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Monte Carlo Null Models
for Genomic Data
Egil Ferkingstad, Lars Holden and Geir Kjetil Sandve

Abstract. As increasingly complex hypothesis-testing scenarios are consid-
ered in many scientific fields, analytic derivation of null distributions is of-
ten out of reach. To the rescue comes Monte Carlo testing, which may ap-
pear deceptively simple: as long as you can sample test statistics under the
null hypothesis, the p-value is just the proportion of sampled test statistics
that exceed the observed test statistic. Sampling test statistics is often simple
once you have a Monte Carlo null model for your data, and defining some
form of randomization procedure is also, in many cases, relatively straight-
forward. However, there may be several possible choices of a randomization
null model for the data and no clear-cut criteria for choosing among them.
Obviously, different null models may lead to very different p-values, and a
very low p-value may thus occur due to the inadequacy of the chosen null
model. It is preferable to use assumptions about the underlying random data
generation process to guide selection of a null model. In many cases, we may
order the null models by increasing preservation of the data characteristics,
and we argue in this paper that this ordering in most cases gives increas-
ing p-values, that is, lower significance. We denote this as the null complex-
ity principle. The principle gives a better understanding of the different null
models and may guide in the choice between the different models.

Key words and phrases: Monte Carlo methods, hypothesis testing, ge-
nomics.

1. INTRODUCTION

Increasingly, Monte Carlo methods are needed to
provide answers to important scientific questions, par-
ticularly in the rapidly advancing field of genomics.
For better or worse, these questions are often framed
within the formalism of statistical hypothesis testing.
In many cases, Monte Carlo hypothesis testing tech-
niques such as permutation testing are the only options.
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Conceptually, these methods share an appealing clar-
ity: As long as you can sample test statistics under
the null hypothesis, the p-value is just the proportion
of sampled test statistics that exceed the observed test
statistic. One of our main aims is to show that the ap-
parent simplicity of randomization hypothesis testing
can be very deceptive. In the following, we use null
model as a general term for the distribution of the re-
sampled data (e.g., using random permutations), and
we use null distribution to denote the distribution of the
test statistic under the null model. Even though there is
a highly developed theory of classical hypothesis test-
ing (e.g., Lehmann and Romano, 2005), new practical
and methodological problems appear when we need to
resort to Monte Carlo testing:

• The question of interest may be unavoidably vague,
so that it is not obvious how to translate it into a
precise mathematical formulation.
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• There may be several possible choices of a ran-
domization null model and no clear-cut criteria for
choosing among them (except possibly conserva-
tiveness arguments for choosing the null model giv-
ing the largest p-values).

• A full specification of the null hypothesis consists
of both the null model and the question of interest.
This complicates the interpretation of a rejection of
the null hypothesis—the question of interest may not
really have been answered if the null model is inad-
equate.

• There may be several possible choices of test statis-
tic and no clear-cut criteria for choosing one (except
possibly power considerations).

If unresolved, these problems may degrade the re-
producibility and transparency of investigations, as
well as lead to false research findings. There has lately
been an increasing focus on how to make science more
reproducible, especially in the field of computational
biology (Ioannidis et al., 2008; Noseda and McLean,
2008; Mesirov, 2010; Sandve et al., 2013b). Also,
due to the increased prevalence of data-driven science
(Kell and Oliver, 2004) through increased availability
of public data and more accessible and efficient analyt-
ical tools, there has also been a heated discussion on
whether a large proportion of published research find-
ings are false (Ioannidis, 2005; Goodman and Green-
land, 2007). We discuss this topic further in the remain-
der of this paper. Our main application of interest is ge-
nomics and the Genomic HyperBrowser (Sandve et al.,
2010, 2013a) where choosing the correct null model is
a major issue. We have discussed null models in ecol-
ogy in a companion report, Ferkingstad, Holden and
Sandve (2013). Several examples show that the choice
of a null model can strongly affect the resulting p-
values. We state that ordering the null models accord-
ing to increasing preservation may imply an ordering
of the statistical significance. Further, if the null mod-
els are not able to capture the essential structural prop-
erties of data, this may lead to false findings.

We proceed as follows: Section 2 discusses gen-
eral problems of randomization null models. Section 3
presents null model preservation hierarchies and sig-
nificance orderings. Sections 4–6 illustrate several dif-
ferent null models within genomics: Section 4 consid-
ers null models for the location of transcription factor
binding sites, Section 5 shows that genetic properties
have a tendency to cluster along the genome, while
Section 6 illustrates that we may get false rejections
with too simple null models using simulated data of

points and segments in genomic tracks. Finally, Sec-
tion 7 provides a general discussion and some conclud-
ing remarks and recommendations.

