . . . , ûp−1. Further, then
also Ŵ = ÛŜ−1/2 →P Ip . One can next show that the
limiting distribution of

√
n(Ŵ − Ip) is obtained if we

only know the joint limiting distribution of
√

n(Ŝ− Ip)

and
√

noff(R̂), where Ŝ = (ŝkl) is the sample covari-
ance matrix, R̂ = (r̂kl) is given in (1), and off(R̂) =
R̂ − diag(R̂). We then have the following results; see
also Ollila (2010), Nordhausen et al. (2011).

THEOREM 4. Let Z = (z1, . . . , zn) be a random
sample from a distribution with finite eighth moments
and satisfying the Assumptions 1, 2, and 4 with |κ1| ≥
· · · ≥ |κp|. Then there exists a sequence of solutions
such that Ŵ →P Ip and

√
nŵkl = −√

nŵlk − √
nŝkl + oP (1), l < k,

√
n(ŵkk − 1) = −1/2

√
n(ŝkk − 1) + oP (1) and

√
nŵkl =

√
nr̂kl − (κk + 3)

√
nŝkl

κk

+ oP (1),

l > k.

COROLLARY 1. Under the assumptions of Theo-
rem 4, the limiting distribution of

√
nvec(Ŵ − Ip) is
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a multivariate normal with zero mean vector and com-
ponentwise variances

ASV(ŵkl) = σ 2
l − (κl + 3)2

κ2
l

+ 1, κl 
= 0, l < k,

ASV(ŵkk) = (κk + 2)/4 and

ASV(ŵkl) = σ 2
k − (κk + 3)2

κ2
k

, κk 
= 0, l > k.

REMARK 2. Projection pursuit is used to reveal
structures in the original data by selecting interest-
ing low-dimensional orthogonal projections of interest.
This is done, as above, by maximizing the value of an
objective function (projection index). The term “pro-
jection pursuit” was first launched by Friedman and
Tukey (1974). Huber (1985) considered projection in-
dices with heuristic arguments that a projection is the
more interesting, the less normal it is. All his indices
were ratios of two scale functionals, that is, kurtosis
functionals, with the classical kurtosis measure as a
special case. He also discussed the idea of a recur-
sive approach to find subspaces. Peña and Prieto (2001)
used the projection pursuit algorithm with the classical
kurtosis index for finding directions for cluster identi-
fication. For more discussion on the projection pursuit
approach, see also Jones and Sibson (1987).

REMARK 3. In the engineering literature,
Hyvärinen and Oja (1997) were the first to propose
the procedure based on the fourth moments, and later
considered an extension with a choice among sev-
eral alternative projection indices (measures of non-
Gaussianity). The approach is called deflation-based
or one-unit FastICA and it is perhaps the most popular
approach for the ICA problem in engineering applica-
tions. Note that the estimating equations in Theorem 3
and the resulting fixed-point algorithm do not fix the
order of the components (the order is fixed by the orig-
inal definition) and, as seen in Theorem 4, the limit-
ing distribution of the estimate depends on the order
in which the components are found. Using this prop-
erty, Nordhausen et al. (2011) proposed a two-stage
version of the deflation-based FastICA method with a
chosen projection index that finds the components in
an optimal efficiency order. Moreover, Miettinen et al.
(2014a) introduced an adaptive two-stage algorithm
that (i) allows one to use different projection indices
for different components and (ii) optimizes the order
in which the components are extracted.

4.3 Symmetric Approach—Symmetric FastICA

In the symmetric approach, the rows of the matrix U
are found simultaneously, and we have the following:

DEFINITION 3. The symmetric projection pur-
suit (or symmetric fastICA) functional is W(Fx) =
U�−1/2, where � = Cov(x) and U = (u1, . . . ,up)′
maximizes∣∣E((

u′
1xst

)4) − 3
∣∣ + · · · + ∣∣E((

u′
pxst

)4) − 3
∣∣

under the constraint that UU′ = Ip .

This optimization procedure is called symmetric
FastICA in the signal processing community. The func-
tional W(Fx) is again affine equivariant. Based on The-
orem 2(ii), in the IC model with Assumption 4 the max-
imizer is unique up to the order and signs of the rows
of U, that is,

{z1, . . . , zp} = {±u′
1xst , . . . ,±u′

pxst

}
.

As in the deflation-based case, we use the Lagrange
multiplier technique to obtain the matrix U. The La-
grangian function to be optimized is now

L(U,�) =
p∑

k=1

∣∣E((
u′

kxst

)4) − 3
∣∣ − p∑

k=1

θkk

(
u′

kuk − 1
)

−
p−1∑
j=1

p∑
k=j+1

θjku′
j uk,

where the symmetric matrix � = (θjk) contains all
p(p + 1)/2 Lagrangian multipliers. Write again
T(u) = E((u′xst )

3xst ). Then the solution U = (u1, . . . ,

up)′ satisfies

4πkT (uk) = 2θkkuk + ∑
j<k

θjkuj + ∑
j>k

θkj uj ,

k = 1, . . . , p,

and

UU′ = Ip.

Solving θjk and using the fact that θjk = θkj give
πku′

j T(uk) = πj u′
kT(uj ), j, k = 1, . . . , p, and we get

the following estimating equations.

THEOREM 5. Let xst = �−1/2(x − μ) be the
standardized random vector from the IC model (2),
T(u) = E((u′xst )

3xst ), T(U) = (T(u1), . . . ,T(up))′
and � = diag(π1, . . . , πp). The estimating equations
for the symmetric solution U are

UT(U)′� = �T(U)U′ and UU′ = Ip.
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For the computation of U, the above estimating equa-
tions suggest a fixed-point algorithm with the updating
step

U ← �T
(
T′T

)−1/2
.

