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Extropy: Complementary Dual of Entropy
Frank Lad, Giuseppe Sanfilippo and Gianna Agrò

Abstract. This article provides a completion to theories of information
based on entropy, resolving a longstanding question in its axiomatization as
proposed by Shannon and pursued by Jaynes. We show that Shannon’s en-
tropy function has a complementary dual function which we call “extropy.”
The entropy and the extropy of a binary distribution are identical. However,
the measure bifurcates into a pair of distinct measures for any quantity that is
not merely an event indicator. As with entropy, the maximum extropy distri-
bution is also the uniform distribution, and both measures are invariant with
respect to permutations of their mass functions. However, they behave quite
differently in their assessments of the refinement of a distribution, the axiom
which concerned Shannon and Jaynes. Their duality is specified via the rela-
tionship among the entropies and extropies of course and fine partitions. We
also analyze the extropy function for densities, showing that relative extropy
constitutes a dual to the Kullback–Leibler divergence, widely recognized as
the continuous entropy measure. These results are unified within the general
structure of Bregman divergences. In this context they identify half the L2
metric as the extropic dual to the entropic directed distance. We describe a
statistical application to the scoring of sequential forecast distributions which
provoked the discovery.

Key words and phrases: Differential and relative entropy/extropy,
Kullback–Leibler divergence, Bregman divergence, duality, proper scoring
rules, Gini index of heterogeneity, repeat rate.

1. SCOPE, MOTIVATION AND BACKGROUND

The entropy measure of a probability distribution has
had a myriad of useful applications in information sci-
ences since its full-blown introduction in the extensive
article of Shannon (1948). Prefigured by its usage in
thermodynamics by Boltzmann and Gibbs, entropy has
subsequently bloomed as a showpiece in theories of
communication, coding, probability and statistics. So
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widespread is its application and advocacy, it is sur-
prising to realize that this measure has a complemen-
tary dual which merits recognition and comparison,
perhaps in many realms of its current application, a
measure we term extropy. In this article we display sev-
eral intriguing properties of this information measure,
resolving a fundamental question that has surrounded
Shannon’s measure since its very inception. The re-
sults provide links to other notable information func-
tions whose relation to entropy have not been recog-
nized. In particular, the standard L2 distance between
two densities is identified as dual to the entropic mea-
sure of Kullback–Leibler, an understanding provoked
by considering the extropy function as a Bregman func-
tion. We shall follow Shannon’s original notation and
extend it.

If X is an unknown but observable quantity with a
finite discrete range of possible values {x1, x2, . . . , xN }
and a probability mass function (p.m.f.) vector pN =
(p1,p2, . . . , pN), the Shannon entropy measure de-
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noted by H(X) or H(pN) equals −∑N
i=1 pi log(pi).

Its complementary dual, to be denoted by J (X) or
J (pN), equals −∑N

i=1(1−pi) log(1−pi). We propose
this as the measure of extropy. As is entropy, extropy
is interpreted as a measure of the amount of uncer-
tainty represented by the distribution for X. The du-
ality of H(pN) and J (pN) will be found to derive for-
mally from the symmetric relationship they bear with
the sums of the (entropies, extropies) in the N crude
event partitions defined by [(X = xi), (X �= xi)]. The
complementarity of H and J arises from the fact that
the extropy of a mass function, J (pN), equals a loca-
tion and scale transform of the entropy of another mass
function that is complementary to pN : that is,

J (pN) = (N − 1)
[
H(qN) − log(N − 1)

]
,

where qN = (N − 1)−1(1N − pN). This p.m.f. qN is
constructed by norming the probabilities of the events
Ẽ1, . . . , ẼN which are complementary to E1, . . . ,EN .
When N = 2 this yields the standard p.m.f. for Ẽ1 as
opposed to the p.m.f. for E1. Together, these two rela-
tionships establish extropy as the complementary dual
of entropy.

In his seminal article that characterized the entropy
function, Shannon (1948) began by formulating three
properties that might well be required of any function
H(·) that is meant to measure the amount of informa-
tion inhering in a p.m.f. pN . He suggested the follow-
ing three properties as axioms for H(pN):

(i) H(p1,p2, . . . , pN) is continuous in every argu-
ment;

(ii) H( 1
N

, 1
N

, . . . , 1
N

) is a monotonic increasing func-
tion of the dimension N ; and

(iii) for any positive integer N , and any values of pi

and t each in [0,1],
H

(
p1, . . . , pi−1, tpi, (1 − t)pi,pi+1, . . . , pN

)
= H(p1,p2, . . . , pN) + piH(t,1 − t).

Shannon then proved that the entropy function
H(pN) = −∑N

i=1 pi log(pi) is the only function of pN

that satisfies these axioms. It is unique up to an arbi-
trary specification of location and scale. Subsequently,
the article of Rényi (1961) presented alternative char-
acterizations of entropy due to Fadeev and himself.
These involved alternating these axioms with various
properties of Shannon’s function, such as its invariance
with respect to permutations of its arguments and its
achieved maximum occurring at the uniform distribu-
tion.

Shannon’s third axiom concerns the behavior of the
function H(·) when any category of outcome for X

is split into two distinguishable possibilities, and the
probability mass function pN is thereby refined into a
p.m.f. over (N + 1) possibilities. It implies that the en-
tropy in a joint distribution for two quantities equals
the entropy in the marginal distribution for one of them
plus the expectation for the entropy in the conditional
distribution for the second given the first:

H(X,Y ) = H(X)
(1.1)

+
N∑

i=1

P(X = xi)H(Y |X = xi).

The appeal of this result was a motivation favoring
Shannon’s choice of his axiom (iii). However, in his
original article Shannon slighted his own character-
ization theorem for entropy, noting in a discussion
(page 393) that its motivation is unclear and that it is
in no way necessary for the larger theory of commu-
nication he was developing. He viewed it merely as
lending plausibility to some subsequent definitions. He
considered the real justification of the three axioms for
entropy to reside in the useful applications they sup-
port. In particular, he regarded the implication of equa-
tion (1.1) as welcome substantiation for considering
H(·) as a reasonable measure of information.

While the relevance of entropy to a wide array of
important applications has emerged over the subse-
quent half-century, Shannon’s attitude toward the foun-
dational basis for entropy has persisted. As one im-
portant example, the synthetic exposition of Cover and
Thomas (1991) begins directly with now common def-
initions required for further developments and anal-
ysis, along with an unmotivated specification of the
entropy axioms. The authors found it “irresistible to
play with their relationships and interpretations, tak-
ing faith in their later utility” (page 12). They did so
with flair, exposing various roles understood for en-
tropy in the fields of electrical engineering, computer
science, physics, mathematics, economics and philos-
ophy of science. In a similar vein, the stimulating pub-
lished lectures of Caticha (2012) reassert and clarify
this standard take on axiomatic issues. Caticha writes
(page 79) that “both Shannon and Jaynes agree that
one should not place too much significance on the ax-
iomatic derivation of the entropy equation, that its use
can be fully justified a-posteriori by its formal proper-
ties, for example by the various inequalities it satisfies.
Thus, the standard practice is to define ‘information’
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as a technical term using the entropy equation and pro-
ceed. Whether this meaning is in agreement with our
colloquial meaning is another issue. . . . the difference is
not about the equations but about what they mean, and
ultimately, about how they should be used.” Caticha
considers such issues in his development of a concep-
tual understanding of physical theory.

Forthrightly, the thoughtful discussion of Jaynes
[(2003), Section 11.3] explicitly recognized and ad-
dressed the discussable open status of Shannon’s third
axiom characterizing entropy. Should this axiom really
be required of any measure of the amount of uncer-
tainty in a distribution? Despite recognizing its crucial
role in specifying Shannon’s entropy function mathe-
matically, Jaynes was not convinced that an adequate
foundation for the uniqueness claims of entropy as an
information measure had been found. He concluded
this long section of his book by writing (Jaynes, 2003,
page 351) “Although the above demonstration appears
satisfactory mathematically, it is not yet in completely
satisfactory form conceptually. The functional equa-
tion (Shannon’s third axiom) does not seem quite so
intuitively compelling as our previous ones did. In
this case, the trouble is probably that we have not yet
learned how to verbalize the argument leading to [ax-
iom (iii)] in a fully convincing manner. Perhaps this
will inspire others to try their hand at improving the
verbiage that we used just before writing [axiom (iii)].”