For the genomics case studies described in Sec-
tions 4–6 we have used q-values (Storey, 2002) to cor-
rect for multiple testing. Assume that we test m hy-
potheses where p(1) ≤ p(2) ≤ · · · ≤ p(m) are the or-
dered, observed p-values, R is the number of rejected
null hypotheses, and V is the (unknown) number of
falsely rejected null hypotheses. The false discovery
rate (FDR) (Benjamini and Hochberg, 1995) is then
defined as FDR = E(V/R). For each test, the corre-
sponding q-value is defined as the minimum FDR at
which the test is called significant. Let π0 be the pro-
portion of tests that are truly null (Langaas, Lindqvist
and Ferkingstad, 2005) and q(i) the q-value for the test
with p-value pi . Then, we may estimate q(i) by

q̂(i) = min
i≤j≤m

m ∗ π̂0 ∗ p(j)/j,

where π̂0 is an estimate of π0. Thus, the main inputs
to this multiple testing method are the observed p-
values together with an estimate of π0. To estimate
π0, we have used the robust estimator of Pounds and
Cheng (2006), since this is very computationally ef-
ficient and can be shown to be conservative in many
realistic settings. For a general discussion of multiple-
testing issues in Monte Carlo settings, see also Sandve,
Ferkingstad and Nygård (2011). All calculations were
performed using the R programming language (R De-
velopment Core Team, 2011) and the Genomic Hyper-
Browser. A Galaxy Pages (Goecks et al., 2010) docu-
ment allowing for replication of the results is available
at https://hyperbrowser.uio.no/suppnullmodels.

2. RANDOMIZATION NULL MODELS

Consider a hypothesis test based on data X and a
test statistic T = T (X). Without loss of generality, we
may assume that large values of T constitute evidence
against H0. Then, for an observed test statistic T = t ,
the decision to accept or reject H0 can be based on the
p-value p = F0(T ≥ t), where we reject H0 if p < α

for some threshold α and where F0 is the distribution
of T under the null model P0. If P0 is false, T has
distribution F1.

In the classic textbook setting, the null model is
known and can be described explicitly, so we can di-
rectly compute the p-value. Increasingly, both data and
models are too complex for this to be done. In such
cases we must resort to some type of Monte Carlo
randomization test: we generate samples Ti = ti , i =
1, . . . , n of the test statistic T under the null model and

https://hyperbrowser.uio.no/suppnullmodels
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estimate the empirical p-value from the data set X by

p̂X,e(t) = 1

n

n∑

i=1

I (ti ≥ t),(1)

where t is the observed test statistic and I (·) denotes
the indicator function, equal to one if its argument is
true or zero if false. The idea of randomization testing
has been around at least since the pioneering work of
Fisher (1935), but has only become practical with the
advent of electronic computers. For a recent overview
of Monte Carlo methods, see Manly (2007).

The randomization null model is arguably the most
crucial component of the Monte Carlo testing setup.
Often, the research question and even the test statis-
tics may be clear, but how should one specify the null
model? Sandve et al. (2010) introduce the idea of null
model preservation hierarchies and note that “a crucial
aspect of an investigation is the precise formalization
of the null model, which should reflect the combination
of stochastic and selective events that constitutes the
evolution behind the observed genomic feature. [. . . ]
Unrealistically simple null models may [. . . ] lead to
false positives.” Here, we build further on these ideas
and provide a conceptual framework to aid the choice
of null model.

In the statistics literature, the most directly relevant
previous papers on null models are Efron (2004) and
Bickel et al. (2010). Efron (2004) estimates the null
model from data in multiple-testing problems, giv-
ing an “empirical null.” This is very useful for some
multiple-testing settings, but not directly applicable to
the problems we study here. Bickel et al. (2010) pro-
pose subsampling methods based on a piecewise sta-
tionary model for genome sequences, a potentially use-
ful approach for our case study in Section 4, but which
we feel would be beyond the scope of this paper.

There is also relevant work from other disciplines.
Particularly, null models have been a very contested is-
sue within ecology, as further discussed in Ferkingstad,
Holden and Sandve (2013). For example, Gotelli
(2000) points out that “the analysis of presence–
absence matrices with null model randomization tests
has been a major source of controversy in community
ecology for over two decades.” See also the book by
Gotelli and Graves (1996) and Manly [(2007), Chap-
ter 14], who notes that “one of the interesting as-
pects of this [species competition problem] is the dif-
ficulty in defining the appropriate model of random-
ness” (page 348). Fortin and Jacquez (2000) discuss
randomization tests for spatially autocorrelated data.

As discussed elsewhere in this paper, genomics is an-
other area where the problem of choosing the right null
model is very urgent (Sandve et al., 2010). Bickel et al.
(2010) note that “a common question asked in many
applications is the following: Given the position vec-
tors of two features in the genome [. . . ] and a measure
of relatedness between features [. . . ] how significant is
the observed value of the measure? How does it com-
pare with that which might be observed ‘at random?’
The essential challenge in the statistical formulation
of this problem is the appropriate modelling of ran-
domness of the genome, since we observe only one
of the multitudes of possible genomes that evolution
might have produced for our and other species.” See
Kallio et al. (2011) for a general discussion of the im-
portance of null models within bioinformatics. Related
work has also been done within the field of data min-
ing; see Gionis et al. (2007), Hanhijärvi, Garriga and
Puolamäki (2009). Lijffijt et al. (2014) consider the re-
lated problem of estimating the level of preservation
needed to attain a prespecified significance level α (for
example, α = 0.05).

