
Statistical Science
2014, Vol. 29, No. 4, 662–678
DOI: 10.1214/13-STS429
© Institute of Mathematical Statistics, 2014

A Uniformly Consistent Estimator of
Causal Effects under the
k-Triangle-Faithfulness Assumption
Peter Spirtes and Jiji Zhang

Abstract. Spirtes, Glymour and Scheines [Causation, Prediction, and
Search (1993) Springer] described a pointwise consistent estimator of the
Markov equivalence class of any causal structure that can be represented by a
directed acyclic graph for any parametric family with a uniformly consistent
test of conditional independence, under the Causal Markov and Causal Faith-
fulness assumptions. Robins et al. [Biometrika 90 (2003) 491–515], however,
proved that there are no uniformly consistent estimators of Markov equiva-
lence classes of causal structures under those assumptions. Subsequently,
Kalisch and Bühlmann [J. Mach. Learn. Res. 8 (2007) 613–636] described
a uniformly consistent estimator of the Markov equivalence class of a lin-
ear Gaussian causal structure under the Causal Markov and Strong Causal
Faithfulness assumptions. However, the Strong Faithfulness assumption may
be false with high probability in many domains. We describe a uniformly
consistent estimator of both the Markov equivalence class of a linear Gaus-
sian causal structure and the identifiable structural coefficients in the Markov
equivalence class under the Causal Markov assumption and the considerably
weaker k-Triangle-Faithfulness assumption.

Key words and phrases: Causal inference, uniform consistency, structural
equation models, Bayesian networks, model selection, model search, estima-
tion.

1. INTRODUCTION

A principal aim of many sciences is to model causal
systems well enough to provide sound insight into their
structures and mechanisms and to provide reliable pre-
dictions about the effects of policy interventions. The
modeling process is typically divided into two distinct
phases: a model specification phase in which some
model (with free parameters) is specified, and a param-
eter estimation and statistical testing phase in which the
free parameters of the specified model are estimated
and various hypotheses are put to a statistical test. Both
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model specification and parameter estimation can fruit-
fully be thought of as search problems.

As pointed out in Robins et al. (2003), common
statistical wisdom dictates that causal effects cannot
be consistently estimated from observational studies
alone unless one observes and adjusts for all possi-
ble confounding variables, and knows the time order in
which events occurred. However, Spirtes, Glymour and
Scheines (1993) and Pearl (2000) developed a frame-
work in which causal relationships are represented by
edges in a directed acyclic graph. They also described
asymptotically consistent procedures for determining
features of causal structure from data even if we al-
low for the possibility of unobserved confounding vari-
ables and/or an unknown time order, under two as-
sumptions: the Causal Markov assumption (roughly,
given no unmeasured common causes, each variable
is independent of its noneffects conditional on its di-
rect causes) and the Causal Faithfulness assumption
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(all conditional independence relations that hold in the
distribution are entailed by the Causal Markov assump-
tion). Under these assumptions, the procedures they
propose (e.g., the SGS and the PC algorithms assum-
ing no unmeasured common causes, and the FCI algo-
rithm which does not assume no unmeasured common
causes) can infer the existence or absence of causal re-
lationships. In particular, Spirtes et al. (1993), Chap-
ters 5 and 6, proved the Fisher consistency of these pro-
cedures. Pointwise consistency follows from the Fisher
consistency and the uniform consistency of the test
procedures for conditional independence relationships
in certain parametric families that the procedures use.

Robins et al. (2003) proved that under the Causal
Markov and Faithfulness assumptions made in Spirtes,
Glymour and Scheines (1993) there are no uniformly
consistent procedures for estimating features of the
causal structure from data, even when there are no
unmeasured common causes. Spirtes, Glymour and
Scheines (2000), Kalisch and Bühlmann (2007) and
Colombo et al. (2012) introduced a Strong Causal
Faithfulness assumption, which, roughly speaking, as-
sumes that no conditional independence relation not
entailed by the Causal Markov assumption “almost”
holds. Kalisch and Bühlmann (2007) and Colombo
et al. (2012) showed that under this strengthened
Causal Faithfulness assumption, some modifications
of the pointwise consistent procedures developed in
Spirtes, Glymour and Scheines (1993) are uniformly
consistent. Maathuis et al. (2010) have also success-
fully applied these procedures to various biological
data sets, experimentally confirming some of the causal
inferences made by the procedures.