The symmetric version estimate W(X) is obtained
by replacing the population quantities by their corre-
sponding empirical ones in the estimating equations.
Write again Ŵ = W(Z) and let Ŝ = (ŝkl) and R̂ = (r̂kl)

be as in (1). Then we have the following:

THEOREM 6. Let Z = (z1, . . . , zn) be a random
sample from a distribution of z satisfying the Assump-
tions 1, 2, and 4 with bounded eighth moments. Then
there is a sequence of solutions such that Ŵ →P Ip

and
√

n(ŵkk − 1)

= −1

2

√
n(ŝkk − 1) + oP (1) and

√
nŵkl

=
√

nr̂klπk − √
nr̂lkπl − (κkπk + 3πk − 3πl)

√
nŝkl

|κk| + |κl|
+ oP (1), k 
= l,

where πk = sign(κk).

COROLLARY 2. Under the assumptions of Theo-
rem 6, the limiting distribution of

√
nvec(Ŵ − Ip) is a

multivariate normal with zero mean vector and compo-
nentwise variances

ASV(ŵkk) = (κk + 2)/4 and

ASV(ŵkl) = σ 2
k + σ 2

l − κ2
k − 6(κk + κl) − 18

(|κk| + |κl|)2 ,

k 
= l.

REMARK 4. The symmetric FastICA approach
with other choices of projection indices was proposed
in the engineering literature by Hyvärinen (1999). The
computation of symmetric FastICA estimate was done,
as in our approach, by running p parallel one-unit algo-
rithms, which were followed by a matrix orthogonal-
ization step. A generalized symmetric FastICA algo-
rithm that uses different projection indices for different
components was proposed by Koldovský, Tichavský
and Oja (2006). The asymptotical variances of gen-
eralized symmetric FastICA estimates were derived
in Tichavsky, Koldovsky and Oja (2006) under the as-
sumption of symmetric independent component distri-
butions.

5. MULTIVARIATE KURTOSIS AND INDEPENDENT
COMPONENT ANALYSIS

5.1 Measures of Multivariate Skewness
and Kurtosis

Let x be a p-variate random variable with mean vec-
tor μ and covariance matrix �, and xst = �−1/2(x −
μ). All the standardized third and fourth moments can
now be collected into p × p2 and p2 × p2 matrices

γ = E
(
x′
st ⊗ (

xstx′
st

))
and

β = E
((

xstx′
st

) ⊗ (
xstx′

st

))
.

Unfortunately, these multivariate measures of skew-
ness and kurtosis are not invariant under affine trans-
formations: The transformation x → Ax + b induces,
for some unspecified orthogonal matrix U, the trans-
formations

xst → Uxst , γ → Uγ
(
U′ ⊗ U′) and

β → (U ⊗ U)β
(
U′ ⊗ U′).

Notice next that, for any p × p matrix A,

G(A) = E
(
xstx′

stAxst

)
and

(3)
B(A) = E

(
xstx′

stAxstx′
st

)
provide selected p and p2 linear combinations of the
third and fourth moments as vec(G(A)) = γ vec(A)

and vec(B(A)) = β vec(A). Further, the elements of
matrices

Gij = G
(
Eij )

and Bij = B
(
Eij )

, i, j = 1, . . . , p,

list all possible third and fourth moments. Also,

G = G(Ip) =
p∑

i=1

Gii and B = B(Ip) =
p∑

i=1

Bii

appear to be natural measures of multivariate skewness
and kurtosis. In the independent component model we
then have the following straightforward result.

THEOREM 7. At the distribution of z with inde-
pendent components, E(z) = 0, Cov(z) = Ip , and κi =
E(z4

i ) − 3, i = 1, . . . , p:

β =
p∑

i=1

κi

(
Eii ⊗ Eij ) + Ip,p + Jp,p + Kp,p,

Bij =
p∑

k=1

κk

(
EkkEij Ekk) + Eij + Eji + tr

(
Eij )

Ip,

i, j = 1, . . . , p and

B =
p∑

i=1

(κi + p + 2)Eii .
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REMARK 5. The standardized third and fourth mo-
ments have been used as building bricks for invariant
multivariate measures of skewness and kurtosis. The
classical skewness and kurtosis measures by Mardia
(1970) are

E
((

x′
st x̃st

)3)
and tr(B) = E

((
x′
stxst

)2)
,

whereas Móri, Rohatgi and Székely (1993) proposed

‖G‖2 = E
(
x′
stxstx′

st x̃st x̃′
st x̃st

)
and

tr(B) = E
((

x′
stxst

)2)
,

where xst and x̃st are independent copies of xst (Móri,
Rohatgi and Székely, 1993). (The invariance follows
as x → Ax + b induces xst → Uxst for some orthogo-
nal U.) The sample statistics can then be used to test
multivariate normality, for example. For their limit-
ing distributions under the normality assumption, see,
for example, Kankainen, Taskinen and Oja (2007). For
other extensions of multivariate skewness and kurtosis
and their connections to skewness and kurtosis mea-
sures above, see Kollo (2008) and Kollo and Srivas-
tava (2004). In Sections 5.2 and 5.3, we first use B
alone and then all Bij , i, j = 1, . . . , p, together to
find solutions to the independent component problem.
In the signal processing literature, these approaches
are called FOBI (fourth order blind identification) and
JADE (joint approximate diagonalization of eigenma-
trices), correspondingly.

5.2 Use of Kurtosis Matrix B—FOBI

The independent component functional based on the
covariance matrix � and the kurtosis matrix B defined
in (3) is known as FOBI (fourth order blind identifi-
cation) (Cardoso, 1989) in the engineering literature.
It is one of the earliest approaches to the independent
component problem and is defined as follows.

DEFINITION 4. The FOBI functional is W(Fx) =
U�−1/2, where � = Cov(x) and the rows of U are the
eigenvectors of B = E(xstx′

stxstx′
st ).