3. PRESERVATION AND
SIGNIFICANCE ORDERINGS

By assumption, the data set X is taken as given, that
is, it is not considered to be a random sample from
some population. In order to test our hypothesis, we
need to randomize X from a null model P0. In many
cases some specific features of X will need to be pre-
served. In a specific problem, it may be very difficult
to decide what features are fundamental and which are
not. If we attempt to conserve all possible features of
the observed X, we are left with X itself and no basis
for performing the hypothesis test. If we conserve too
little, we generate realizations that violate basic prop-
erties of the phenomenon under study. Different null
models may preserve different properties of X, for ex-
ample, null model P0 preserves properties Q and R and
null model P1 preserves properties R and S. But quite
often we may order the null models according to in-
creasing preservation of the properties of X. We de-
scribe two different alternative descriptions of ordering
of preservation of the null models:

A. Let P0 denote the state space obtained by a set of
resamplings (for example, permutations) that are al-
lowed under a given null model. That is, the state
space is the set of all possible combinations of val-
ues of variables in the stochastic model. We de-
fine a preservation hierarchy if the following cri-
teria are satisfied: P

(1)
0 ⊂ P

(2)
0 ⊂ · · · ⊂ P

(n)
0 . We
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then state that P
(i)
0 preserves more than P

(i+1)
0 for

i = 1,2, . . . , n − 1 of the properties of the original
data set X and hence is more restricted. As we will
discuss further below, a more restricted null model
will in most cases give less significant results, that
is, p-values from P

(i)
0 will tend to be larger than

p-values from P
(j)
0 if P

(i)
0 ⊂ P

(j)
0 . Note that we

only consider Monte Carlo null models, that is, null
models that are generated by resampling from the
observed data (as in permutation testing), and that
the P

(i)
0 are sets of allowed resamplings under H0—

they are not sets of allowed parameter values.
B. Let X = (X1,X2, . . . ,Xn) denote a state in the

state space and let the null model be defined by a set
of allowed permutations of the Xi’s. Define Xi = 1
for a certain property in base pair i and otherwise
Xi = 0. Assume further that the test statistic T is
given by

T = 1

n

∑

i

yiXi(2)

for a fixed vector y = (y1, y2, . . . , yn). We trivially
have

E(T ) = 1

n

∑

i

yiE(Xi)

and

Var(T ) = 1

n2

∑

i

∑

j

yiyj Cov(Xi,Xj ).

We assume the stationary criteria E(Xi) = λ

and Var(Xi) = σ 2 are independent of i. Assume
Cov(Xi,Xj ) is positive for |i − j | small and
decreases with increasing distance |i − j |, say,
Cov(Xi,Xj ) = σ 2ρ(|i − j |), for some decreasing,
positive correlation function ρ. The covariance is
smaller in null model P(1) than P(2) if the cor-
responding correlation functions satisfy ρ(1)(d) ≥
ρ(2)(d) for all d > 0. This implies that the more the
permutation preserves of Cov(Xi,Xj ) for |i − j |
small, the larger is Var(T ). Here we may define a se-
quence of null models with decreasing Cov(Xi,Xj )

for all distances |i − j |, implying larger values of
Var(T ). In most cases it is reasonable to also as-
sume that E(T ) is the same for all the null models.

Cases A and B may both be satisfied at the same
time. In Section 5 we argue that it is typical for ge-
nomic data of certain types to satisfy the criteria in case
B, that is, Cov(Xi,Xj ) is positive for |i − j | small and

decreases with increasing distance |i − j |. In this case,
we make assumptions directly on the test statistic T

which indicate larger empirical p-values [see defini-
tion (1)] the more we preserve of the original data X.
By assumption, large values of T indicate evidence
against the hypothesis H0. A larger value of Var(T )

implies under quite general statistical assumptions that
a larger fraction of the realizations have a test statistic
Ti > T (provided the number of realizations are suffi-
ciently large), leading to larger p-values. Also, in case
A, an increasing state space will in most cases lead to
an increase in Var(T ).

The relationship between preservation and signifi-
cance is the same observation as in Hanhijärvi, Garriga
and Puolamäki (2009), “obviously, the more restricted
the null hypothesis [. . . ] the less significant the results
of a data mining algorithm tend to be.” We will call this
observation the null complexity principle.

The null complexity principle may be an aid in
choosing the correct level of preservation in the null
model, as well as in interpretation of the results. Since
the null complexity principle does not always hold, it
is necessary to demonstrate it for the problem under
study. If this property is proved for the null models ap-
plied, then this is very useful information when choos-
ing a null model. For example, a scientist wishing to
be conservative may choose the null model known a
priori to give the largest p-values. Also, some Monte
Carlo null models may be considerably more computa-
tionally demanding than others. Then, we may first test
a null model having low computational cost. If we re-
ject the hypothesis using this model, we will also reject
the hypothesis for less conservative (and more compu-
tationally intensive) null models. The ordering of the
p-values imply that too simple null models may lead to
false positives, as conjectured in Sandve et al. (2010).