In fact, Jaynes appended an “Exercise 11.1” to his
discussion, concluding with an injunction to “Carry out
some new research in this field by investigating this
matter; try either to find a possible form of the new
functional equations, or to explain why this cannot be
done.” Concerns with claims regarding the uniqueness
of entropy (along with other matters regarding continu-
ous distributions which we shall address in this article)
had also been aired by Kolmogorov (1956), page 105.

Nonetheless, Jaynes clearly expected that a satisfac-
tory motivation for the special status of entropy as a
measure of information would be found, thinking that
his “exercise” would be resolved with a solution ex-
plaining “why this cannot be done.” In a direct sense,
our construction and analysis of the extropy measure
shows the exercise to be solved rather by an exhibition
of the long sought “new functional equation.” We shall
specify this in our Result 3, which provides an alter-
native to Shannon’s third axiom and yields a different
information measure. The results of the present arti-
cle show that the extropy measure, far from generating
inconsistencies which Jaynes feared (page 350), is ac-
tually a complementary dual of the entropy function.

The two measures are clearly distinct, yet are funda-
mentally intertwined with each other. In tandem with
Shannon’s entropy measure denoted by H(·), we re-
spectfully denote our extropy measure by J (·). It pro-
vides a resolution to Jaynes’ insightful concerns and
accomplishments.

Our recognition of extropy as the complementary
dual of entropy emerged from a critical analysis and
completion of the logarithmic scoring rule for distri-
butions in applied statistics. Proper scoring rules are
functions of forecast distributions and the realized ob-
servations of the quantities at issue. According to the
subjectivist understanding of probability and statistics
as promoted by Bruno de Finetti, the assessment of
proper scoring rules for proposed forecasting distri-
butions replaces the role of hypothesis testing in ob-
jectivist methods. None of an array of proposed prob-
ability distributions can be considered to be right or
wrong. Each merely represents a different point of
view regarding a sequence or collection of unknown
but observable quantities. The applied assessment of
proper scoring rules provides a method for evaluating
the comparative qualities of the competing points of
view in the face of actual observed values of the quan-
tities as they come to be known. The scoring functions
are intimately related to the theory of utility. Such rules
can also be used to aid in the elicitation of subjective
probabilities.

The so-called logarithmic score has long been touted
for its uniqueness in a specific respect relative to other
proper scoring rules. The application we shall intro-
duce raises issues concerning its incompleteness in as-
sessing asserted distributions. We shall discuss details
after the analysis of the duality of entropy and ex-
tropy is exposed. It will then be clear that the expected
logarithmic score of a distribution pN coincides with
−H(pN), which is called negentropy. The completion
of the log score, which is motivated for a specific appli-
cation, involves the assessment of negextropy as well.

After developing the formal dual structure of the
paired (entropy, extropy) functions in Sections 2–5 of
this article, we shall outline in Section 6 the role that
extropy plays in the scoring of forecasting distribu-
tions, using the Total log scoring rule. We present the
axiomatization of extropy relative to entropy in Sec-
tion 2, focusing on an alternative to axiom (iii). In Sec-
tion 3 we display graphically the contours of the dual
measures for the case of N = 3. Section 4 identi-
fies the dual equations and the complementary con-
traction mapping. In Section 5 we develop the theory
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for continuous density functions, formalizing differen-
tial and relative (entropy, extropy) in the context of
general Bregman functions. We show how relative ex-
tropy arises as a second directed distance function that
is a complementary dual to the Kullback–Leibler di-
vergence, the standard formulation of relative entropy.
Section 7 presents a concluding discussion.

2. THE CHARACTERIZATION OF EXTROPY

Context: Consider an observable quantity X with
possible values contained in the range R(X) = {x1, x2,

. . . , xN }. The vector pN = (p1,p2, . . . , pN) is com-
posed of probability mass function values asserted for
X over the event partition [(X = x1), (X = x2), . . . ,

(X = xN)]. Though we typically refer to pN as a
p.m.f., we sometimes use common parlance that is an
abuse of formal terminology, referring to it as a “distri-
bution.” To begin our discussion, we recall the follow-
ing:

DEFINITION 1. The entropy in X or in pN equals

H(X) = H(pN) ≡ −
N∑

i=1

pi log(pi).(2.1)

We note that we use natural logarithms as opposed
to base 2, and we introduce the following:

DEFINITION 2. The extropy in X or in pN equals

J (X) = J (pN) ≡ −
N∑

i=1

(1 − pi) log(1 − pi).(2.2)

RESULT 1. If N = 2, so X denotes merely an
event, then H(X) = J (X), but when N ≥ 3,H(pN) >

J(pN) as long as pN contains three or more positive
components.

Clearly, H(p2) = −p1 log(p1) − (1 − p1) log(1 −
p1) = J (p2). An algebraic proof of Result 1 appears in
Appendix A. However, its truth is apparent easily from
computational examples. Figure 1 displays the range of
possibilities for the (entropy, extropy) pairs for proba-
bility mass functions within the unit-simplexes of di-
mensions 1 through 6 (values of N = 2 through 7).

Evidently, the range of possible (entropy, extropy)
pairs at each successive value of N incorporates the
range for the previous value of N , with another sec-
tion merely attached to this range. Notice particularly
that the range of possible (entropy, extropy) pairs is not
convex. As viewed across the six examples shown in
Figure 1, the range exhibits convex scallops along its
upper boundary: there are (N − 2) scallops and one
flat edge along its upper boundary for the unit-simplex
of dimension (N − 1). The flat edge as the north-
west boundary is the line defined by H(p,1 − p) =
J (p,1 − p), running in the southwest to northeast
direction from (0,0) to (− log(0.5),− log(0.5)). The

FIG. 1. The range of (entropy, extropy) pairs (H(·), J (·)) corresponding to all distributions within the unit-simplex of dimensions 1
through 6. The ranges of the quantities they assess have sizes N = 2 through 7.
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lower boundary of the range of pairs is a single con-
cave scallop, ruling its own interior out of the range of
possible (entropy, extropy) pairs.

RESULT 2. J (X) satisfies Shannon’s axioms (i)
and (ii).

The function J (·) is evidently continuous in its argu-
ments [axiom (i)], and

J

(
1

N
,

1

N
, . . . ,

1

N

)
= −N

(
1 − 1

N

)
log

(
1 − 1

N

)

= (N − 1)
[
log(N) − log(N − 1)

]
is a monotonic increasing function of N [axiom (ii)].

2.1 Further Shared Properties of H(·) and J(·)
As to other touted properties of entropy, extropy

shares many of them. For example, the extropy mea-
sure is obviously permutation invariant. It is also in-
variant with respect to monotonic transformations of
the variable X into Y = g(X). Moreover, for any size
of N , the maximum extropy distribution is the uniform
distribution. This can be proved by standard methods
of constrained maximization using Lagrange multipli-
ers. Let L(pN,λ) be the Lagrangian expression for the
extropy of pN subject to the constraint

∑
pi = 1:

L(pN,λ) = −
N∑

i=1

(1−pi) log(1−pi)+λ

(
1−

N∑
i=1

pi

)
.

The N partial derivatives have the form ∂L
∂pi

= log(1 −
pi) + 1 − λ. Setting each of these equal to 0 yields
N equations of the form λ = 1 + log(1 − pi). These
N equations, together with ∂L

∂λ
= 0, ensure that all the

pi are equal, and thus they must each equal 1/N . Sec-
ond order conditions for a maximum are satisfied at
this first order solution. Analysis of the boundaries
of the unit-simplex constraining pN yields the mini-
mum values of extropy at the vertices: J (ei ) = 0 for
each echelon basis ei ≡ (0,0, . . . ,0,1i ,0, . . . ,0) with
i = 1,2, . . . ,N .

As to differences in the two measures, notice that the
scale of the maximum entropy measure is unbounded
as N increases, because H( 1

N
, 1

N
, . . . , 1

N
) = log(N). In

contrast, the scale of the maximum extropy is bounded
by 1, for J ( 1

N
, 1

N
, . . . , 1

N
) = (N − 1) log[N/(N − 1)].