However, the question remains whether the Strong
Causal Faithfulness assumption made by Kalisch and
Bühlmann (2007) is too strong. Is it likely to be true?
Some analysis done by Uhler et al. (2013) indicates
that the strengthened Causal Faithfulness assumption
is likely to be false, especially when there are a large
number of variables.

In this paper we investigate a number of different
ways in which the strengthened Causal Faithfulness
assumption can be weakened, while still retaining the
guarantees of uniformly consistent estimation by mod-
ifying the causal estimation procedures. It is not clear
whether the ways we propose to weaken the Strong
Causal Faithfulness assumption make it substantially
more likely to hold, nor is it clear that all of the
modifications that we propose to the estimation proce-
dures make them substantially more accurate in prac-
tice. Nevertheless, we believe that the modifications

that we propose are a useful first step toward investi-
gating fruitful modifications of the Causal Faithfulness
assumption and causal estimation procedures.

In Section 2 we describe the basic setup and assump-
tions for causal inference. In Section 3 we examine
various ways to weaken the Causal Faithfulness as-
sumption and modifications of the estimation proce-
dures that preserve pointwise consistency. In Section 4
we examine weakening the Strong Causal Faithfulness
assumption and modification of the estimation proce-
dures that preserves uniform consistency. Finally, in
Section 5 we summarize the results and describe areas
of future research.

2. THE BASIC ASSUMPTIONS FOR CAUSAL
INFERENCE

We first introduce the graph terminology that we will
use. Individual variables are denoted with italicized
capital letters, and sets of variables are denoted with
bold-faced capital letters. A graph G = 〈V,E〉 consists
of a set of vertices V and a set of edges E ⊆ V × V,
where for each 〈X,Y 〉 ∈ E,X �= Y . If 〈X,Y 〉 ∈ E and
〈Y,X〉 ∈ E, there is an undirected edge between X and
Y, denoted by X — Y. If 〈X,Y 〉 ∈ E and 〈Y,X〉 /∈ E,
there is a directed edge between X and Y, denoted by
X → Y . If there is a directed edge from X to Y, or from
Y to X, or there is an undirected edge between X and
Y, then X and Y are adjacent in G. Adj(G,X) is the
set of vertices adjacent to X. If all of the edges in a
graph G are directed edges, then G is a directed graph.
A path between X1 and Xn in G is an ordered sequence
of vertices 〈X1, . . . ,Xn〉 such that for 1 < i ≤ n, Xi−1
and Xi are adjacent in G. A path between X1 and Xn

in G is a directed path if for 1 < i ≤ n, the edge be-
tween Xi−1 and Xi is a directed edge from Xi−1 to Xi .
A path is acyclic if no vertex occurs on the path twice.
A directed graph is acyclic (DAG) if all directed paths
are acyclic. X is a parent of Y and Y is a child of X if
there is an edge X → Y . 〈X,Y,Z〉 is a triangle in G if
X is adjacent to Y and Z, and Y is adjacent to Z.

Suppose G is a graph. Parents(G, X) is the set of
parents of X in G. X is an ancestor of Y (and Y is a
descendant of X) if there is a directed path from X to
Y. A subset of V is ancestral, if it is closed under the
ancestor relation. A triple of vertices 〈X,Y,Z〉 is un-
shielded if X is adjacent to Y and Y is adjacent to Z, but
X is not adjacent to Z. A triple of vertices 〈X,Y,Z〉 is
a collider if there are edges X → Y ← Z. A triple of
vertices 〈X,Y,Z〉 is a noncollider if X is adjacent to Y
and Y is adjacent to Z, but it is not a collider.