Our concepts of null models and preservation may be
illustrated by the following simple example. Assume
we have tossed a coin N � 100 times and we question
whether the observed proportion of heads in the begin-
ning of the sequence is significantly larger than 0.5.
We want to allow for the possibility of coins tosses be-
ing correlated. We use the number of heads in the first
100 coin tosses as the test statistic. We use two differ-
ent null models. In null model 1 we assume that the
coins are independent of each other and have a 50%
probability for heads, so we can permute the observed
coin tosses freely to sample from the null model. For
null model 2 we permute each sequence of 2 obser-
vations from the observed N coins in order to main-
tain a possible correlation between consecutive coins.
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The second model is more restrictive and according to
the null complexity principle gives larger p-values. If
there is positive correlation between consecutive coins,
this increases the variability of the test statistics and
hence increases the p-value. However, if there is neg-
ative correlation between consecutive coins, this de-
creases the variability of the test statistics and hence
decreases the p-value. The example also illustrates that
the null complexity principle often assumes positive
correlations between terms in the test statistic. For test
statistics defined on point processes (such as the exam-
ples in Section 4), this typically corresponds to attrac-
tion between points (correlation between consecutive
inter-point distances). Intuitively, it is easier to envi-
sion mechanisms leading to attraction than repulsion
(although these for sure also exist). Our experience is
that positive correlations (including attraction in point
processes) are much more common than negative cor-
relations (including repulsion) in real data sets, which
we also show for a number of genomic data sets, rep-
resenting several classes of features, in Section 5.

3.1 How to Measure Clustering of Points

As we have seen in case B above, in some cases
it is important to preserve clustering of points, since
this has important implications for the sizes of the re-
sulting p-values. Following the notation defined in the
previous section, we may use the Ripley’s K-function
(Ripley, 1976) as a measure for clustering. This is de-
fined relative to a distance t as

K(t) = λ−1E(number of extra points within

distance t of a randomly chosen point).

To simplify the notation, disregard edge effects by as-
suming that there exist X−t−1, . . . ,X0 and Xn+1, . . . ,

Xn+t from the same process as X1, . . . ,Xn. Then

K(t) = (nλ)−1
n∑

i=1

i+t∑

j=i−t

j �=i

P(Xj = 1|Xi = 1)

for integer t . We may write K(t) in terms of the corre-
lation function ρ, as follows:

K(t) = (nλ)−1
n∑

i=1

i+t∑

j=i−t

j �=i

(
λ + λ−1 Cov(Xi,Xj )

)

= 2t + σ 2n−1λ−2
n∑

i=1

i+t∑

j=i−t

j �=i

ρ
(|i − j |)

= 2t + 2σ 2n−1λ−2
n∑

i=1

t∑

j=1

ρ(j)

= 2t + 2σ 2λ−2
t∑

j=1

ρ(j).

Using our earlier definition of clustering [ρ(1)(d) ≥
ρ(2)(d) for all d > 0], this means that increased clus-
tering implies increased K(t) for each t .

Note that if Xi and Xj are independent for i �= j ,
then

K(t) = (nλ)−1
n∑

i=1

i+t∑

j=i−t

j �=i

λ = (nλ)−1
n∑

i=1

(2tλ) = 2t.

Therefore, we may define a scaled K-function, L(t),
as follows:

L(t) = K(t)/(2t).

Then, L(t) < 1 corresponds to repulsion between
points, L(t) = 1 to independent points, while L(t) > 1
corresponds to attraction between points.

Assume that we have observed Xi = xi , i = 1, . . . , n

and wish to estimate L̂(t). To simplify notation, let
xi = 0 for i < 1 and i > n. Then, we choose some value
t = τ and estimate K(τ) by

K̂(τ ) = n−1λ̂−2
n∑

i=1

i+τ∑

j=i−τ

j �=i

w−1
ij xixj ,

where

λ̂ = n−1
n∑

i=1

xi

and

wij = min(max(i, j), n) − max(min(i, j),1)

max(i, j) − min(i, j)

are weights that correct for edge effects. Finally, L(τ)

is estimated by

L̂(τ ) = K̂(τ )/(2τ).

4. NULL MODELS FOR GENOMIC LOCATIONS

In this section we will show how to choose a null
model when we want to test whether the points in a
point track are independent of segments in a segment
track. Several null models that have preservation or-
derings according to both cases A and B in Section 3
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are presented. The results are as expected, with more
preservation giving larger p-values.

A fully extended human chromosome would be
about one meter long, consisting of about 3 billion base
pairs. The properties vary along the genome and we of-
ten divide the genome into bins and perform separate
tests for each bin. There are about 30,000 genes, rep-
resented as intervals of base pairs or segments in the
terminology of Sandve et al. (2010). Transcription fac-
tors (TF) regulate the expression of genes by binding
to DNA in the spatial proximity of the genes they regu-
late, interacting with the complex of proteins that tran-
scribes DNA to RNA (the transcriptional machinery).
As the DNA may form loops, spatial proximity is not
necessarily the same as proximity along the sequence.
A TF that binds to DNA may therefore regulate the ex-
pression of a gene that is millions of base pairs away
from the binding site, and may even regulate genes
on different chromosomes (Visel, Rubin and Pennac-
chio, 2009; Ruf et al., 2011). In higher organisms, such
as humans, transcription factor binding sites are or-
ganized into modular units, often referred to as cis-
regulatory modules (CRM). These CRM usually com-
prise a few hundred base pairs and are characterized
by a high local frequency of binding for one or several
TFs (Berman et al., 2002; Zhou and Wong, 2004). TFs
that interact with the transcriptional machinery to in-
crease the expression of genes at some distance from
where the TFs bind to DNA are often referred to as en-
hancers, and the regions of DNA containing such TF
binding sites are often referred to as enhancer regions.
The TF are also segments of base pairs, but since these
segments usually are shorter than the genes, these are
often represented as unmarked points in the terminol-
ogy of Sandve et al. (2010).