The limit of 1 can be determined by recognizing that

lim
N→∞(N − 1) log

(
N

N − 1

)

= lim
N→∞ log

(
1 + 1

N − 1

)N−1

= log(e) = 1.

2.2 The Extropy Measure of a Refined Distribution

We can now examine precisely how and why extropy
does not satisfy Shannon’s third axiom for entropy, and
how it does behave with respect to measuring the re-
finement of a probability distribution. Algebraically,
the refinement axiom for extropy arises from its defi-
nition, which yields the following result:

RESULT 3. For any positive integer N , and any
values of pi and t each in [0,1],

J
(
p1, . . . , pi−1, tpi, (1 − t)pi,pi+1, . . . , pN

)
= J (p1,p2, . . . , pN) + �(pi, t),

where

�(pi, t) = (1 − pi) log(1 − pi)

− (1 − tpi) log(1 − tpi)

− [
1 − (1 − t)pi

]
log

[
1 − (1 − t)pi

]
.

This follows directly from the definition of J (pN).
The structure of the gain to a refined extropy, �(pi, t),
can be recognized by introducing a function ϕ(p) ≡
(1 − p) log(1 − p) and noting that �(pi, t) = ϕ(pi) −
[ϕ(tpi) + ϕ((1 − t)pi)]. This difference can be shown
to be always nonnegative.

Result 3 is easily interpreted visually when N = 2.
The left panel of Figure 2 displays the difference
between the entropies H(tp, (1 − t)p,1 − p) and
H(p,1 − p) according to Shannon’s axiom (iii). The
right panel displays the extropy J (p,1−p) along with
the difference between the extropies J (tp, (1 − t)p,

1 − p) and J (p,1 − p) according to Result 3. The im-
portant feature of the display is the difference between
pH(t,1 − t) on the left and �(p, t) on the right, a dif-
ference which does not depend on the magnitude of N .
In each panel, the differences are shown as functions
of p ∈ [0,1] for the four values of t = 0.1,0.2,0.3
and 0.5. For any value of t , the difference functions
�(p, t) = �(p, t ′) for t ′ = (1 − t).

According to Shannon’s axiom (iii), the entropy for
the refined mass function [tp, (1− t)p,1−p] increases
linearly with p at the rate of the entropy in the refining
split factor, H(t,1 − t). In contrast, the extropy of the
refined distribution increases at an increasing rate as a
function of p. For small values of p, the extropy of the
refined distributions increases more slowly with p than
does entropy, while for large values of p it increases
more quickly. When the value of p equals 1, the values
of the entropy and extropy of the refined distribution
equalize, for each t ∈ [0,1]. This results from the fact



EXTROPY: COMPLEMENTARY DUAL OF ENTROPY 45

FIG. 2. Entropy and extropy for a refined distribution [tp, (1 − t)p,1 − p] both equal the entropy or extropy for the base probabilities
(p,1 − p) plus an additional component.

that when p = 1, the refined distribution is virtually a
binary distribution (t,1 − t,0), for which entropy and
extropy are equal. In this case the distribution being
refined would be a degenerate distribution representing
certainty.

As a gauge of the increase in uncertainty provided
when a distribution is refined, this nonlinear feature
of the extropy measure is appealing in its own right.
Refining a larger probability with a splitting factor of
size t may well be considered to increase the amount
of uncertainty that is specified at a greater rate than
when refining a smaller probability by this same factor.
Consider two ways of refining a mass function p2 =
(0.04,0.96), for example, into p3 = (0.01,0.03,0.96)

as opposed to p3 = (0.04,0.24,0.72). In both cases,
one of the probabilities is refined into two pieces in
the ratio of 1 : 3. Examine the values of �(0.04,0.25)

and �(0.96,0.25) in Figure 2(right). Although the rate
of increase in entropy due to the refinement of either
probability pi is identical in the two cases, the rate
of increase in extropy when refining the component
pi = 0.04 is nearly zero, while it is far greater when
refining the larger probability component pi = 0.96.
It is a natural feature of the extropy function that this
information measure adjusts toward the maximum en-
tropy/extropy more quickly the more quickly the re-
fined distribution adjusts toward the uniform.

Replacing Shannon’s axiom (iii) with our Result 3
would complete an axiomatic characterization of ex-
tropy. When N = 1, the specifications of axiom (iii)
and Result 3 are algebraically identical, yielding H(t,

1 − t) = J (t,1 − t). When N ≥ 2 the bifurcation first
occurs. In this context, Result 3 can then be seen to

be a generator of the entire function J (pN) for all val-
ues of N . The extropy function is the unique function
that adheres to Shannon’s axioms (i) and (ii) and to the
content of Result 3, considered as an axiom.

3. ISOENTROPY, ISOEXTROPY CONTOURS IN
THE UNIT-SIMPLEX

For the graphical displays that follow, we suppose
that a quantity X has range R(X) = {1,2,3} and that
these possibilities are assessed with a probability mass
function p3 in the unit-simplex S2. Figure 3(left) dis-
plays some contours of constant entropy distributions
in the 2-dimensional unit-simplex (N = 3) to compare
with some contours of constant extropy distributions
in Figure 3(right). These contours exhibit a geometri-
cal sense in which the extropy and entropy measures
of a distribution are complementary. Whereas entropy
contours sharpen into the vertices of the simplex and
flatten along the faces, the extropy contours sharpen
into the midpoints of the faces and flatten toward the
vertices.

Further understanding can be gained from Ap-
pendix B which displays the single isoentropy con-
tour at H(p3) = 0.9028 along with some members of
the range of isoextropy contours that intersect with it.
A computable application in astronomy is mentioned.

4. EXTROPY AS THE COMPLEMENTARY DUAL
OF ENTROPY

Two behaviors identify the mathematical relation of
extropy to entropy as its complementary dual. To be-
gin, the duality is distinguished by a pair of symmetric
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FIG. 3. At left are contours of equal entropy distributions within the 2-D unit-simplex, S2. At right are contours of equal extropy distribu-
tions. The relevance of the inscribed triangles shall become apparent in Section 4.

equations relating the sum of the entropy and extropy
of a distribution to the entropies and extropies of their
component probabilities.

RESULT 4.

H(pN) + J (pN) =
N∑

i=1

H(pi,1 − pi)

=
N∑

i=1

J (pi,1 − pi).

This equation for the sum of H(pN) and J (pN) de-
rives from summing separately the two components of
each H(pi,1 − pi) = −pi log(pi) − (1 − pi) log(1 −
pi) = J (pi,1 − pi) over values of i = 1,2, . . . ,N .
This simple result identifies the symmetric dual equa-
tions that relate extropy to entropy:

J (pN) =
N∑

i=1

H(pi,1 − pi) − H(pN),

and symmetrically,

H(pN) =
N∑

i=1

J (pi,1 − pi) − J (pN).

These two equations, symmetric in H(·) and J (·), dis-
play that the extropy of a distribution equals the dif-
ference between the sum of the entropies over the
crudest partitions defined by the possible values of X,
that is, [(X = xi), (X �= xi)], and the entropy in the
finest partition they define, [(X = x1), (X = x2), . . . ,

(X = xN)]. Extropy and entropy can each be repre-
sented by the same function of the other. Since these
two functions differ only in the refinement axioms that
generate them, it is apparent that their symmetric du-
ality is fundamentally related to the refinement charac-
teristics inherent in their third axioms.

As to the complementarity of their relation, it is
based on generalizing the notion of a complemen-
tary event to a complementary quantity. Relative to
a probability mass function pN for a partition vector
[(X = x1),(X = x2), . . . , (X = xN)], define the com-
plementary mass function as qN = (N − 1)−1(1N −
pN). The general complementary mass function qN

can be considered to specify a “distribution of unlike-
liness” of the possible values of X, as opposed to pN

which distributes the assessed likeliness of the possi-
ble values. If N = 2, complementarity specifies q2 =
(q1, q2) = (1 − p1,1 − p2) = (p2,p1). This merely
identifies the arbitrariness of analyzing an event in
terms of E1 and its complement Ẽ1 = E2, as opposed
to F1 = Ẽ1 and its complement F̃1 = E1. For larger
values of N , however, general complementarity gen-
erates qN from pN as a truly distinct mass function.
In these terms, the general relation between H and
J is that the extropy of a p.m.f. pN equals a lin-
early rescaled measure of entropy of its complemen-
tary p.m.f. qN .