664 P. SPIRTES AND J. ZHANG

A probability distribution P over a set of variables
V satisfies the (local directed) Markov condition for a
DAG G if and only if each variable V in V is indepen-
dent of the set of variables that are neither parents nor
descendants of V in G, conditional on the parents of
V in G. A Bayesian network is an ordered pair 〈P,G〉
where P satisfies the local directed Markov condition
for G. If M = 〈P,G〉, PM denotes P and GM denotes
G. Two DAGs G1 and G2 over the same set of vari-
ables V are said to be Markov equivalent if all of the
conditional independence relations entailed by satisfy-
ing the local directed Markov condition for G1 are also
entailed by satisfying the local directed Markov condi-
tion for G2, and vice versa. A useful characterization of
Markov equivalence between DAGs is that two DAGs
are Markov equivalent if and only if they have the same
adjacencies and the same unshielded colliders (Verma
and Pearl, 1990). A Markov equivalence class M is a
set of DAGs that contains all DAGs that are Markov
equivalent to each other. A Markov equivalence class
M can be represented by a graph called a pattern; a pat-
tern O is a graph such that (i) if X → Y in every DAG
in M, then X → Y in O; and (ii) if X → Y in some
DAG in M and Y → X in some other DAG in M, then
X — Y in O. In that case O is said to represent M and
each DAG in M.

If X is independent of Y conditional on Z, we write
I (X,Y|Z), or if X, Y, and Z are individual variables
I (X,Y |Z). In a DAG G, a vertex A is active on an
acyclic path U between X and Y conditional on set Z
of vertices (not containing X or Y) if A = X or A = Y ,
or A is a noncollider on U and not in Z, or A is a col-
lider on U that is in Z or has a descendant in Z. An
acyclic path U is active conditional on a set Z of ver-
tices if every vertex on the path is active relative to Z. If
X �= Y and Z does not contain X or Y, X is d-separated
from Y conditional on Z if there is no active acyclic
path between X and Y conditional on Z; otherwise X
and Y are d-connected conditional on Z. For three dis-
joint sets X, Y and Z, X is d-separated from Y condi-
tional on Z if there is no acyclic active path between
any member of X and any member of Y conditional
on Z; otherwise X and Y are d-connected conditional
on Z. If X is d-separated from Y conditional on Z in
DAG G, then I (X,Y|Z) in every probability distribu-
tion that satisfies the local directed Markov condition
for G (Pearl, 1988). Any conditional independence re-
lation that holds in every distribution that satisfies the
local directed Markov condition for DAG G is entailed
by G. Note, however, that in some distributions that sat-
isfy the local directed Markov condition for G, some

conditional independence relation I (X,Y|Z) may hold
even if X is not d-separated from Y conditional on Z in
G; such distributions are said to be unfaithful to G.

There are a number of different parameterizations of
a DAG G, which map G onto distributions that satisfy
the local directed Markov condition for G. One com-
mon parameterization is a recursive linear Gaussian
structural equation model. A recursive linear Gaus-
sian structural equation model is an ordered triple
〈G,Eq,�〉, where G is a DAG over a set of vertices
X1, . . . ,Xn, Eq is a set of equations, one for each Xi

such that

Xi = ∑
Xj∈Parents(G,Xi)

bj,iXj + εi,

where the bj,i are real constants known as the structural
coefficients, and the εi are multivariate Gaussian that
are jointly independent of each other with covariance
matrix �. The εi are referred to as “error terms.” In
vector notation, where X is the vector of X1, . . . ,Xn,
B is the matrix of structural coefficients, and ε is the
vector of error terms,

X = BX + ε.

The covariance matrix � over the error terms, together
with the structural equations, determine a distribution
over the variables in X, which satisfies the local di-
rected Markov condition for G. Hence, the DAG in a
recursive linear Gaussian structural equation model M
together with the probability distribution generated by
the equations and the covariance matrix over the error
terms form a Bayesian network. Because the joint dis-
tribution over the nonerror terms of a linear Gaussian
structural equation model is multivariate Gaussian, X is
independent of Y conditional on Z in PM if and only if
ρM(X,Y |Z) = 0, where ρM(X,Y |Z) denotes the con-
ditional or partial correlation between X and Y condi-
tional on Z according to PM . Let eM(X → Z) denote
the structural coefficient of the X → Z edge in GM . If
there is no edge X → Z in GM , then eM(X → Z) = 0.
If X and Z are adjacent in GM , then eM(X — Z) =
eM(X → Z) if there is an X → Z edge in GM , and
otherwise eM(X — Z) = eM(Z → X).