4.1 Specifying Details of Hypothesis Tests:
Transcription Factor Binding Relative to Genes

In this section we will discuss two null models that
have a preservation ordering according to both cases A
and B of Section 3. The results are as expected: more
preservation gives larger p-values. We only get rejec-
tion of the null hypothesis when we have little preser-
vation. This may be due to a too simple null model.

A very basic question related to the positioning of
transcription factor binding sites (TFBS) is whether the
binding sites of a given TF fall preferentially inside
or outside genes. As a concrete example, we consider
binding sites for the transcription factor MitF (Strub
et al., 2011) in relation to Ensembl gene regions (Flicek
et al., 2012). We asked this question locally along the

genome, dividing the genome into bins and perform-
ing one separate test per bin. As bins we used chro-
mosome bands, which represent a common partition of
chromosomes into regions of a few megabases. To en-
sure a reasonable amount of data for the tests, we only
considered chromosome bands containing at least one
gene and five TFBS, resulting in 73 bins. Separate tests
were performed for each bin.

How can a hypothesis test be specified for this prob-
lem? Clearly, a natural test statistic is the number T of
TFBS falling inside genes. Furthermore, let n be the
total number of TFBS in the bin and p the propor-
tion of the bin covered by genes. A natural null model
is that TFBS are uniformly and independently located
within each bin. It is then easily seen that the distribu-
tion of the test statistic is T ∼ Binomial(n,p). There
are other alternatives. For instance, one might assume
that the TFBS are Poisson distributed within the bin.
This would preserve the underlying probability of ob-
serving a TFBS instead of the exact count of observed
TFBS, thus giving rise to a (slightly) different null dis-
tribution. In our opinion, when realizations are based
on Monte Carlo analysis, it is necessary to carefully
study the properties of the null model. Mistakes are
easily made if one directly writes down the null dis-
tribution of the test statistic.

Performing the binomial test as described above
yields the conclusion that there is preferential loca-
tion inside genes for 9 out of the 73 bins after multi-
ple testing correction (at a 10% false discovery rate).
This could be taken as an indication of local variation
of an underlying (mechanistic) tendency of TFBS for
the transcription factor MitF to be located inside gene
regions.

The TFBS may form clusters, denoted CRM, with
typical length of a few hundred base pairs. This is a
much smaller scale than the gene regions, which typi-
cally are several thousand base pairs. The clustering of
TFBS appears to be an intrinsic property of the TFBS
themselves, and not a part of the TFBS–gene relation
that is being tested. This suggests that at least some
aspects of clustering should be preserved in the null
model. This is an example of case B of Section 3,
as can be seen by letting Xi = 1 for a TFBS in base
pair i. Most of the clusters are either completely in-
side or completely outside a segment, meaning that
Cov(Xi,Xj ) is larger for i and j close. If we maintain
this positive correlation in the null model, this gives
higher p-values. This is tested by using two different
null models. The first model is the null model described
above, where we only preserve the total number of
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FIG. 1. Scatter plot of p-values for the same test under two dif-
ferent null models.

TFBS. In the second model the empirical inter-TFBS
distances are preserved in the null model by only per-
muting these distances. This second model preserves
more of positive correlation in Cov(Xi,Xj ). These two
null models are in fact also an example of case A in
Section 3, since both null models give a finite state
space with equally likely states and the second null
model is a subset of the first one. The p-values from
the two null models are illustrated in Figure 1. We see
clearly that preserving the empirical inter-TFBS dis-
tances in the null model gives larger p-values. Some
bins show very different results between null models,
for example, at chromosome band q25.1, where in-
dependent location gives a p-value less than 0.0005,
while preservation of inter-TFBS distance gives a p-
value of 0.1. This is probably due to strong correlation
Cov(Xi,Xj ) in this bin. When the empirical distribu-
tion of inter-TFBS distances is preserved, the null hy-
pothesis is not rejected in any bin at 10% FDR, sug-
gesting that the significant findings under the unifor-
mity assumption may simply be due to inadequacy of
the null model.

4.2 Deciding What Should Be Preserved in the Null
Model: Randomizing Genes Instead of
Transcription Factors Binding Sites

In this section there are two pairs of null models with
preservation ordering according to case A in Section 3.
The p-values are ordered as expected: more preserva-
tion gives larger p-values.

In the above discussion, we have implicitly assumed
that the TFBS distribution should be stochastic in the
null model, while genes are preserved exactly at their
genomic locations. This seems reasonable from a bio-
logical standpoint, as the location of binding sites can
generally be assumed to follow the location of genes
chronologically through evolution (although there may
be exceptions, such as coding regions copied into ge-
nomic regions that already have an established regu-
latory machinery). However, one should also consider
which of the tracks have the more complex structure.
This structure should be preserved in the null model,
and one would prefer to randomize the track with the
simplest structure. Although the location of genes is
clearly not uniform, it can be argued that the TFBS
has an even more complex structure. The reason is
that individual TFBS fall as clusters with specific intra-
cluster structure inside regulatory regions, with regula-
tory regions again having a certain structure in relation
to genes. Indeed, as can be seen from Figure 2, the p-
values are somewhat higher when randomizing genes
as opposed to TFBS. In the figure we compare the
two null models described above randomizing TFBS-
positions and two null models where we randomize the
gene locations with random positioning and preserving
inter-gene distances. These two null models, random-

FIG. 2. Empirical cumulative distribution of p-values under four
different null models. The different null models correspond to
whether TFBS or genes are randomized, and whether the empir-
ical inter-element distances are preserved or not.
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izing the gene locations, are also examples of case A
in Section 3. As expected, the second null model gives
larger p-values. The two models with gene random-
ization also give larger p-values than the two models
with TFBS randomization, indicating that the models
with gene randomization preserve more of the com-
plex interaction between genes and TFBS than the two
other models. Note also that the difference between the
two models randomizing genes is smaller than between
the two models randomizing TFBS. This indicates that
preserving inter-distances is more important for TFBS
than for genes.