RESULT 5.

J (pN) = (N − 1)
[
H(qN) − log(N − 1)

]
.

To be explicitly clear, the extropy of pN is not a
rescaled value of the entropy of pN . It is a rescaled
value of the entropy of the general complement of pN .

This result follows from simple algebra. Structurally,
the entropy measure of a probability mass function has
a complementary dual in its extropy measure, which
derives from the entropy of a complementary mass
function. In turn, this complementary mass function
has its own extropy. However, this extropy value does
not derive from the entropy of the original p.m.f., but
from a further complement of this complement.

Most statisticians will be familiar with the notion
of duality from the fact that any linear programming
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FIG. 4. The complementary distribution mapping contracts the unit-simplex S into the inscribed simplex Sc , which it contracts in turn into
the inscribed Scc , and then into Sccc and so on.

problem has a dual formulation in which the coeffi-
cient vector of the linear objective function has a dual
relation with the vector of constraint values. The lin-
ear programming duality has the feature that the dual
structure of a dual problem yields the original problem
structure. Duals with this property are called “involu-
tions.” As we shall see now, the duality of extropy with
entropy does not prescribe an involution, but rather a
second distinct structure.

The mapping of a probability mass function pN to its
complement qN = (N − 1)−1(1N − pN) is a contrac-
tion mapping. Every mass function in a unit-simplex
is mapped onto a complementary function lying within
an inscribed simplex of the same dimension. In turn,
this complementary mass function has its own comple-
mentary distribution lying within a simplex inscribed
in that one. The fixed-point theorem for contraction
mappings assures that the uniform distribution in the
center of the unit-simplex is the unique mass function
whose complementary mass function equals itself. Fig-
ure 4 displays the way this contraction works in two di-
mensions for mass functions p3. Notice that the points
in the vertex triangles of the unit-simplex are not con-
traction images of any other point in the unit-simplex.
Thus, the formal complementary duality of H(·) and
J (·) with respect to pN and qN inheres in their for-
ward and backward images rather than a cyclic image.
The dual is not an involution.

A numerical example detailing how the isocontours
of H(·) generate isocontours of J (·) appears in Ap-
pendix C.

5. DIFFERENTIAL EXTROPY AND RELATIVE
EXTROPY FOR CONTINUOUS DISTRIBUTIONS

Devising the extropy measure of a continuous dis-
tribution admitting a density function yields a pleasant
surprise. As to entropy, Shannon [(1948), page 628]
had initially proposed that the entropy measure
−∑

pi log(pi) has an analogue in the definition
− ∫

f (x) logf (x) dx when the distribution function
for a variable X admits a continuous density. He moti-
vated this (page 623) by the idea that refining the cate-
gories for a discrete quantity X, with diminishing prob-
abilities in each, yields this analogous definition in the
limit. This definition has subsequently become known
as “differential entropy.” In a critical and constructive
review, Kolmogorov (1956) concurred with Shannon’s
suggestion, but with qualifying reservations regarding
its noninvariance with respect to monotonic transfor-
mations of the variable X and its relativity to a uniform
dominating measure over the domain of X. His clari-
fications established a more general definition of “rel-
ative entropy” which includes differential entropy as a
special case. Relative entropy was analyzed in measure
theoretic detail in the classic work of Kullback (1959).
Now known as the Kullback–Leibler divergence (or
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directed distance) between a density f (·) and a related
absolutely continuous density g(·), this is defined for
the continuous case as D(f ‖g) ≡ ∫

f (x) log f (x)
g(x)

dx.
When g(x) is the special case of a uniform density, this
reduces to Shannon’s definition of differential entropy.

The dual complementarity of extropy with entropy
for continuous densities can be derived in the context
of relative entropy. The details are couched in the lan-
guage of general Bregman functions, which unifies the
discrete theory as well. We shall develop these results
forthwith. For a novice reader of these ideas, the devel-
opment of continuous differential entropy and extropy
in the style suggested by Shannon is perhaps more in-
structive. It motivates the definition of differential ex-
tropy as −1

2

∫
f 2(x) dx. The role played by the uni-

form dominating measure in generating this integral
will be apparent. We present an introductory analysis
in Appendix D. We now begin directly by developing
the more general formulation of relative extropy as the
dual to relative entropy in a discrete context, and then
pursuing the continuous analysis using Bregman func-
tions.

5.1 (Relative Entropy, Relative Extropy) for Two
Mass Functions: Kullback’s Directed Distance
and Its Complementary Dual

We continue to work in the context of a considered
quantity whose possible values generate the finite parti-
tion vector [(X = x1), (X = x2), . . . , (X = xN)]. Sup-
pose that the vector sN represents a second p.m.f., dis-
tinct from pN . In this context we recall the following:

DEFINITION 3. The relative entropy of pN with re-
spect to sN is defined as the Kullback–Leibler diver-
gence to equal

D(pN‖sN) ≡
N∑

i=1

pi log
(

pi

si

)
.(5.1)

Notice that this definition does not involve a minus
sign in front, as D(pN‖sN) is always nonnegative. It
makes no difference whether the variable X is trans-
formed by any monotone function to a new variable Y :
the relative entropy in pN with respect to sN remains
the same. We recall that this directed distance function
is not symmetric in pN and sN , and thus its name.

To define the relative extropy of pN with respect to
sN , we follow the same tack as in defining extropy
itself:

DEFINITION 4. The relative extropy of pN with re-
spect to sN is defined by a function complementary to

the Kullback–Leibler divergence as

Dc(pN‖sN) ≡
N∑

i=1

(1 − pi) log
(

1 − pi

1 − si

)
.

RESULT 6. When the p.m.f. sN happens to be the
uniform p.m.f. uN = N−11N , the relative entropy and
extropy measures return to rescaled values of the dis-
crete entropy and extropy measures with which we are
familiar:

D(pN‖uN) =
N∑

i=1

pi log
(

pi

1/N

)
= log(N) − H(pN)

= H(uN) − H(pN),

and

Dc(pN‖uN) =
N∑

i=1

(1 − pi) log
(

1 − pi

1 − 1/N

)

=
N∑

i=1

(1 − pi) log
(

N

N − 1

)

+
N∑

i=1

(1 − pi) log(1 − pi)

= (N − 1) log
(

N

N − 1

)

+
N∑

i=1

(1 − pi) log(1 − pi)

= J (uN) − J (pN).

5.1.1 The complementary equation. It is straight-
forward to recognize that again, defining now two com-
plementary mass functions qN = (N − 1)−1(1N − pN)

and tN = (N − 1)−1(1N − sN), we find that a com-
plementary equation identifies Dc(pN‖sN) as the K-L
divergence between the p.m.f.’s complementary to pN

and sN :

RESULT 7.

Dc(pN‖sN) = (N − 1)D(qN‖tN).

Moreover, an alternative algebraic manipulation of
Definition 4 provides that

Dc(pN‖sN) =
N∑

i=1

(1 − pi) log(1 − pi)

−
N∑

i=1

(1 − pi + si − si) log(1 − si)
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=
N∑

i=1

(1 − pi) log(1 − pi)

−
N∑

i=1

(1 − si) log(1 − si)(5.2)

+
N∑

i=1

(pi − si) log(1 − si)

= J (sN) − J (pN) +
N∑

i=1

pi log
(

1 − si

N − 1

)

−
N∑

i=1

si log
(

1 − si

N − 1

)
,

because
∑N

i=1(pi − si) log(N − 1) = 0. This yields an-
other interesting and useful representation:

RESULT 8.

Dc(pN‖sN) = J (sN) − J (pN)

+ EpN

[
log

(
to(X)

)] − EsN
[
log

(
to(X)

)]
,

where to(X) ≡ ∑N
i=1(X = xi)ti .

That is, to(X) equals the component probability in
the tN vector associated with the value of X that hap-
pens to be observed. This holds algebraically because
one of the event indicators, (X = xi), equals 1 (since
the equation it indicates is true) while the other (N −1)

event indicators equal 0. The equations they indicate
are false.