First recall that, in the independent component
model, xst = U′z for some orthogonal U. This implies
that

B = E
(
xstx′

stxstx′
st

) = U′E
(
zz′zz′)U,

where E(zz′zz′) = ∑p
i=1(κi + p + 2)Eii is diagonal,

and therefore the rows of U are the eigenvectors of B.
The order of the eigenvectors is then given by the order
of the corresponding eigenvalues, that is, by the kurto-
sis order. As W is also affine equivariant, it is an inde-
pendent component functional if Assumption 3 is re-
placed by the following stronger assumption.

ASSUMPTION 5. The fourth moments of z exist
and are distinct.

REMARK 6. Notice that Assumption 5 ⇒ As-
sumption 4 ⇒ Assumption 3. If Assumption 5 is not
true and there are only m < p distinct kurtosis values
with multiplicities p1, . . . , pm, FOBI still finds these
m subspaces, and the FOBI solutions at z are of the
block-diagonal form diag(U1, . . . ,Um) with orthogo-
nal pi × pi matrices Ui , i = 1, . . . ,m.

It is again sufficient to consider the limiting distribu-
tion of the estimator Ŵ = W(Z) only. Then the asymp-
totical behavior of the FOBI estimator is given as fol-
lows.

THEOREM 8. Let Z = (z1, . . . , zn) be a random
sample from a distribution of z with bounded eighth
moments and satisfying the Assumptions 1, 2 and 5
with κ1 > · · · > κp . Then Ŵ →P Ip and

√
n(ŵkk − 1) = −1

2

√
n(ŝkk − 1) + oP (1) and

√
nŵkl

=
(√

nr̂kl + √
nr̂lk + √

n
∑

m
=k,l

r̂mlk

− (κk + p + 4)
√

nŝkl

)/
(κk − κl) + oP (1),

k 
= l.

For an alternative asymptotic presentation of the√
nŵkl , see Ilmonen, Nevalainen and Oja (2010).

The joint limiting multivariate normality of
√

nvec(Ŝ,

off(R̂)) then implies the following.

COROLLARY 3. Under the assumptions of Theo-
rem 8, the limiting distribution of

√
nvec(Ŵ − Ip) is a

multivariate normal with zero mean vector and compo-
nentwise variances

ASV(ŵkk) = (κk + 2)/4 and

ASV(ŵkl)

=
(
σ 2

k + σ 2
l − κ2

k − 6(κk + κl)

− 22 + 2p + ∑
j 
=k,l

κj

)/
(κk − κl)

2,

k 
= l.

REMARK 7. Let x be a p-vector with mean vec-
tor μ and covariance matrix �. The FOBI procedure
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may then be seen also as a comparison of two scatter
functionals, namely,

Cov(x) = � and

Cov4(x) = E
(
(x − μ)(x − μ)′�−1(x − μ)(x − μ)′

)
,

and the FOBI functional then satisfies W Cov(x)W′ =
Ip and W Cov4(x)W′ ∈ D. Other independent compo-
nent functionals are obtained if Cov and Cov4 are re-
placed by any scatter matrices with the independence
property; see Oja, Sirkiä and Eriksson (2006) and Tyler
et al. (2009).

5.3 Joint Use of Kurtosis Matrices Bij —JADE

The approach in Section 5.2 was based on the fact
that the kurtosis matrix B is diagonal at z. As shown
before, the fourth cumulant matrices

Cij = Bij −Eij − (
Eij )′ − tr

(
Eij )

Ip, i, j = 1, . . . , p,

are also all diagonal at z. Therefore, a natural idea is
to try to find an orthogonal matrix U such that the ma-
trices UCij U′, i, j = 1, . . . , p, are all “as diagonal as
possible.” In the engineering literature this approach is
known as joint approximate diagonalization of eigen-
matrices (JADE); see Cardoso and Souloumiac (1993).
The functional is then defined as follows.

DEFINITION 5. The JADE functional is W(Fx) =
U�−1/2, where � = Cov(x) and the orthogonal matrix
U maximizes

p∑
i=1

p∑
j=1

∥∥diag
(
UCij U′)∥∥2

.

First note that

p∑
i=1

p∑
j=1

∥∥diag
(
UCij U′)∥∥2 +

p∑
i=1

p∑
j=1

∥∥off
(
UCij U′)∥∥2

=
p∑

i=1

p∑
j=1

∥∥Cij
∥∥2

.

The solution thus minimizes the sum of squared off-
diagonal elements of UCij U′, i, j = 1, . . . , p. Notice
that, at z, the only possible nonzero elements of Cij ,
i, j = 1, . . . , p, are (Cii)ii = κi . For the separation of
the components, we therefore need Assumption 4 say-
ing that at most one of the kurtosis values κi is zero.
The JADE functional W(F ) is an IC functional, as we
can prove in the following.

THEOREM 9. (i) Write xst = �−1/2(x − μ) for the
standardized random vector from the IC model (2) sat-
isfying the Assumptions 1, 2, and 4. If xst = U′z, then

D(V) =
p∑

i=1

p∑
j=1

∥∥diag
(
VCij V′)∥∥2

, V ∈ U

is maximized by any PJU where P ∈ P and J ∈ J .
(ii) For any Fx with finite fourth moments,

W(FAx+b) = PJW(Fx)A−1 for some P ∈ P and J ∈ J.

In this case, the matrix U = (u1, . . . ,up)′ thus opti-
mizes the Lagrangian function

L(U,�) =
p∑

i=1

p∑
j=1

p∑
k=1

(
u′

kCij uk

)2 −
p∑

k=1

θkk

(
u′

kuk − 1
)

−
p−1∑
k=1

p∑
l=k+1

θlku′
kul ,

where the symmetric matrix � = (θij ) contains the
p(p + 1)/2 Lagrangian multipliers of the optimization
problem. Write

T(u) =
p∑

i=1

p∑
j=1

(
u′Cij u

)
Cij u and

T(U) = (
T(u1), . . . ,T(up)

)′
.