There is a causal interpretation of recursive linear
Gaussian structural equation models, in which setting
(as in an experiment, as opposed to observing) the
value of Xi to the fixed value x is represented by re-
placing the structural equation for Xi with the equa-
tion Xi = x. Under the causal interpretation, a recur-
sive linear structural equation model is a causal model,
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the DAG GM is a causal DAG, and the pattern that rep-
resents GM is a causal pattern. A causal model with
a set of variables V is causally sufficient when every
common direct cause of any two variables in V is also
in V. Informally, under a causal interpretation, an edge
X → Y in GM represents that X is a direct cause of Y
relative to V. A causal model of a population is true
when the model correctly predicts the results of all
possible settings of any subset of the variables (Pearl,
2000).

There are two assumptions made about the relation-
ship between the causal DAG and the population prob-
ability distribution that play a key role in causal infer-
ence from observational data. A discussion of the im-
plications of these assumptions, arguments for them,
and a discussion of conditions when they should not be
assumed are given in Spirtes, Glymour and Scheines
(1993), pages 32–42. In this paper, we will consider
only those cases where the causal relations in a given
population can be represented by a model whose graph
is a DAG.

Causal Markov assumption (CMA). If the true causal
model M of a population is causally sufficient, every
variable in V is independent of the variables that are
neither its parents nor descendants in GM conditional
on its parents in GM .

Causal Faithfulness assumption (CFA). Every con-
ditional independence relation that holds in the pop-
ulation probability distribution is entailed by the true
causal DAG of the population.

The Causal Markov and Causal Faithfulness as-
sumptions together entail that X is independent of Y
conditional on Z in the population if and only if X is
d-separated from Y conditional on Z in the true causal
graph.

3. WEAKENING THE CAUSAL FAITHFULNESS
ASSUMPTION

A number of algorithms for causal estimation have
been proposed that rely on the assumption of the
causal sufficiency of the observed variables, the Causal
Markov assumption and the Causal Faithfulness as-
sumption. The SGS algorithm (Spirtes, Glymour and
Scheines, 1993, page 82), for example, is a Fisher con-
sistent estimator of causal patterns under these assump-
tions. (This, together with a uniformly consistent test
of conditional independence, entails that the SGS al-
gorithm is a pointwise consistent estimator of causal
patterns.)

In this section we explore ways to weaken the Causal
Faithfulness assumption that still allow pointwise con-
sistent estimation of (features of) causal structure, and
we illustrate the ideas by going through a sequence
of generalizations of the population version of the
SGS algorithm. None of the results in this section de-
pend upon assuming Gaussianity or linearity. The ba-
sic idea is that although the Causal Faithfulness as-
sumption is not fully testable (without knowing the true
causal structure), it has testable components given the
Causal Markov assumption. Under the Causal Markov
assumption, the Causal Faithfulness assumption en-
tails that the probability distribution admits a perfect
DAG representation, that is, a DAG that entails all
and only those conditional independence relations true
of the distribution. Whether there is such a DAG de-
pends only on the distribution, and so is, in theory,
testable. In principle, then, one may adopt a weaker-
than-faithfulness assumption and test (rather than as-
sume) the testable part of the faithfulness condition.

The SGS algorithm takes an oracle of conditional in-
dependence as input, and outputs a graph on the given
set of variables with both directed edges and undirected
edges.

SGS algorithm.

S1. Form the complete undirected graph H on the
given set of variables V.

S2. For each pair of variables X and Y in V, search for
a subset S of V \ {X,Y } such that X and Y are in-
dependent conditional on S. Remove the edge be-
tween X and Y in H if and only if such a set is
found.

S3. Let K be the graph resulting from S2. For each
unshielded triple 〈X,Y,Z〉 (i.e., X and Y are ad-
jacent, Y and Z are adjacent, but X and Z are not
adjacent),
(i) If X and Z are not independent conditional on

any subset of V \ {X,Z} that contains Y, then
orient the triple as a collider: X → Y ← Z.

(ii) If X and Z are not independent conditional on
any subset of V \ {X,Z} that does not contain
Y, then mark the triple as a noncollider (i.e.,
not X → Y ← Z).