The relative extropy value of pN relative to sN equals
the difference in their extropy values, adjusted by a dif-
ference in two expectations of a specific log mass func-
tion value: the mass function component of tN associ-
ated with the particular partition event that is found to
occur. This is the mass function that is complementary
to sN . The usefulness of Result 8 shall arise as a moti-
vation for a definition of relative extropy between two
densities.

The analogous result pertinent to the K-L diver-
gence, deriving from (5.1) would be as follows:

RESULT 8′ .

D(pN‖sN) = H(sN) − H(pN)

− EpN

[
log

(
so(X)

)] + EsN
[
log

(
so(X)

)]
,

where so(X) ≡ ∑N
i=1(X = xi)si .

5.1.2 Relative (entropy, extropy) of complementary
mass functions. A final note of interest concerns the
pair of relative (entropy, extropy) assessments be-
tween complementary mass functions such as pN and
qN . The relative entropy of pN with respect to qN

equals a translated expected value of the asserted log
odds ratio in favor of the occurring partition event:
D(pN‖qN) = ∑N

i=1 pi log(
pi

1−pi
) + log(N − 1). In-

triguingly, but again deriving easily from a direct appli-
cation of Definition 4, their relative extropy also equals
(N −1) times an expected log odds ratio in favor of the
occurring partition event too. However, this odds ratio
is assessed in terms of the complementary distribution
of unlikeliness, qN , rather than in terms of the usual
distribution of likeliness, pN :

Dc(pN‖qN)

= (N − 1)

[
N∑

i=1

qi log
(

qi

1 − qi

)
+ log(N − 1)

]
.

Both of these interpretations as expected log odds ra-
tios are adjusted by an additive constant, log(N − 1).
This additive constant can be recognized as the ex-
pected log odds associated with a uniform distribu-
tion:

∑N
i=1 ui log( ui

1−ui
) = ∑N

i=1(1/N) log(
1/N

(1−1/N)
) =

− log(N −1). Thus, we have an interesting pair of rep-
resentations for the relative (entropy, extropy) between
complementary mass functions:

RESULT 9.

D(pN‖qN)

= EpN

[
log

(
po

1 − po

)]
− EuN

[
log

(
uo

1 − uo

)]
,

and

Dc(pN‖qN) = (N − 1)

{
EqN

[
log

(
qo

1 − qo

)]

− EuN

[
log

(
uo

1 − uo

)]}
,

where po, qo and uo are the probabilities assessed for
the value of X that happens to be observed, as assessed
according to the p.m.f.’s pN,qN and uN , respectively.

5.1.3 Unifying D(·‖·) and Dc(·‖·) as Bregman di-
vergences. The theory of Bregman functions both uni-
fies our understanding of the (entropy, extropy) dual-
ity and provides the basis for formalizing their func-
tional representations for continuous densities. In this
context it will yield still another surprise. The text of
Censor and Zenios (1997) develops the general theory
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of Bregman functions and a wide variety of applica-
tions. In the definition below we recall the notion of
Bregman divergence from Banerjee et al. (2005):

DEFINITION 5. Let C be a convex subset of �N

with a nonempty relative interior, denoted by ri(C).
Let � :C → � be a strictly convex function, differen-
tiable in ri(C). For pN, sN ∈ C the Bregman divergence
d� :C × ri(C) → � corresponding to � is given by

d�(pN, sN) = �(pN) − �(sN)

− 〈∇�(sN), (pN − sN)
〉
,

where ∇�(sN) is the gradient vector of � evaluated at
sN and the angle brackets 〈·, ·〉 denote “inner product.”
The function �(·) is called a Bregman function.

An important special case of the Bregman function
reduces its action to the sum of a common function ap-
plied to each of the components of a vector, that is,
�(pN) = ∑N

i=1 φ(pi). In this case the Bregman diver-
gence is said to be “separable” (Stummer and Vajda,
2012), with the form

d�(pN, sN)
(5.3)

=
N∑

i=1

[
φ(pi) − φ(si) − φ′(si)(pi − si)

]
.

A standard application of the separable case identifies
the Shannon entropy as a Bregman divergence. Con-
sider the component function φ(p) = ϕ1(p), where
ϕ1(p) ≡ p log(p), which identifies the vector Breg-
man function as �(pN) = −H(pN). Since φ′(p) =
log(p) + 1, a direct application of the separable Breg-
man divergence form (5.3) yields the following well-
known result, which is reported in Banerjee et al.
(2005):

RESULT 10. The Bregman divergence associated
with �(pN) = −H(pN) is

d�(pN, sN) =
N∑

i=1

pi log
(

pi

si

)
= D(pN‖sN).

The same Bregman divergence results from the
separable component function φ(p) = ϕ2(p), where
ϕ2(p) ≡ p log(p) + (1 − p).

As to extropy, again in the separable case con-
sider the component function φc(p) = ϕc

1(p), where
ϕc

1(p) ≡ ϕ1(1−p) = (1−p) log(1−p). This identifies
the vector Bregman function as �c(pN) = −J (pN).
Since φc′(p) = − log(1 − p) − 1, another direct appli-
cation of (5.3) yields a complementary result regarding
Dc(·‖·):

RESULT 11. The Bregman divergence associated
with �c(pN) = −J (pN) is

d�c(pN, sN) =
N∑

i=1

(1 − pi) log
(

1 − pi

1 − si

)

= Dc(pN‖sN).

This same Bregman divergence also results from the
Bregman function associated with φc(p) = ϕ2(1 − p),
where ϕ2(1 − p) ≡ (1 − p) log(1 − p) + p.

It is clear that the duality of entropy and extropy
persists through the representation of relative (entropy,
extropy) as complementary Bregman divergences for
dual Bregman functions.

5.2 (Relative Entropy, Relative Extropy) for
Continuous Densities

The unification of the general theory of directed dis-
tances formulated via Bregman functions provides the
representations of entropy and extropy for continuous
densities as well. Similar to the form of the separable
Bregman divergence between two vectors, the Breg-
man directed distance between two density functions
f (·) and g(·) defined on [x1, xN ], associated with a
function φ(·), is denoted by Bφ(f, g), defined to equal∫ xN

x1

{
φ

(
f (x)

)−φ
(
g(x)

)−φ′(g(x)
)[

f (x)−g(x)
]}

dx.

The function φ : (0,∞) → � should be differentiable
and strictly convex, and the limits limx→0 φ(x) and
limx→0 φ′(x) must exist (in some topology), but not
necessarily be finite. See Frigyik, Srivastava and Gupta
(2008), page 1681, and Basseville (2013), page 623.
Moreover, the integral operation is constrained to be an
integration over the two functions’ common domain.

It is well known that when φ(f ) = ϕ1(f ) ≡
f log(f ), or φ(f ) = ϕ2(f ) ≡ f log(f ) + (1 − f ),
specifying a convex function defined on [0,+∞)

which satisfies these conditions, then

Bφ(f, g) =
∫ xN

x1

f (x) log
(

f (x)

g(x)

)
dx.

This Bregman directed distance is known as the rel-
ative entropy between the two densities, denoted by
d(f ‖g).

To specify the relative extropy between two densi-
ties f (·) and g(·), we begin by recalling the relative
extropy between the mass functions pN and sN as rep-
resented in the equality following (5.2):

Dc(pN‖sN) = J (sN) − J (pN)
(5.4)

+
N∑

i=1

(pi − si) log(1 − si).
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On the basis of its Maclaurin series expansion, the
function (1 − pi) log(1 − pi) ≈ −pi + 1

2p2
i when pi

is small and, thus, J (pN) = −∑N
i=1(1 − pi) log(1 −

pi) ≈ 1 − 1
2

∑N
i−1 p2

i when maxpi is small. Of course,
a similar result pertains to J (sN). Moreover, the com-
mon recognition that log(1−si) ≈ −si for small values
of si yields (pi − si) log(1 − si) ≈ −pisi + s2

i . Apply-
ing these two approximations (which agree with the bi-
variate Maclaurin series expansion through order 3) to
equation (5.4) yields the surprising recognition that

Dc(pN‖sN) ≈ 1

2

∑
(pi − si)

2(5.5)

when both maxpi and max si are small.
This is one-half the usual squared Euclidean distance

between the vectors pN and sN ; moreover, it is also
the Bregman divergence associated with the compo-

nent function φ(p) = ϕ3(p) ≡ −p + p2

2 or φ(p) =
ϕ4(p) ≡ p2

2 .
A sensible definition for the relative extropy between

two densities arises from each of two consequences
of this fact. First, replacing the two component argu-
ments of Dc(pN‖sN) in (5.5) by pi = f (xi)�x and
si = g(xi)�x, as when motivating the definitions of
differential (entropy, extropy) in Appendix D, we find
that

lim�x→0

Dc(pN‖sN)

�x
= 1

2

∫ xN

x1

[
f (x) − g(x)

]2
dx.