The Lagrangian function then yields the estimating
equations

u′
iT(uj ) = u′

j T(ui ) and

u′
iuj = δij , i, j = 1, . . . , p,

and the equations suggest a fixed-point algorithm with
the steps U ← T(T′T)−1/2. The estimating equations
can also again be used to find the following asymptoti-
cal distribution of the JADE estimate Ŵ = W(Z).

THEOREM 10. Let Z = (z1, . . . , zn) be a random
sample from a distribution of z with bounded eighth
moments satisfying the Assumptions 1, 2, and 4. Then
there is a sequence of solutions Ŵ such that Ŵ →P Ip

and
√

n(ŵkk − 1) = −1/2
√

n(ŝkk − 1) + oP (1), k = l

and
√

nŵkl

= κk

√
nr̂kl − κl

√
nr̂lk + (3κl − 3κk − κ2

k )
√

nŝkl

κ2
k + κ2

l

+ oP (1), k 
= l.
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COROLLARY 4. Under the assumptions of Theo-
rem 10, the limiting distribution of

√
nvec(Ŵ − Ip) is

a multivariate normal with zero mean vector and com-
ponentwise variances

ASV(ŵkk) = (κk + 2)/4 and

ASV(ŵkl)

= κ2
k (σ 2

k − κ2
k − 6κk − 9) + κ2

l (σ 2
l − 6κl − 9)

(κ2
k + κ2

l )2
,

k 
= l.

REMARK 8. In the literature, there are several al-
ternative algorithms available for an approximate diag-
onalization of several symmetric matrices, but the sta-
tistical properties of the corresponding estimates are
not known. The most popular algorithm is perhaps
the Jacobi rotation algorithm suggested in Clarkson
(1988). It appeared in our simulations that the Jacobi
rotation algorithm is computationally much faster and
always provides the same solution as our fixed-point
algorithm. The limiting distribution with variances and
covariances of the elements of the JADE estimate (but
without the standardization step) was considered also
in Bonhomme and Robin (2009).

REMARK 9. The JADE estimate uses p2 fourth
moment matrices in order to be affine equivariant.
Therefore, the computational load of JADE grows
quickly with the number of components. Miettinen
et al. (2013) suggested a quite similar, but faster
method, called k-JADE. The k-JADE estimate at Fx
is W = UW0, where W0 is the FOBI estimate and the
orthogonal matrix U maximizes∑

|i−j |<k

∥∥diag
(
UCij U′)∥∥2

,

where the Cij ’s are calculated for xst = W0(x − μ). It
seems to us that this estimate is asymptotically equiv-
alent to the regular JADE estimate (with much smaller
computational load) if the multiplicities of the distinct
kurtosis values are at most k. Detailed studies are, how-
ever, still missing.

6. COMPARISON OF THE ASYMPTOTIC
VARIANCES OF THE ESTIMATES

First notice that, for all estimates,
√

n(W(X) −
�−1) = √

n(W(Z) − Ip)�−1 and the comparisons can
be made using Ŵ = W(Z) only. Second, for all es-
timates,

√
n(ŵkk − 1) = −1/2

√
n(ŝkk − 1) + oP (1)

k = 1, . . . , p, and therefore the diagonal elements of Ŵ

should not be used in the comparison. It is then natural
to compare the estimates using the sum of asymptotic
variances of the off-diagonal elements of Ŵ, that is,

p−1∑
k=1

p∑
l=k+1

(
ASV(ŵkl) + ASV(ŵlk)

)
.(4)

Next note that, for all estimates, except FOBI, the lim-
iting variances of

√
nŵkl , k 
= l, surprisingly depend

only on the kth and lth marginal distribution (through
κk , κl , σ 2

k , and σ 2
l ) and do not depend either on the

number or on the distributions of the other components.
Based on the results in the earlier sections, we have the
following conclusions:

1.
√

nŵkl of the symmetric FastICA estimate and
that of the JADE estimate are asymptotically equiva-
lent, that is, their difference converges to zero in prob-
ability if the kth and lth marginal distributions are the
same.

2. If the independent components are identically
distributed, then the symmetric FastICA and JADE es-
timates are asymptotically equivalent. In this case, their
criterium value (4) is one half of that of the deflation-
based FastICA estimate. The FOBI estimate fails in
this case.

3. ASV(ŵkl) of the FOBI estimate is always larger
than or equal to that for symmetric FastICA, k 
= l. This
follows as κk ≥ −2 for all k. The larger the other kur-
tosis values, the larger is the ASV(ŵkl) of FOBI. The
variances are equal when p = 2 and κk > 0 > κl .

4.
√

nŵkp of the deflation-based FastICA estimate
and of the JADE estimate are asymptotically equivalent
if the pth marginal distribution is normal.

The criterium value (4) is thus the sum of the pair-
wise terms ASV(ŵkl) + ASV(ŵlk), which do not de-
pend on the number or distributions of other compo-
nents except for the FOBI estimate. So in most cases
the comparison of the estimates can be made only
through the values ASV(ŵkl) + ASV(ŵlk). To make
FOBI (roughly) comparable, we use the lower bound
of the value ASV(ŵkl) + ASV(ŵlk) with κj = −2,
j 
= k, l; the lower bound is in fact the exact value in
the bivariate case. In Table 1, the values ASV(ŵkl) +
ASV(ŵlk) are listed for pairs of independent com-
ponents from the following five distributions: expo-
nential distribution (EX), logistic distribution (L), uni-
form distribution (U), exponential power distribution
with shape parameter value 4 (EP), and normal or
Gaussian (G) distribution. The excess kurtosis values
are κEX = 6, κL = 1.2, κU = −1.8, κEP ≈ −0.81 and
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TABLE 1
The values of ASV(ŵkl) + ASV(ŵlk) for some selected kth and

lth component distributions and for deflation-based FastICA
(DFICA), symmetric FastICA (SFICA), FOBI, and JADE

estimates. For FOBI, the lower bound of
ASV(ŵkl) + ASV(ŵlk) is used

DFICA SFICA FOBI JADE

EX–EX 11.00 5.50 ∞ 5.50
EX–L 11.00 8.52 19.18 10.22
EX–U 11.00 7.69 7.69 10.17
EX–EP 11.00 8.63 8.63 10.61
EX–G 11.00 11.33 11.33 11.00
L–L 31.86 15.93 ∞ 15.93
L–U 31.86 8.43 8.43 8.43
L–EP 31.86 12.38 12.38 15.63
L–G 31.86 40.19 40.19 31.86
U–U 1.86 0.93 ∞ 0.93
U–EP 1.86 1.80 40.63 1.50
U–G 1.86 10.19 10.19 1.86
EP–EP 6.39 3.20 ∞ 3.20
EP–G 6.39 34.61 34.61 6.39

κG = 0, respectively. The results in Table 1 are then
nicely in accordance with our general notions above
and show that none of the estimates outperforms all the
other estimates.