5. SIGNIFICANCE ORDERING FOR DATA
THAT DISPLAY INTERNAL CLUSTERING:
TRANSCRIPTION FACTOR BINDING AND

CHROMATIN STATES

In this section we will show that clustering is present
in a large amount of genomic tracks. Clustering leads
to the preservation ordering shown in case B of Sec-
tion 3. Again, the p-values are ordered, with more
preservation giving larger p-values.

The DNA has to be highly compacted in order to fit
into a cell. At the same time, it has to be accessible, for
example, to the binding of transcription factors in or-
der to allow efficient gene regulation. To achieve con-
trolled compactness and accessibility, DNA is packed
in a structured manner at multiple levels. The first such
organizational layer consists of the DNA double he-
lix, at the order of 100 base pairs, wound around small
protein complexes called nucleosomes (Kornberg and
Lorch, 1999). These nucleosomes can be modified
through the attachment of other molecules to the pro-
teins of the nucleosomes, which are called histones.
This is referred to as histone modification, and serves a
regulatory role in itself (Cairns, 2009). Recently, it has
become possible to create genome-wide maps of his-
tone modifications through the use of high-throughput
sequencing protocols (Wang et al., 2008). It has been
suggested that combinations of such histone modifica-
tions in a given region, referred to as chromatin states,
can be used as a mark of the functional role of the re-
gion (Ernst et al., 2011). One of the proposed chro-
matin states, the “5-enhancer” (shortened to “SE” in
part of the following text), is suggested to correspond
to regions that play a role in gene regulation by pro-
viding accessible binding sites to several transcription
factors. It is thus interesting to see whether different
TFs indeed shows a higher than expected density of
experimentally determined binding events inside these

regions. To investigate this, we considered a collection
of 82 tracks of experimentally determined TF binding
events in blood cells (cell type gm12878) generated
through the ENCODE project. The tracks are origi-
nally of type Segments, corresponding to called sig-
nal peaks of ChIP-seq experiments (Kim et al., 2005).
These peak segments are around 100 bps long, reflect-
ing experimental inaccuracy in the determination of
binding sites that are themselves around 5–25 bp long
(Wingender et al., 1996). The real binding sites are of-
ten, but not always, located around the center of these
peak regions. In our analyses, we used the midpoints
of the peak regions as binding site locations. For each
TF, we then tested whether the binding locations oc-
curred inside regions in the “5-enhancer” chromatin
state more than expected by chance.

An analysis of the direct relation between TF bind-
ing locations and chromatin states might be strongly
confounded by a common relation to gene locations.
To reduce this potentially confounding factor, we fo-
cused the study of the relation between TF binding and
enhancer states on only contiguous regions of size >

100 kb, that are more than 100 kbps away from the
nearest gene. Parts of these regions are located in cen-
tromeres, where neither TF binding events nor chro-
matin states can be mapped. To avoid any bias due
to this, we constrained the analysis regions to only
part of the regions being located in the chromosome
arms. There is a total of 580 such regions in the hu-
man genome (using the Ensembl gene definition for
computing distance from genes), ranging in size from
100 kbp to 2.6 Mbp and covering a total of 151 Mbps.

As can be seen from Figure 3, ENCODE tracks
display a strong clustering tendency across different
scales for a large number of tracks of different types.
The scaled Ripley K values are described in Sec-
tion 3.1. All the collections show a typical clustering
tendency well beyond the neutral value of 1. Based
on these results, we claim that clustering is typical
for genomic data of this type. We observe very few
data sets where we find repulsion. Case B in Section 3
shows that clustering may give increasing p-values for
null models: if we reduce or remove the clustering in
the stochastic model, that is, reduce the preservation,
then the p-values decrease. Hence, the p-value from
the null models are ordered according to increasing
preservation of the clustering. When testing the clus-
tering it is important to apply a scale that is adapted to
the length of the observed property, for example, TFs.
The ordering of the p-values depends on the scale of
clustering relative to the length of the properties (e.g.,
genes) in the other tracks used in the test.
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FIG. 3. Box plot of scaled Ripley’s K values for several collections of ENCODE and RoadMap Epigenomics tracks. The two left boxes
are based on 81 TF ChIP-seq tracks with genome wide data, followed by two boxes with the same data but restricted to selected regions
of size > 100 kb that are more than 100 kbps away from the nearest gene, followed by a box based on 147 tracks of DHS for different cell
types and finally a box with elements of chromatin state “5-Strong Enhancer” in nine different cell types. The clustering is analyzed for two
different scales for the two first data types.