Second, this same formulation arises from evaluating
the Bregman divergence between the densities f (·) and
g(·) over a closed interval [x1, xN ] corresponding to ei-
ther of the convex functions φ(f ) = ϕ3(f ) or φ(f ) =
ϕ4(f ), where ϕ3(f ) = −f + 1

2f 2 and ϕ4(f ) = 1
2f 2 ,

viz.,

Bφ(f, g) = 1

2

∫ xN

x1

[
f (x) − g(x)

]2
dx.

Motivated by these two results, we define the follow-
ing:

DEFINITION 6. The relative extropy in a density
f (·) relative to g(·) defined over [x1, xN ] is

dc(f ‖g) ≡ 1

2

∫ xN

x1

[
f (x) − g(x)

]2
dx.

The status of relative entropy and half the L2 met-
ric as Bregman divergences are well known. However,
they have never been recognized heretofore as formula-
tions of the complementary duals, entropy and extropy.

For example, Censor and Zenios [(1997), page 33] re-
fer to these as “the most popular Bregman functions,”
without any hint how they are related.

We should expressly clarify that the duality of en-
tropy and extropy we are touting is distinct from the
Legendre duality between points and lines that un-
derlies the general structure of Bregman divergences.
See Boissonnat, Nielsen and Nock (2010), Section 2.2.
Ours is a content-based duality that derives from their
symmetric co-referential relation which we exposed
following Result 4 in Section 4. In this regard it is quite
surprising and provocative that half the squared L2
distance (the relative extropy between two densities)
arises as the dual of the entropic norm of Kullback–
Leibler.

It is satisfying that a final result codifies the def-
initions of Shannon’s “analogue” differential entropy
function h(f ) ≡ − ∫ xN

x1
f (x) log(f (x)) dx and our dif-

ferential extropy function j (f ) ≡ −1
2

∫
f 2(x) dx (dis-

cussed in Appendix D) as a special case of their relative
measures with respect to a uniform density:

RESULT 12. Suppose f (·) is any density defined
on [x1, xN ] and that u(x) = (xN − x1)

−1 is a uniform
density. Then the relative (entropy, extropy) pair iden-
tify the differential (entropy, extropy) forms

d(f ‖u) = h(u) − h(f )

and

dc(f ‖u) = j (u) − j (f ).

Recalling from Result 7 the relation of relative ex-
tropy Dc(pN‖sN) to the relative entropy in the com-
plementary mass functions via D(qN‖tN), it would
seem natural to search for the general relative extropy
measure between any two densities by searching for
an appropriate complementary density to a density.
As it turns out, such a search would be chimeric be-
cause the complementary density to every density is
identical . . . the uniform density! This can be recog-
nized by examining the complementary mass function
qN ≡ (1N − pN)/(N − 1). In the limiting process we
have devised, the value of N increases while the maxi-
mum value of the pN vector becomes small, with each
component of pN converging toward zero. In the pro-
cess, each of their complementary p.m.f. components
becomes indistinguishable from 1

N
. Thus, the comple-

mentary density values become uniform everywhere.
This argument also implies that the values of the

two expectations in the limiting equation of Result 8,
EpN

[log(to(X))] and EsN [log(to(X))], both become
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indistinguishable from log(N) as N increases. This is
the entropy of a uniform p.m.f. Thus, in the limit their
difference equals 0.

6. STATISTICAL APPLICATION TO PROPER
SCORING RULES

Our discovery of extropy was stimulated by a prob-
lem that arises in the application of the theory of
proper scoring rules for alternative forecast distribu-
tions. These functions are the central construct of a
subjectivist statistical practice used to evaluate the rela-
tive quality of different asserted distributions. A proper
scoring rule S(pN,X = xo) is a function of both the
p.m.f. assertion and the observation value, with the
property that the expected scoring function value (with
respect to the asserted p.m.f. pN ) exceeds the expected
score to be achieved by any other p.m.f. The applica-
tion of such rules for theory comparison is said to pro-
mote honesty and accuracy in one’s assessment of a
p.m.f. to assert. There are many proper scoring func-
tions. DeGroot (1984) discusses the relation of the var-
ious scoring functions to differing utility functions.

Proper scoring rules were the last applied statistical
topic addressed in the publications of Savage (1971).
They are presented systematically and promoted in the
text of Lad (1996). Theory and applications over the
past half century have been reviewed by Gneiting and
Raftery (2007). The log probability for the observed
outcome of X = xo is widely considered to be an emi-
nent proper scoring rule and has been used extensively:
Slog(pN,X = xo) = ∑N

i=1(X = xi) logpi = log(po).
This score has long been recognized to be the unique
proper scoring rule for distributions that are a func-
tion only of the observed value of X = xo, irrespec-
tive of the probabilities assessed for the “unobserved”
possibilities of X. See Shuford, Albert and Massengill
(1966) and Bernardo (1979). The probability assessor’s
expected logarithmic score equals the negentropy in
the assessed distribution:

EpN

[
Slog

(
pN,X = xo)] =

N∑
i=1

pi log(pi).

It now appears that the logarithmic score’s claim to
fame should be viewed as a weakness rather than a
virtue, for it provides an incomplete assessment of the
probabilities composing pN . The recognition of ex-
tropy as the complementary dual of entropy plays on
the fact that the observation of X = xo is concomitant
with the observations that X �= xi for every other xi in
the range of X that is different from xo. Probabilities

for these observed negated events are inherent in the
assertion of pN , yet the logarithmic scoring function
ignores them. The total logarithmic scoring rule has
been proposed to address this issue:

STotallog
(
pN,X = xo)

≡
N∑

i=1

(X = xi) logpi +
N∑

i=1

(X �= xi) log(1 − pi).

Evidently, the expectation of this score equals the ne-
gentropy plus the negextropy of the distribution:

EpN

[
STotallog

(
pN,X = xo)]

=
N∑

i=1

pi log(pi) +
N∑

i=1

(1 − pi) log(1 − pi).

Moreover, each component sum and any positive linear
combination of the two components of the Total log
score is a proper score as well.

A preliminary report by Lad, Sanfilippo and Agrò
(2012) investigates the importance of this issue in an
application scoring alternative forecasting distributions
for daily stock prices (Agrò, Lad and Sanfilippo, 2010).
The distributions considered differ in the attitudes they
portray toward tail area probabilities, and the two com-
ponents of the Total log score assess the expected price
and the tail area probabilities in different ways. The
international financial collapse of recent years has ac-
centuated an awareness of the importance of evaluat-
ing probabilities for extreme events that seldom occur,
even when they don’t occur. One of the major insights
the report provides is that the quadratic scoring rule for
distributions should be considered not as an alternative
to the usual log score but as a complement. For while
the utility of a price forecast surely does derive from
decisions that depend on the expected prices, it also
hinges on the level of insurance cover suggested by the
forecasting distribution to protect against extreme out-
comes. It should become standard practice to evaluate
the logarithmic score and the quadratic score in tan-
dem. This conclusion derives from the same logic we
have used in this article in identifying the squared L2
distance as the extropic complement to the Kullback–
Leibler formulation of relative entropy.

Further applications of this notion are already being
promoted. An extension of the total log proper scor-
ing rule for probability distributions to partial prob-
ability assessments has been given in Capotorti, Re-
goli and Vattari (2010) as a discrepancy measure be-
tween a conditional assessment and the class of uncon-
ditional probability distributions compatible with the
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assessments that are made. Taking the work of Predd
et al. (2009) as a starting point, Gilio and Sanfilippo
(2011) use the extension of a scoring rule to partial
assessments while analyzing the Total log score as a
particular Bregman divergence. Biazzo, Gilio and San-
filippo (2012) address the case of conditional prevision
assessments.