Further, in Figure 1, we plot the values ASV(ŵkl) +
ASV(ŵlk) when the independent components come
(i) from the standardized (symmetric) exponential
power distribution or (ii) from the standardized (skew)
gamma distribution. The limiting variances then de-
pend only on the shape parameters of the models. In the
plot, the darker the point, the higher the value and the
worse the estimate. The density function for the expo-
nential power distribution with zero mean and variance
one and with shape parameter β is

f (x) = β exp{−(|x|/α)β}
2α
(1/β)

,

where β > 0, α = (
(1/β)/
(3/β))1/2, and 
 is the
gamma function. Notice that β = 2 gives the normal
(Gaussian) distribution, β = 1 gives the heavy-tailed
Laplace distribution, and the density converges to an
extremely low-tailed uniform density as β → ∞. The
family of skew distributions for the variables is com-
ing from the gamma distribution with shape parameter
α and shifted and rescaled to have mean zero and vari-
ance one. For α = k/2, the distribution is a chi-square
distribution with k degrees of freedom, k = 1,2, . . . .

For α = 1, an exponential distribution is obtained, and
the distribution is converging to a normal distribution
as α → ∞.

For all estimates, Figure 1 shows that ASV(ŵkl) +
ASV(ŵlk) gets high values with β close to 2 (normal
distribution). Also, the variances are growing with in-
creasing α. The FOBI estimate is poor if the marginal
kurtosis values are close to each other. The contours
for the deflation-based FastICA estimate illustrate the
fact that the criterium function ASV(ŵ12)+ASV(ŵ21)

is not continuous at the points for which κk + κl = 0.
This is due to the fact that the order in which the com-
ponents are found changes at that point. The symmetric
FastICA and JADE estimates are clearly the best esti-
mates with minor differences.

7. DISCUSSION

Many popular methods to solve the independent
component analysis problem are based on the use of
univariate and multivariate fourth moments. Examples
include FOBI (Cardoso, 1989), JADE (Cardoso and
Souloumiac, 1993), and FastICA (Hyvärinen, 1999).
In the engineering literature, these ICA methods have
originally been formulated and regarded as algorithms
only, and therefore the rigorous analysis and compar-
ison of their statistical properties have been missing
until very recently. The statistical properties of the
deflation-based FastICA method were derived in Ollila
(2010) and Nordhausen et al. (2011). The asymptot-
ical behavior of the FOBI estimate was considered
in Ilmonen, Nevalainen and Oja (2010), and the asymp-
totical distribution of the JADE estimate (without the
standardization step) was considered in Bonhomme
and Robin (2009). This paper describes in detail the in-
dependent component functionals based on fourth mo-
ments through corresponding optimization problems,
estimating equations, fixed-point algorithms and the
assumptions they need, and provides for the very first
time the limiting statistical properties of the JADE esti-
mate. Careful comparisons of the asymptotic variances
revealed that, as was expected, JADE and the symmet-
ric version of FastICA performed best in most cases.
It was surprising, however, that the JADE and sym-
metric FastICA estimates are asymptotically equiva-
lent if the components are identically distributed. The
only noteworthy difference between these two estima-
tors appeared when one of the components has a nor-
mal distribution. Then JADE outperforms symmetric
FastICA. Recall that JADE requires the computation
of p2 matrices of size p × p and, thus, the use of
JADE becomes impractical with a large number of in-
dependent components. On the other hand, FastICA
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FIG. 1. Contour maps of ASV(ŵkl) + ASV(ŵlk) for different estimates and for different independent component distributions. The distri-
butions are either exponential power distributed (EP) or gamma distributed (Gamma) with varying shape parameter values. The estimates,
from up to down, are deflation-based FastICA, symmetric FastICA, FOBI, and JADE. For FOBI, the lower bound of ASV(ŵkl) + ASV(ŵlk)

is used. The lighter the color is, the lower is the variance.

estimates are sometimes difficult to find due to con-
vergence problems of the algorithms, when the sample
size is small.

In this paper we considered only the most basic IC
model, where the number of independent components
equals the observed dimension and where no additive
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noise is present. In further research we will consider
also these cases. Note that some properties of JADE for
noisy ICA were considered in Bonhomme and Robin
(2009).

APPENDIX: PROOFS OF THE THEOREMS

PROOF OF THEOREM 1. Let � = ODV′ be the
singular value decomposition of full-rank �. Then
� = ��′ = OD2O′, and �−1/2 = OJD−1O′ for some
J ∈ J . (J is needed to make �−1/2 positive definite.)
Then

xst = �−1/2(x − μ) = OJD−1O′ODV′z
= OJV′z = Uz

with an orthogonal U = OJV′. �
PROOF OF THEOREM 2. If u′u = 1, then it is

straightforward to see that

E
[(

u′z
)4 − 3

] =
p∑

i=1

u4
i

[
E

(
z4
i

) − 3
]
.

