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We are grateful to the discussants for providing very
valuable and insightful comments. Next, we present
our views on some of the comments of the discussants
and provide further discussion.

We thank Bevilacqua, Hering and Porcu (hereafter,
BHP) for bringing attention to the fundamental prob-
lem of comparing multivariate models. Until now, al-
most all comparisons between models have been rel-
egated to empirical performance on specific datasets,
whether it be performance on cokriging or particu-
lar scoring rules. BHP introduce two theoretical ap-
proaches to comparing the flexibility of multivari-
ate frameworks: (A) assessing the size of allowable
co-located cross-correlation between processes, and
(B) a measure of difference in allowed spatial (cross)-
correlation at differing distances.

Regarding (A), BHP claim the bivariate Matérn is
less flexible than the LMC in that there are nontriv-
ial restrictions on the cross-correlation coefficient for
the bivariate Matérn that are not present for the LMC.
We emphasize, however, that the bivariate Matérn re-
strictions are a characterizing feature of the covariance
class—no LMC construction can allow for marginal
and cross exact Matérn behavior while allowing for
unrestricted choice of co-located cross-correlation.
Rather, it is a physical restriction on the covariance
class, not a flexibility restriction.

Most spatial modelers include a nugget effect in the
statistical model, Yi(s) = Zi(s) + εi(s), where Zi(s) is
endowed with a multivariate model, and εi(s) is a white
noise process that is uncorrelated with Zi(s). If εi(s) is
nontrivial with variance τ 2

i , then the restrictions on the
cross-correlation coefficient can be relaxed, the amount
depending on the magnitude of the nugget effect and
sample size. To see this, let p = 2 and write the co-
variance matrix for two unit variance processes at n

locations {Z1(s1), . . . ,Z1(sn),Z2(s1), . . . ,Z2(sn)}T as
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B � �, where � = {Cij (sk, s�)}2;n
i,j=1;k,�=1 and B =

(Bij )
2
i,j=1 consists of four n × n block matrices. For

simplicity, assume τ1 = τ2, so that B12 = B21 are ma-
trices populated by a constant ρ0 and B11 = B22 are
matrices of ones with diagonal 1 + τ 2. Note that the
case ρ0 = 1 results in B � � having the specified mul-
tivariate dependence; if ρ0 > 1, then the two processes
can have larger cross-correlation than allowed by the
specified model. The cases where ρ0 > 1 are valid
when B12 = B

1/2
11 KB

1/2
22 , where K is a contraction ma-

trix (i.e., a matrix whose singular values are bounded
by unity); this follows from Proposition 1 of Kleiber
and Genton (2013). This is one feasible way to relax
the restrictions that are suggested by BHP’s (A) crite-
rion. We view BHP’s (B) as an alternative interesting
route to comparing models, although it is still unclear
what improvements a modeler would expect to gain for
various magnitudes of the (B) criterion.

Cressie et al. focus on three main aspects: the impor-
tance of modeling the nugget effect (which yields addi-
tional potential difficulties in the multivariate context),
the pseudo cross-variogram and alternative approaches
to building multivariate structures.

We focused our efforts on reviewing multivari-
ate covariance functions, not multivariate modeling,
a byproduct of which is that we left little discussion
to the issue of modeling the nugget effect. For in-
stance, the underlying latent smooth process W of
Cressie et al. [(2015), equation (4)] still requires spec-
ification of the multivariate structure, regardless of
whether a nugget effect will or will not ultimately be
included. Nonetheless, these authors bring up an im-
portant point in that, especially for multivariate pro-
cesses, some variables may be measured by the same
instrument, in which case it may be expected that mea-
surement errors are correlated across variables at in-
dividual locations. Disentangling microscale variabil-
ity of the process from measurement error is indeed a
difficult prospect; Sang, Jun and Huang (2011) used
a full-scale approximation for multivariate processes
that explicitly breaks up large scale, small scale and
measurement error variability.
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Cressie et al. champion a traditional geostatistical
approach to estimation, using a weighted least squares
distance from empirical pseudo cross-variograms to
estimate parameters of a parametric class of cross-
covariance functions. Although this is a feasible route
to estimation, interpretation of the pseudo cross-va-
riogram remains unclear, unless the process is sta-
tionary and the variables are standardized, so that the
pseudo cross-variogram can be rewritten Var{Z1(s +
h)/σ1 − Z2(s)/σ2}, where σi is the standard deviation
of the ith process. This seems a particularly important
consideration if the scales of the two processes dif-
fer by orders of magnitude. A more modern approach
to estimation (albeit one that requires more model-
ing assumptions) is to adopt a maximum likelihood
or Bayesian framework. Even if the processes are not
strictly Gaussian, say, these other approaches can still
be used for estimation if the deviation from Gaussian-
ity is not too great.