7. CONCLUDING DISCUSSION

What’s in a name? We are aware of prior uses of
the word “extropy,” documented in both the Online
Oxford English Dictionary and in Wikipedia. In one
usage it seems to have arisen as a metaphorical term
rather than a technical term, naming a proposed pri-
mal generative natural force that stimulates order rather
than disorder in both physical and informational sys-
tems. In the other usage within a technical context, “ex-
tropy” has apparently had some parlance being used in-
terchangeably with the more commonly used “negen-
tropy,” the negative scaling of entropy. Neither usage
of “extropy” appears to be very common. While we
are not stuck on this particular word, the information
measure we have introduced in this article seems aptly
to merit the coinage of “extropy.” Whereas entropy is
recognized as minus the expected log probability of
the occurring value of X (a measure which could be
considered “interior” to the observation X), our pro-
posed extropy is derived from the expected log nonoc-
currence probability for the partition event that does
occur less the sum of log nonoccurrence probabilities,
that is,

∑N
i=1 pi log(1 − pi) − ∑N

i=1 log(1 − pi). This
could be considered to be a measure “exterior” to the
observation X. The exterior measure of all the nonoc-
curring quantity possibilities is complementary to the
entropy measure of the unique occurring possibility.
Together, in their joint assessment of the information
inhering in a system of probabilities, entropy and ex-
tropy identify what many people think of as yin and
yang, and what artists commonly refer to as positive
and negative space.

A word is in order about concerns of mathematical
statisticians regarding the limitations of the theory of
continuous information measures. These typically re-
volve upon measurability conditions and the limitation
of continuous extropy to L2 densities. In our present
digital age, the time has surely come for statistical the-
orists to come to grips with the fact that every statis-
tical measurement procedure in any field whatsoever
is actually limited to a finite and discrete set of pos-
sible measurement values. No one has ever observed a

real-valued measurement of anything. The actual appli-
cation of statistics to inference or estimation problems
involves only discrete finite quantities. Of course, con-
tinuous mathematics is useful for approximate compu-
tations in situations of fine measurements. However,
such approximations need not require every imagin-
able feature of mathematical structures for real com-
putational problems. This outlook stands in contrast to
received attitudes from earlier centuries. These were
based on the notion that reality is actually continuous
and that numerical methods of applied mathematics
can only yield discrete approximations. We ought to
recognize that such notions are now outdated.

The statistical application to proper scoring rules that
we outlined in Section 6 is one of many areas of possi-
ble relevance of our dual construction. In any commer-
cial or scientific arena in which entropic computations
have become standard, such as astronomical measure-
ments of heat distribution in galaxies, the insights pro-
vided by extropic computations would be well worth
investigating. Unrecognized heretofore, the relevance
of the duality may lie hidden in applications already
conducted and may become apparent more widely now
that it is recognized. For example, terms comprising
the difference of extropy from entropy arise in a repre-
sentation of the Bethe free energy and the Bethe perma-
nent in Vontobel [(2013), pages 7–8], though they are
not recognized there as such. Even earlier, the Fermi–
Dirac entropy function applied in nuclear physics spec-
ifies the sum of extropy and entropy as its Bregman
divergence without recognizing the duality of the two
components. See Furuichi and Mitroi (2012). Given the
broad range of applications of entropy on its own over
the past half century, we suspect that the awareness of
extropy as its complementary dual will raise as many
new interesting questions as it answers.

APPENDIX A: ENTROPY ≥ EXTROPY

Let X be a random quantity with a finite discrete
realm of possibilities {x1, x2, . . . , xN } with probabil-
ity masses pi , with pi = P(X = xi), i = 1, . . . ,N .
We recall that H(X) = −∑N

i=1 pi log(pi) and J (X) =
−∑N

i=1(1−pi) log(1−pi). We consider the following
real functions defined on [0,1]:

ϕ1(p) = p log(p), with 0 log(0) ≡ 0;
ϕc

1(p) = ϕ1(1 − p);
u(p) = −(

ϕ1(p) − ϕc
1(p)

)
= −p log(p) + (1 − p) log(1 − p).
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FIG. A.1. The function u(p).

The function u(p) satisfies the following properties
(see Figure A.1):

1. u(p) = 0 iff [p = 0, or p = 1 or p = 1
2 ];

2. u(p) > 0 iff 0 < p < 1
2 ;

3. u(p) < 0 iff 1
2 < p < 1;

4. u(1 − p) = −u(p), for all p ∈ [0,1];
5. u(p) is strictly concave in [0, 1

2 ], that is, for any
given pair (p1,p2) with 0 ≤ p1 < p2 ∈ (0, 1

2 ], and
for any given α ∈ (0,1), we have

u
(
αp1 + (1 − α)p2

)
> αu(p1) + (1 − α)u(p2).

By exploiting the function u(p), it is evident that

H(X) − J (X) =
N∑

i=1

u(pi).

This difference is permutation invariant with respect to
the components pi .

We observe that for any N > 1, if there exist i ∈
{1,2, . . . ,N} such that pi = 0, then by considering an
arbitrary quantity Y with a realm of cardinality N − 1
and probability masses (p1,p2, . . . , pi−1,pi+1, . . . ,

pN) we are ensured that

H(X) = H(Y) and J (X) = J (Y ).

We have the following result:
Let X be a finite random quantity, with realm {x1, x2,

. . . , xN } and probability masses (p1,p2, . . . , pN) such
that pi > 0, for i = 1,2, . . . ,N , we have the following:

(a) H(X) = J (X) if N ≤ 2;
(b) H(X) > J(X) if N > 2.
Case (a). If N = 1, we trivially have H(X) =

J (X) = 0 and, if N = 2, it is H(X) = J (X) =
−p1 log(p1) − (1 − p1) log(1 − p1).

Case (b). We distinguish two alternatives: (b1) pi ≤
1
2 , i = 1,2, . . . ,N ; and (b2) pi > 1

2 for only one in-
dex i.

Case (b1). By the hypotheses, for each i, 0 < pi ≤ 1
2

and
∑N

i=1 pi = 1. It follows from Properties 1 and 2 of
the function u(p) that

H(X) − J (X) =
N∑

i=1

u(pi) > 0.

Case (b2). To begin, suppose that N = 3. Without
loss of generality, we can assume p3 > 1

2 , because of
the permutation invariance of u(·); consequently, 0 <

p1 + p2 < 1
2 . Now from Property 4 we deduce

u(p3) = −u(1 − p3) = −u(p1 + p2).

Then statement

H(X) − J (X) = u(p1) + u(p2) − u(p1 + p2) > 0

amounts to u(p1)+u(p2) > u(p1 +p2). Since u(p) is
strictly concave over the interval [0, 1

2 ] (see Property 5)
and u(0) = 0, we have

u(p1) = u

(
p2

p1 + p2
0 + p1

p1 + p2
(p1 + p2)

)

>
p2

p1 + p2
u(0) + p1

p1 + p2
u(p1 + p2)(A.1)

= p1

p1 + p2
u(p1 + p2)

and

u(p2) >
p1

p1 + p2
u(0) + p2

p1 + p2
u(p1 + p2)

(A.2)
= p2

p1 + p2
u(p1 + p2).

From (A.1) and (A.2) it follows u(p1) + u(p2) >

u(p1 + p2) and then H(X) − J (X) > 0.
Generally, let N > 2. Again without loss of general-

ity, we can assume pN > 1
2 . We have

u(pN) = −u(1 − pN) = −u(p1 + p2 + · · · + pN−1).

For each i = 1, . . . ,N − 1, it is easy to see that

u(pi) >
pi

p1 + p2 + · · · + pN−1
(A.3)

· u(p1 + p2 + · · · + pN−1),

because of the concavity of u(·).
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Finally, we have

H(X) − J (X)

=
N∑

i=1

u(pi)

=
N−1∑
i=1

u(pi) − u(p1 + p2 + · · · + pN−1)

> 0.