It then easily follows that

∣∣E[(
u′z

)4] − 3
∣∣ ≤

p∑
i=1

u4
i

∣∣E(
z4
i

) − 3
∣∣

≤ max
i=1,...,p

∣∣E(
z4
i

) − 3
∣∣

and that, for any orthogonal U = (u1, . . . ,up)′,
p∑

j=1

∣∣E[(
u′

j z
)4] − 3

∣∣ ≤
p∑

i=1

(∑
j

u4
ji

)∣∣E(
z4
i

) − 3
∣∣

≤
p∑

i=1

∣∣E(
z4
i

) − 3
∣∣.

For the first result, see also Lemma 2 in Bugrien and
Kent (2005). �

PROOF OF THEOREM 6. As the functions

Dn(U) =
p∑

j=1

∣∣∣∣∣n−1
n∑

i=1

(
u′

j xst,i

)4 − 3

∣∣∣∣∣ and

D(U) =
p∑

j=1

∣∣E[(
u′

j z
)4] − 3

∣∣
are continuous and Dn(U) →P D(U) for all U, then,
due to the compactness of U , also

sup
U∈U

∣∣Dn(U) − D(U)
∣∣ →P 0.

D(U) attains its maximum at any JP, where J ∈ J and
P ∈ P . This further implies that there is a sequence of
maximizers that satisfy Û →P Ip , and therefore also
Ŵ = ÛŜ−1/2 →P Ip .

For the estimate Ŵ, the estimating equations are

ŵ′
kT̂(ŵl)π̂l = ŵ′

lT̂(ŵk)π̂k and

ŵ′
kŜŵl = δij , k, l = 1, . . . , p,

where T̂(ŵk) = n−1 ∑
i (ŵ

′
k(zi − z̄))3(zi − z̄). It is

straightforward to see that the second set of estimating
equations gives

√
n(ŵkk − 1) = −2−1√n(ŝkk − 1) + oP (1) and

(5)√
n(ŵkl + ŵlk) = −√

nŝkl + oP (1).

Consider then the first set of estimating equations for
k 
= l. To shorten the notation, write T̂(ŵk) = T̂k . Now

√
nŵ′

kT̂l = √
n(ŵk − ek)

′T̂l + √
ne′

k(T̂l − βlel).

Using equation (2) in Nordhausen et al. (2011) and
Slutsky’s theorem, the above equation reduces to

√
nŵ′

kT̂l π̂l

= (√
n(ŵk − ek)

′βlel + e′
k

(√
nT̂∗

l − γlele′
l

√
nx̄

+ 	l

√
n(ŵl − el)

))
πl

+ oP (1),

where T̂∗
l = n−1 ∑

i ((e
′
lzi )

3 − γl)zi and 	l =
3E[(e′

lzi )
2ziz′

i]. According to our estimating equation,
the above expression should be equivalent to

√
nŵ′

lT̂kπ̂k = (√
n(ŵl − el)

′βkek

+ e′
l

(√
nT̂∗

k − γkeke′
k

√
nz̄

+ 	k

√
n(ŵi − ei )

))
πk + oP (1).

This further implies that

(βlπl − 3πk)
√

nŵkl − (βkπk − 3πl)
√

nŵlk

= √
n(r̂klπk + r̂lkπl) + oP (1),

where r̂kl = ∑
i (z

3
ik − γk)zil . Now using (5), we have

that

(βlπl − 3πk)
√

nŵkl

+ (βkπk − 3πl)(
√

nŝkl + √
nŵkl)

= √
n(r̂klπk + r̂lkπl) + oP (1).
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Then
(|βk − 3| + |βl − 3|)√nŵkl

= √
n(r̂klπk + r̂lkπl) + (3πl − βkπk)

√
nŝkl

+ oP (1),

which gives the desired result. �

PROOF OF THEOREM 8. As mentioned in Re-
mark 7, the FOBI functional diagonalizes the scat-
ter matrices Cov(x) and Cov4(x) = E[(x − μ)(x −
μ)′�−1(x − μ)(x − μ)′] simultaneously. Then
Cov(z) = Ip and Cov4(z) = D with strictly decreasing
diagonal elements. Next write Ŝ and Ŝ4 for the empiri-
cal scatter matrices. Then Ŝ →P Ip and Ŝ4 →P D, and,
as Ŵ is a continuous function of (Ŝ, Ŝ4) in a neighbor-
hood of (Ip,D), also Ŵ →P Ip .

Let Z̃ = (z̃1, . . . , z̃n) = (z1 − z̄, . . . , zn − z̄) denote
the centered sample,

√
n(Ŝ4 − D) = n−1/2

n∑
i=1

(
z̃i z̃′

i Ŝ
−1z̃i z̃′

i − D
)

= −n−1
n∑

i=1

z̃i z̃′
i

√
n(Ŝ − Ip)z̃i z̃′

i

+ n−1/2
n∑

i=1

(
z̃i z̃′

i z̃i z̃′
i − D

)
,

where the (k, l) element, k 
= l, of the first matrix is

−n−1
n∑

i=1

z̃ki z̃
′
i

√
n(Ŝ − Ip)z̃i z̃li

= −2n−1
n∑

i=1

z̃2
ki z̃

2
li

√
nŝkl + oP (1)

= −2
√

nŝkl + oP (1),

and the (k, l) element of the second matrix is

n−1/2
n∑

i=1

z̃3
ki z̃li + n−1/2

n∑
i=1

z̃ki z̃
3
li

+ n−1/2
n∑

i=1

∑
m
=k,l

z̃2
miz̃ki z̃li .

Thus,
√

n(Ŝ4)kl = √
nr̂kl + √

nr̂lk + ∑
m
=k,l

r̂mkl + oP (1).

Then Theorem 3.1 of Ilmonen, Nevalainen and Oja
(2010) gives

√
nŵkl

=
√

n(Ŝ4)kl − (κk + p + 2)
√

nŝkl

κk + p + 2 − (κl + p + 2)
+ oP (1)

=
(√

nr̂kl + √
nr̂lk + ∑

m
=k,l

√
nr̂mkl

− (κk + p + 4)
√

nŝkl

)/
(κk − κl) + oP (1).