Furthermore, we tested whether ChIP-seq peaks for
47 different TFs transcription factors were located
more than expected inside regions of chromatin state
5-Strong Enhancer. p-values for two different null

models with random location of the CHIP-seq peaks or
preserving the inter-distances from the original tracks
are shown in Figure 4. A total of 81 tracks of the
TF ChIP-seq peak region for the cell type gm12878

FIG. 4. p-values for hypothesis testing of whether midpoints of ChIP-seq peaks for 47 different TF were located more than expected inside
regions of the chromatin state 5-Strong Enhancer. p-values were computed for two different null models: random location of the midpoints
or preserving the inter-point distances. The TFs on the x-axis were sorted according to the p-value achieved when preserving inter-point
distances in the null model.
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were retrieved from the ENCODE data collection and
analyzed against Strong Enhancer inside regions of
size > 100 kb that were more than 100 kbps away from
the nearest gene. For 34 of these tracks, there were less
than a total of 20 peaks across all analysis regions, and
they were removed from the analysis. The p-values
were computed based on Monte Carlo, using 10,000
samples, thus giving a minimum achievable p-value
of 1E−4. For some TFs, this minimum p-value was
achieved using either null model. For other TFs, either
null model resulted in a p-value of 1. In all cases where
the two null models resulted in different p-values, the
null model that preserves inter-point distances gave the
highest p-value.

As we can see from Figure 4, very low p-values
are reached for many of the tests, confirming that the
5-Strong Enhancer chromatin state captures histone
modification patterns indicative of TF binding. Indeed,
when considering the union of binding locations across
all TFs, the relation between TFs and SE is highly sig-
nificant (p < 0.00001) for either null model. Our in-
terpretation of the results is that it clearly appears to
be a relation of TF binding and the 5-Strong Enhancer
chromatin state, but that the data limitation due to only
considering regions that meets the strict criteria above
does not allow a conclusion to be drawn regarding this
relation for all TFs, when considering only the behav-
ior in these regions. The systematic difference between
p-values achieved using the two null models then re-
flects that the null model preserving inter-point dis-
tances more accurately portrays the possibility of con-
cluding on the TF–SE relation, while the null model
disregarding the clustering of TF points (inter-point
distances) gives p-values that are lower than the degree
of certainty that can really be assigned to the TF–SE
relation in the considered analysis regions.

6. FALSE REJECTIONS OF NULL MODELS USING
SIMULATED DATA

In this section we perform hypothesis tests based on
simulated data with a clustering representative for ge-
nomic data. One test has synthetic tracks for points and
segments and another test uses real TF tracks and sim-
ulated segment tracks. We generate the tracks indepen-
dently from each other, so the null hypothesis of inde-
pendence should not be rejected for any of the tests. In
both cases, we get many false rejections if we assume
uniform locations of points, but good results when we
preserve inter-point distances.

The previously presented genomic cases confirm that
a null model with a higher level of preservation typi-
cally gives higher p-values on real data. However, they
do not tell us which null model should be preferred. As
the simple null models will typically be easier to im-
plement, will often allow computationally fast analyti-
cal solutions and will typically give more significance,
they may be a tempting choice for a practitioner. How-
ever, when their assumptions are not met, there is a se-
vere risk of false positive findings, due to the failure of
the null model to account for intrinsic characteristics of
the data, unrelated to the null and alternative hypothe-
ses that are on trial.

In order to study the potential severity of false pos-
itive findings due to unrealistic null models, we per-
formed a simulation study. Two tracks were generated
independently, but with various intrinsic clustering-
related properties. They were then tested for a relation
under different null models. The results are shown in
Table 1. The synthetic tracks were generated according
to the approach described in Sandve et al. (2010). Inde-
pendent points were generated according to a Poisson
distribution with λ = 0.01. Clustered points were gen-
erated under an intra-cluster Poisson distribution with

TABLE 1
Number of falsely rejected null hypotheses under different combinations of data generation procedures and testing assumptions. Two tracks
of points and segments, respectively, are generated independently, and then tested for significant relation. The different columns correspond
to whether points or segments are generated uniformly (Poisson) or with a tendency for clustering. The different rows correspond to whether

points or segments are assumed to be random in the null model, as well as whether location is assumed to be uniformly distributed or
according to a preserved empirical distribution of inter-element distances

Generation

Assumption Uniform Clustered points Clustered segments

Uniform point location (analytic) 0/100 17/100 0/100
Uniform point location (MC) 0/100 19/100 0/100
Preserving inter-point distances 0/100 0/100 0/100
Uniform segment location (MC) 0/100 0/100 0/100
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λ = 0.1 and inter-cluster Poisson with λ = 0.01, with
each point having a probability 0.3 of forming a new
cluster. Segments were generated similarly to points,
with distance between consecutive segments following
a Poisson distribution with λ = 0.01. Lengths of seg-
ments were distributed uniformly between 10 and 100
base pairs. For each combination, 100 separate tests
were performed and the number of false rejections re-
ported after multiple testing correction at 20% FDR.
We notice that inappropriate assumptions could lead to
up to 19% of null hypotheses being falsely rejected af-
ter correction for multiple testing.

Preserving more of the individual properties (inter-
element distances) was the safe choice, essentially
avoiding false rejections, while assuming uniform
point locations resulted in a high degree of false rejec-
tions, whether the test was resolved analytically or by
Monte Carlo simulation. For this particular test, using a
too simple assumption on segment location (assuming
uniform location for segments that were in reality clus-
tered) presented less of a problem. The reason for this
is that the autocorrelation between values of Xi , as dis-
cussed in Section 3, would be relatively low, and thus
not lead to any strong underestimation of p-values.