We agree with Cressie et al. that the conditional
approach to estimation has utility in certain situa-
tions when there is clear directional dependence be-
tween variables. However, if many (say, greater than
four) processes are considered simultaneously, we
echo Cressie et al.’s caution: “when more variables
are involved, the order may not always be obvious
but, if the goal is to construct valid covariance and
cross-covariance functions, the different orderings can
be viewed as enlarging the space of valid models.”
On the other hand, the factor process approach seems
promising. Given the difficulties basis decomposition
approaches experience in the univariate setting (Finley
et al., 2009, Stein, 2014), we expect similar issues
to arise in the multivariate setting. Thus, we sug-
gest a multiresolution approach, decomposing differ-
ing scales of support into various resolutions of basis
functions (Nychka et al., 2002, 2015).

Finally, Cressie et al. bring up some important issues
in validating and comparing statistical models that we
view as sensible guidelines for future authors working
in this field. Indeed, direct likelihood comparisons may
be muddled by the varying numbers of parameters be-
tween models, and BHP have introduced some tools
apart from the usual information criteria to compare
multivariate models.

We are pleased that Simpson, Lindgren and Rue
(hereafter, SLR) decided to expand on our very brief
mention of the spectral representation of the cross-
covariance matrix function, which for simplicity was
restricted to the symmetric case in our review. Al-
though we did address the topic of asymmetric cross-
covariance functions in Section 5.1, SLR now provided

information about the spectral representation in the
asymmetric setting and further discussed the spectral
representation of multivariate Gaussian random fields
themselves. SLR also argued that this path leads nat-
urally to non-Gaussian or nonstationary multivariate
random fields, and they further made the link with
physics-constrained cross-covariance models.

Although SLR advocated the SPDE approach as a
computationally efficient reformulation of univariate
and multivariate Gaussian random fields, there are also
limitations that can only be exacerbated in the multi-
variate setting. For example, the smoothness parame-
ter of the Matérn covariance function is restricted to
certain values. Moreover, this methodology requires
a strong background in numerical analysis techniques
which is not common among statisticians. Thus, we
view the multivariate kernel convolution approach as
a compromise where physics-based information can be
incorporated, without confronting the numerous diffi-
culties in implementing a SPDE framework. Neverthe-
less, the route of SPDEs offers many interesting and
challenging avenues for future research.

SLR end their discussion with an important point
about the inflation of the number of parameters in
cross-covariance models as the number of variables in-
creases. This is indeed a challenging issue when ap-
plying likelihood methods and various authors have
resorted to composite likelihood approaches, although
more investigations in this area are warranted. Finally,
the problem of parameter identifiability under infill
asymptotics in the multivariate setting is mentioned
and we see no reason for this effect to disappear in this
context.

The discussion of Zhang and Cai (hereafter, ZC)
centers on trying to understand why and when cok-
riging does not always outperform kriging. This is a
very relevant topic given the numerical results pro-
vided in our two data analyses. To address this topic,
ZC start by deriving sufficient conditions for the equiv-
alence of Gaussian measures for a bivariate Matérn
cross-covariance model with common length scale
and smoothness parameters, but allowing for different
marginal variances. Using ZC’s notation, an example
of two bivariate Gaussian measures that satisfy their
sufficient conditions is given by ν = 1, σ11,1 = σ22,1 =
1, σ11,2 = σ22,2 = 2, σ12,1 = 1/2, σ12,2 = 1, α1 = 2,
and α2 = 1.

The example provided by ZC where cokriging is
equivalent to kriging falls into the category of au-
tokrigeability (Wackernagel, 2003, page 149). A vari-
able is autokrigeable with respect to a set of variables
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if the kriging of this variable is equivalent to the cok-
riging. A trivial case is when all variables are uncorre-
lated. Another case, as illustrated by ZC, is when the
cross-covariance function is separable (also called in-
trinsically correlated in geostatistics). Generalizations
of the concept of autokrigeability to various simplifica-
tions of large cokriging systems by means of screen ef-
fects were investigated by Subramanyam and Pandalai
(2008); see also Furrer and Genton (2011) for related
methods to handle highly multivariate spatial data.

ZC conclude by investigating a situation where the
auxiliary variable is observed at more locations than
the predicted variable, leading to the cokriging predic-
tor being more efficient than the kriging predictor as
a function of the co-located correlation coefficient, r ,
in a separable exponential cross-covariance function
setting. Interestingly, their formula (9) shows that the
mean squared prediction error of the cokriging predic-
tor can be reduced to at most 1/2 of that of the kriging
predictor in this particular case. We conjecture that the
factor 1/2 could be further reduced by either adding
more observation points in O or by adding more vari-
ables Y3(s), . . . , Yp(s) in a similar cross-covariance
function framework.

Finally, one last issue that remains is the availabil-
ity of statistical software for implementing, simulat-
ing and estimating multivariate models. Indeed, the
choice of a particular model to use in any application
requires fair expertise in spatial statistics, and we ex-
pect these models to become more mainstream as well-
documented software becomes more available. There
are some promising packages available currently that
end users should be aware of, all of which are avail-
able in R. Whereas RandomFields contains a large
number of multivariate models and can perform high
resolution simulation of these (Schlather et al., 2014),
spBayes is geared toward Bayesian analyses of hi-
erarchical multivariate models (Finley, Banerjee and
Gelfand, 2015), and gstat contains some variogram-
based estimation routines for the linear model of core-
gionalization (Pebesma, 2004).
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