�
To prove Theorem 9, we need the following lemma.

LEMMA 1. Denote

C(x,A) = E
[(

x′Ax
)
xx′] − A − A′ − tr(A)Ip,

Cij (x) = E
[(

x′Eij x
)
xx′] − Eij − Eji − tr

(
Eij )

Ip,

where Eij = eie′
j , i, j = 1, . . . , p. Then C(x,A) is ad-

ditive in A = (aij ), that is,

C(x,A) =
p∑

i=1

p∑
j=1

aij Cij (x).

Also, for an orthogonal U, it holds that

C(Ux,A) = UC
(
x,U′AU

)
U′.

PROOF. For additivity, it is straightforward to see
that, for all A,A1,A2, and b,

C(x, bA) = bC(x,A) and

C(x,A1 + A2) = C(x,A1) + C(x,A2).

For orthogonal U, we obtain

C(Ux,A)

= E
[(

x′U′AUx
)(

Uxx′U′)] − A − A′ − tr(A)Ip

= U
(
E

[(
x′(U′AU

)
x
)
xx′] − (

U′AU
) − (

U′AU
)

− tr
((

U′AU
))

Ip

)
U′

= UC
(
x,U′AU

)
U′. �

PROOF OF THEOREM 9. (i) First notice that

Cij (z) = 0, for i, j = 1, . . . , p and i 
= j

Cii(z) = κiEii , for i = 1, . . . , p.

It then follows that, for an orthogonal U = (u1, . . . ,

up),

Cij (
U′z

) = U′C
(
z,UEij U′)U

= U′C
(

z,
p∑

k=1

p∑
l=1

ukiulj Ekl

)
U
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= U′
( p∑

k=1

p∑
l=1

ukiulj C(z,Ekl)

)
U

= U′
( p∑

k=1

κkukiukj Ekk

)
U.

Now

D(V) =
p∑

i=1

p∑
j=1

∥∥diag
(
VCij (

U′z
)
V′)∥∥2

=
p∑

i=1

p∑
j=1

∥∥∥∥∥VU′
( p∑

k=1

κkukiukjEkk

)(
VU′)′∥∥∥∥∥

2

.

If we write G = VU′ = (g1, . . . ,gp), then D(V) sim-
plifies to

D(V) =
p∑

i=1

p∑
j=1

p∑
k=1

( p∑
l=1

g2
klκluliulj

)2

=
p∑

i=1

p∑
j=1

p∑
k=1

p∑
l=1

p∑
l∗=1

g2
klg

2
kl∗κlκl∗uliuljul∗iul∗j

=
p∑

k=1

p∑
l=1

p∑
l∗=1

g2
klg

2
kl∗κlκl∗

·
p∑

i=1

(uliul∗i)
p∑

j=1

(uljul∗j )

=
p∑

k=1

p∑
l=1

g4
klκ

2
l ,

which is maximized by V = PJU for any P ∈ P and
J ∈ J .

(ii) Write y = Ax + b, and let μ and � denote the
mean vector and covariance matrix of x, respectively.
As

(
A�A′)−1/2(

A�A′)(A�A′)−1/2 = Ip,

we have that (A�A′)−1/2A = Q�−1/2 for some Q ∈
U , and therefore yst = Qxst with the same Q ∈ U .

We thus define W(Fx) = U�−1/2, where U maxi-
mizes the function

Dxst (V) =
p∑

i=1

p∑
j=1

∥∥diag
(
VCij (xst )V′)∥∥2

.

The maximizer U is not unique, as the maximum is
then attained for any PJU where P ∈ P and J ∈ J .

Consider next the criterium function for the stan-
dardized transformed random variable yst . Then

Dyst (V) =
p∑

i=1

p∑
j=1

∥∥diag
(
VCij (Qxst )V′)∥∥2

=
p∑

i=1

p∑
j=1

∥∥VQC
(
xst ,Q′Eij Q

)
Q′V′∥∥2

.

If we write G = VQ = (g1, . . . ,gp)′, then

Dyst (V)

=
p∑

i=1

p∑
j=1

p∑
k=1

(
gkC

(
xst ,Q′Eij Q

)
g′
k

)2

=
p∑

i=1

p∑
j=1

p∑
k=1

( p∑
l=1

p∑
m=1

p∑
s=1

p∑
t=1

gksgktqilqjm

· C
(
xst ,Elm)

st

)2

=
p∑

i,j,k,l,l∗,m,m∗,s,s∗,t,t∗=1

gksgktgks∗gkt∗qil

· qjmqil∗qjm∗C
(
xst ,Elm)

st

· C
(
xst ,El∗m∗)

s∗t∗

=
p∑

k,l,l∗,m,m∗,s,s∗,t,t∗=1

gksgktgks∗gkt∗C
(
xst ,Elm)

st

· C
(
xst ,El∗m∗)

s∗t∗

· ∑
i

(uiluil∗)
∑
j

(ujmujm∗)

=
p∑

k,l,m,s,s∗,t,t∗=1

gksgktgks∗gkt∗C
(
xst ,Elm)

st

· C
(
xst ,Elm)

s∗t∗

= Dxst (G).

Hence, Dyst (V) = Dxst (VQ) ≤ Dxst (U), with equal-
ity, if V = PJUQ′ for any P ∈ P and J ∈ J . Thus,
W(Fy) = PJUQ′Q�−1/2A−1 = PJU�−1/2A−1 for
any P ∈ P and J ∈ J . �

For Theorem 10 we need the following lemma.

LEMMA 2. Assume that Ŝk , k = 1, . . . ,K are p ×
p matrices such that

√
n(Ŝk − 
k) are asymptotically

normal with mean zero and 
k = diag(λk1, . . . , λkp).
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Let Û = (û1, . . . , ûp) be the orthogonal matrix that
maximizes

K∑
k=1

∥∥diag
(
Û′ŜkÛ

)∥∥2
.