It was shown in the previous two sections that us-
ing simple null models led to lower p-values and more
rejections when testing the relation of TF binding to
genes to certain chromatin states. Although it would
be tempting to consider the higher significance as a
sign of better power of the testing setup, the assump-
tion of uniform TF binding location is problematic and
could lead to p-values being underestimated. We have
also shown on purely simulated data that too simple
and unrealistic assumptions can lead to a high degree
of false rejections. Here, we combine the real data of
TF binding with simulated segment data having the
same characteristics as genes and chromatin states, but
where the simulated data is generated independently
from TF binding locations and chromatin states. The
null hypothesis should then not be rejected in any test
after multiple testing correction.

For each chromosome band with at least 5 MitF
binding sites, we tested whether these binding sites
occur differently than expected inside simulated seg-
ments. This resulted in H0 being rejected in 1 out of 73
bins at 10% FDR when assuming uniform MitF loca-
tions. However, when performing the tests only on 14
bins with a more satisfactory amount of data (at least
10 MitF binding sites), the null hypothesis is rejected
in 4 out of 14 bins (still at 10% FDR). This high rate
of false rejections suggests that part of the significance

observed for MitF versus genes or chromatin states un-
der the assumption of uniform location is likely due to
underestimation of p-values due to the inadequacy of
this null model. Conversely, preserving the empirical
distribution of inter-MitF distances leads to no rejec-
tions of H0 at 10% FDR, either when testing in all 73
bins or in the 14 bins with most MitF binding sites.
This suggests that the preservation of inter-point dis-
tances is able to capture the intrinsic structure of the
MitF track in an appropriate manner.

In summary, we find that the choice of null model
strongly influences the results. Mainly, the difference is
that a null model preserving more of the observed data
yields higher p-values. Tests on simulated data show
that an overly simple null model, preserving too little
of the observed data, can lead to a large number of false
rejections, even after correcting for multiple testing.

7. DISCUSSION

In this paper we have studied the choice of Monte
Carlo null models. We have defined the Monte Carlo
state space as the (finite) set of allowed resamplings
of the observed data, and defined a Monte Carlo null
model preservation hierarchy. We have discussed the
null complexity principle, namely, that an ordering of
preservation may imply a corresponding ordering of
statistical significance (i.e., of estimated p-values), and
illustrated the use of our result on real data sets of gen-
eral interest.

The choice of null model is very application depen-
dent, so it is difficult to give general guidelines. How-
ever, two general approaches are as follows: (1) to be
conservative and choose the largest p-value and (2) use
the most restricted null model (which, however, should
still have sufficient freedom of variability to provide
an efficient test), so that we are “close to the truth,”
that is, faithful to restriction given by the phenomenon
under study. Because of the null complexity principle,
approaches (1) and (2) will usually coincide.

A fundamental feature of the Monte Carlo approach
to statistical inference is that conclusions may only
be drawn regarding the actual observed data. In other
words, there is no prospect for generalizations to any
(hypothetical or real) population. While some may see
this as a serious drawback of Monte Carlo methods,
we feel that this line of objection to randomization
methodology is often quite misguided. Obviously, the
idea of random sampling from a population is both
useful and extremely entrenched in classical statistics.
However, often is it very hard to even conceive of the
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“population” in which random sampling is supposed to
take place. Genomics and DNA sequences are good ex-
amples of this. In many cases, the Monte Carlo method
is simply a more natural approach: we do not wish to
draw conclusions from a sample to a population, it is
really the (single, unique) sample itself that we are gen-
uinely interested in. In this paper we have focused on
examples from genetics since this is our main interest
and motivation for the paper. But similar problems are
encountered in other areas such as ecology, as docu-
mented in a separate report; see Ferkingstad, Holden
and Sandve (2013).

An interesting topic for future work would be to
study the implications for the multiple hypothesis test-
ing setting. For a discussion of some computational and
conceptual challenges of Monte Carlo multiple testing,
see Sandve, Ferkingstad and Nygård (2011). The mul-
tiple testing problem is particularly important in ge-
nomics, but it also appears in ecology; see, for exam-
ple, Gotelli and Ulrich (2010).

Our main focus has been avoiding false positives due
to too simple null models. Of course, false negatives
also occur, and the effect of differing null models on
the power of tests should be further studied. In order to
avoid underpowered tests, a very general advice is the
following. Most test statistics in the paper are based on
counting, hence, the variance of test statistics decreases
as 1/N where N is the number of samples. But ob-
servations may be correlated, reducing power. We may
have very high correlation between a large number of
observations. It is important to be aware of this and try
to find test statistics where the correlation between ob-
servations is as small as possible.

Finally, we have also considered a third type of null
model preservation, where the data is a sequence of cat-
egorical variables, for example, . . . ACGT. . . for a DNA
sequence. The distribution for each variable depends
on the value of the previous n variables. In this model,
it is possible to have the same probability distribution
for sequences of length n as in the observed data. Then,
increasing n implies preservering more of the proba-
bilistic structure of the original data. We omitted this
material to make the paper shorter and more focused.
A separate paper on this topic is in preparation.
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