APPENDIX B: THE RANGE OF EXTROPY VALUES
THAT SHARE AN ENTROPY

In the same observational context as Figure 3, Fig-
ure A.2 displays a single entropy contour at the value
H(p3) = 0.9028. Inscribed and exscribed are the max-
imum and minimum extropy contours that intersect
with it. Each of these extreme extropy contours has
three intersection points with the entropy contour, and
the p.m.f. that each of these points represents has two
equal components. So the three triples constituting
the mass function intersection points on both the max
and the min J contours are permutations of one an-
other. The intermediate extropy contour intersects the
H(p3) = 0.9028 contour at six points, the six per-

mutations of a p3 vector with three distinct compo-
nents. Both the H(·) and J (·) functions are permuta-
tion invariant. In higher dimensions, the intersection of
H(pN) and J (pN) contours yields surfaces in (N − 2)

dimensions that are symmetric across the permutation
kernels of the unit-simplex SN−1.

When the entropy is calculated for any assemblage
such as the heat distribution for a galaxy of stars, a
companion calculation of the extropy would allow us
to complete our understanding of the variation inherent
in its empirical distribution. The extropy value com-
pletes the measure of disorder in the array, placing it
within the extremes that are possible for the calculated
entropy value.

APPENDIX C: ISOCONTOURS OF H(·) GENERATE
ISOCONTOURS OF J(·) VIA RESULT 5

As a numerical and geometrical example, consider
again Figure 3 in the context of the following compu-
tational results. These need to be compared with the
points they represent in the figure as you go. To be-
gin, notice that H(1

4 , 1
2 , 1

4) = 1.0397 and J (1
4 , 1

2 , 1
4) =

0.7781 identify the points at the apex of specific
isoentropy and isoextropy contours from your per-
spective as you view the left and right sides of Fig-
ure 3. Both of these contours lie precisely on and are

FIG. A.2. The iso-entropy contour, H(p3) = 0.9028, intersects with each of the inscribed and the exscribed iso-extropy contours at three
points, and it intersects with any intermediate iso-extropy contour at six points. The three lines bisecting the vertex angles partition the
unit-simplex into six symmetric permutation kernels.
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tangent to the triangular sub-simplex Sc that is in-
scribed within the unit-simplex S2 in Figure 3(left)
and Figure 3(right). Result 5 tells us that the source
of this isoextropy contour on the right is the higher
level isoentropy contour H = 1.082 that contains the
point q3 = (3

8 , 1
4 , 3

8) at the bottom of this entropy
contour. This is the mass function complementary to
p3 = (1

4 , 1
2 , 1

4). Computationally, J (p3 = (1
4 , 1

2 , 1
4)) =

0.7781 = 2[H(q3 = (3
8 , 1

4 , 3
8)) − log(2)] = 2[1.0822−

0.6931], as prescribed by Result 5. Transformed into
an isoextropy contour, this isoentropy contour contain-
ing H(q3) = 1.0822 is flipped and expanded to repre-
sent J (p3) = 0.7781. If we would begin with a consid-
eration of the entropy contour containing H(3

8 , 1
4 , 3

8) =
1.0822, regarding this triple as p3, we would find its
dual extropy contour is denominated J = 0.8033, con-
taining the member J (3

8 , 1
4 , 3

8) = 0.8033. These two
contours are precisely inscribed in the sub-sub-simplex
Scc which is inlaid within Sc in Figure 3(left) and Fig-
ure 3(right). This visualization completes our under-
standing of extropy as the complementary dual of en-
tropy.

APPENDIX D: DIFFERENTIAL ENTROPY AND
EXTROPY FOR CONTINUOUS DENSITIES

We begin this exposition by reviewing how the
analogical character of Shannon’s differential entropy
measure for a continuous density derives from its sta-
tus as the limit of a linear transformation of the discrete
entropy measure.

D.1 Shannon’s Differential Entropy:
− ∫

f (x) logf (x)dx

For the following simple exposition of Shannon’s
considerations, presume again that the range of a quan-
tity X is {x1, . . . , xN } and that the values of x1 and
xN are fixed. For each larger value of N , presume that
more elements are included uniformly in the interval
between them and that the pi values are refined in such
a way that the maximum pi value reduces toward 0.
Now define �x ≡ (xN − x1)/(N − 1) for any specific
N , and define f (xi) ≡ pi/�x. In these terms, the en-
tropy H(pN) can be expressed as

H(pN) = −∑
pi log(pi)

= −∑
f (xi)�x log

(
f (xi)�x

)
(D.1)

= −∑
f (xi) log

(
f (xi)

)�x − log(�x).

Thus, the entropy measure H(pN) is unbounded as
N increases, with �x → 0. However, the summand
−∑

f (xi) log(f (xi))�x on (D.1) is merely a location
transform of the entropy −∑

pi log(pi), shifting only
by log(�x) which is finite for any N . The limit of the
relocated entropy expression suggests Shannon’s defi-
nition of the continuous analogue:

DEFINITION D.1. The differential entropy of a
density f (·) over the interval [x1, xN ] is defined as

h(f ) ≡ −
∫ xN

x1

f (x) log
(
f (x)

)
dx

= lim�x→0

[
H(pN) + log�x

]
.

Shannon himself noted that this analogous measure
loses the absolute meaning that the finite measure en-
joys, because its value must be considered relative to
an assumed standard of the coordinate system in which
the value of the variable is expressed. If the variable
X were transformed into Y , then the continuous mea-
sure of the differential entropy hY (f (·)) needs to be
adjusted from hX(f (·)) by the Jacobian of the spe-
cific transformation. He suggested, however, that the
continuous analogue retains its value as a comparative
measure of the uncertainties contained in two densities
because they would both be affected by the transforma-
tion in the same way. In any case, the characterization
of relative entropy, which we address in Section 5.1,
has been found to circumvent the invariance problem.
See the discussion in Caticha (2012), page 85. We shall
now examine differential extropy in the style suggested
by Shannon’s argument.

D.2 Motivating the Differential Extropy Measure as
−1

2

∫
f 2(x)dx

At first sight, the extropy measure −∑
(1 − pi)×

log(1 − pi) appears problematic: if each pi were
simply replaced by a density value f (x), the mea-
sure would not be defined when f (x) > 1, which it
may. However, the situation clarifies by expanding
(1 −pi) log(1 −pi) through three terms of its Maclau-
rin series with remainder: (1 − pi) log(1 − pi) =
−pi + p2

i

2 + p3
i

6(1−ri )
2 for some ri ∈ (0,pi). Summing

these expansion terms over i = 1, . . . ,N shows that
when the range of possibilities for X increases (as a
result of larger N ) in such a way that �x → 0 and
maxN

i=1 pi decreases toward 0, the extropy measure be-
comes closely approximated by 1 − 1

2
∑N

i=1 p2
i .
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Following the same tack as for entropy in represent-
ing pi by f (xi)�x suggests that for large N the ex-
tropy measure can be approximated by

J (pN) ≈ 1 − 1

2

N∑
i=1

p2
i (when maxpi is small)

= 1 − 1

2

∑
f 2(xi)(�x)2

= 1 − �x

2

∑
f 2(xi)�x.

This approximation is merely a location and scale
transformation of −1

2
∑

f 2(xi)�x. In the same spirit
as for differential entropy, the measure of differential
extropy for a continuous density can well be defined
via the limit of J (pN) as N increases in the same con-
text as Definition D.1:

DEFINITION D.2. The differential extropy of the
density f (·) is defined as

j (f ) ≡ −1

2

∫
f 2(x) dx = lim�x→0

{[
J (pN) − 1

]
/�x

}
.

The sum of the squares of probability masses (as
well as the integral of the square of a density) has re-
ceived attention for more than a century for a variety of
reasons, but never in a direct relation to the entropy of
a distribution. Rather, it has merely been considered to
be an alternative measure of uncertainty. Good (1979)
referred to this measure as the “repeat rate” of a dis-
tribution, developing an original idea of Turing. Gini
(1912, 1939) had earlier proposed this measure as an
“index of heterogeneity” of a discrete distribution, via
1 − ∑N

i=1 p2
i , deriving from the sum of the individ-

ual event variances, pi(1 − pi). We now find that in
a discrete context, a rescaling of Gini’s index is an ap-
proximation to the extropy of a distribution when the
maximum probability mass is small. In a continuous
context, half the negative expected value of a density
function value is the continuous differential analogue
of the extropy measure of a distribution that we are
proposing.
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