Then

√
nûij =

∑K
k=1(λki − λkj )

√
n(Ŝk)ij∑K

k=1(λki − λkj )2
+ oP (1).

PROOF. The proof is similar to the proof of Theo-
rem 4.1 of Miettinen et al. (2014b). �

PROOF OF THEOREM 10. As the criterium func-
tions

Dn(U) =
p∑

j=1

p∑
j=1

∥∥diag
(
UĈij U′)∥∥2 and

D(U) =
p∑

j=1

p∑
j=1

∥∥diag
(
UCij U′)∥∥2

are continuous and Dn(U) →P D(U) for all U, then,
due to the compactness of U ,

sup
U∈U

∣∣Dn(U) − D(U)
∣∣ →P 0.

D(U) attains its maximum at any JP where J ∈ J and
P ∈ P . This further implies that there is a sequence of
maximizers that satisfy Û →P Ip , and therefore also
Ŵ = ÛŜ−1/2 →P Ip .

Let Z̃ = (z̃1, . . . , z̃n) = (z1 − z̄, . . . , zn − z̄) denote
the centered sample, and write

β̂ = β(Z̃) = n−1
n∑

i=1

(
z̃i z̃′

i

) ⊗ (
z̃i z̃′

i

)
.

As the eighth moments of z exist,
√

n(β̂ −β) is asymp-
totically normal with the expected value zero, and β as
in Theorem 7.

Consider first a general sample whitening matrix V̂
satisfying

√
n(V̂− Ip) = OP (1). For the whitened data

we obtain

β̃ = β(V̂Z̃) = n−1
n∑

i=1

(
V̂z̃i z̃′

iV̂
′) ⊗ (

V̂z̃i z̃′
iV̂

′)

= (V̂ ⊗ V̂)β̂
(
V̂′ ⊗ V̂′),

and, further,
√

n(β̃ − β)

= √
n(β̂ − β)

+ [(√
n(V̂ − Ip) ⊗ Ip

) + (
Ip ⊗ √

n(V̂ − Ip)
)]

β

+ β
[(√

n
(
V̂′ − Ip

) ⊗ Ip

)
+ (

Ip ⊗ √
n
(
V̂′ − Ip

))]
.

Write next

B̂kl = B
(
Ekl, Z̃

) = n−1
n∑

i=1

(
z̃i z̃′

iE
kl z̃i z̃′

i

)
and

T̂kl = vec
(
B̂kl) = β̂ vec

(
Ekl).

Then
√

n(T̂kl − vec(Bkl)) is asymptotically normal
with expected value zero and Bkl as given in Theo-
rem 7. Also,

√
nb̂kk

kl = √
n
(
B̂kk)

kl = √
nr̂kl + oP (1).

Next, let

B̃kl = B
(
Ekl, V̂Z̃

) = n−1
n∑

i=1

(
V̂z̃i z̃′

iV̂
′EklV̂z̃i z̃′

iV̂
′)

and

T̃kl = vec
(
B̃kl) = β̃ vec

(
Ekl)

denote the standardized counterparts of B̂kl and T̂kl ,
respectively. Then

√
n
(
T̃kl − vec

(
Bkl))

= √
n
(
T̂kl − vec

(
Bkl))

+ [(√
n(V̂ − Ip) ⊗ Ip

)
+ (

Ip ⊗ √
n(V̂ − Ip)

)]
vec

(
Bkl)

+ β
[(√

n(V̂ − Ip) ⊗ Ip

)
+ (

Ip ⊗ √
n(V̂ − Ip)

)]
vec

(
Ekl).

It turns out that for the asymptotics of Ŵ, we only need
√

n
(
B̃kk − Bkk)

kl

= √
n
(
B̂kk − Bkk)

kl + 3
√

n(V̂ − Ip)kl(6)

+ (κk + 3)
√

n(V̂ − Ip)lk

and
√

n
(
B̃ll − Bll)

kl

= √
n
(
B̂ll − Bll)

kl + 3
√

n(V̂ − Ip)lk(7)

+ (κl + 3)
√

n(V̂ − Ip)kl.

Next, note that in the JADE procedure the matrices to
be diagonalized are

C̃kl = B̃kl − Ekl − Elk − tr
(
Ekl)Ip, k, l = 1, . . . , p.
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As
√

n(vec(Ĉkl) − vec(Ckl)) are asymptotically nor-
mal with mean zero and Ckl = 0, for k 
= l, and
Ckk = κkEkk , then by Lemma 2,

√
nukl reduces to

√
nûkl = κk

√
nc̃kk

kl − κl

√
nc̃ll

kl

κ2
k + κ2

l

+ oP (1)

(8)

= κk

√
nb̃kk

kl − κl

√
nb̃ll

kl

κ2
k + κ2

l

+ oP (1),

where c̃kk
kl = (C̃kk)kl and b̃kk

kl = (B̃kk)kl . So, asymp-
totically, all the information is in the matrices B̃kk ,
k = 1, . . . , p. As Ŵ = ÛV̂, where Û and V̂ are the
rotation matrix and the whitening matrix, respectively,
we have that
√

n(Ŵ − Ip) = √
n(ÛV̂ − Ip)

= √
n(Û − Ip) + √

n(V̂ − Ip) + oP (1).

The asymptotics of the regular JADE unmixing matrix
is then obtained with V̂ = Ŝ−1/2, where Ŝ is the sample
covariance matrix.

Notice first that
√

n
(
Ŝ−1/2 − Ip

) = −1/2
√

n(Ŝ − Ip) + oP (1).

Then substituting (6) and (7) into (8), we have that, for
k 
= l,

√
nŵkl

= κk

√
nr̂kl − κl

√
nr̂lk + (3κl − 3κk − κ2

k )
√

nŝkl

κ2
k + κ2

l

+ oP (1).

For the diagonal elements we have simply
√

nŵkk = −1/2(
√

nŝkk − 1) + oP (1). �
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