S4. Execute the following orientation rules until none
of them applies:

(i) If X → Y — Z, and the triple 〈X,Y,Z〉 is
marked as a noncollider, then orient Y — Z

as Y → Z.
(ii) If X → Y → Z and X — Z, then orient

X — Z as X → Z.
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(iii) If X → Y ← Z, another triple 〈X,W,Z〉 is
marked as a noncollider, and W — Y , then
orient W — Y as W → Y . (This rule was
not in the original SGS or PC algorithm, but
added by Meek, 1995.)

Assuming the oracle of conditional independence is
perfectly reliable (which we will do throughout this
section), the SGS algorithm is correct under the Causal
Markov and Faithfulness assumptions, in the sense that
its output is the pattern that represents the Markov
equivalence class containing the true causal DAG
(Spirtes, Glymour and Scheines, 1993, page 82; Meek,
1995).

The correctness of SGS follows from the following
three properties of d-separation (Spirtes, Glymour and
Scheines, 1993):

1. X is adjacent to Y in DAG G if and only if X is
not d-separated from Y conditional on any subset of
the other variables in G.

2. If 〈X,Y,Z〉 is an unshielded collider in DAG G,
then X is not d-separated from Z conditional on any
subset of the other variables in G that contains Y.

3. If 〈X,Y,Z〉 is an unshielded noncollider in DAG
G, then X is not d-separated from Z conditional on any
subset of the other variables in G that does not con-
tain Y.

We shall not reproduce the full proof here, but a
few points are worth stressing. First, S2 is the step
of inferring adjacencies and nonadjacencies. The in-
ferred adjacencies, represented by the remaining edges
in the graph resulting from S2, are correct because
of the Causal Markov assumption alone: every DAG
Markov to the given oracle must contain at least these
adjacencies. On the other hand, the inferred nonadja-
cencies (via removal of edges) are correct because of
the Causal Faithfulness assumption, or, more precisely,
because of the following consequence of the Causal
Faithfulness assumption, which we, following Ramsey,
Zhang and Spirtes (2006), will refer to as Adjacency-
Faithfulness.

Adjacency-Faithfulness assumption. Given a set of
variables V whose true causal DAG is G, if two vari-
ables X, Y are adjacent in G, then they are not indepen-
dent conditional on any subset of V \ {X,Y }.

Under the Adjacency-Faithfulness assumption, any
edge removed in S2 is correctly removed, because
any DAG with the adjacency violates the Adjacency-
Faithfulness assumption.

Second, the key step of inferring orientations is step
S3, in which unshielded colliders and noncolliders are

inferred. Given that the adjacencies and nonadjacen-
cies are all correct, the clauses (i) and (ii) in step S3,
as formulated here, are justified by the Causal Markov
assumption alone. Take clause (i), for example. If the
unshielded triple 〈X,Y,Z〉 is not a collider in the true
causal DAG, then the Causal Markov assumption en-
tails that X and Z are independent conditional on some
set that contains Y. That is why clause (i) is sound.
A similar argument shows that clause (ii) is sound.
This does not mean, however, that the Causal Faith-
fulness assumption does not play any role in justifying
S3. Notice that the antecedent of (i) and that of (ii) do
not exhaust the logical possibilities. They leave out the
possibility that X and Z are independent conditional on
some set that contains Y and independent conditional
on some set that does not contain Y. This omission
is justified by the Causal Faithfulness assumption, or,
more precisely, by the following consequence of the
Causal Faithfulness assumption (Ramsey, Zhang and
Spirtes, 2006):

Orientation-Faithfulness assumption. Given a set of
variables V whose true causal DAG is G, let 〈X,Y,Z〉
be any unshielded triple in G:

1. If X → Y ← Z, then X and Z are not independent
conditional on any subset of V\{X,Z} that contains Y;

2. Otherwise, X and Z are not independent condi-
tional on any subset of V \ {X,Z} that does not con-
tain Y.

Obviously, the possibility left out by S3 is indeed
ruled out by the Orientation-Faithfulness assumption.

The Orientation-Faithfulness assumption, if true,
justifies a much simpler and more efficient step than
S3: for every unshielded triple 〈X,Y,Z〉, we need
check only the set found in S2 that renders X and Z
independent; the triple is a collider if and only if the
set does not contain Y. This simplification is used in
the PC algorithm, a well-known, more computation-
ally efficient rendition of the SGS procedure (Spirtes,
Glymour and Scheines, 1993, pages 84–85). Moreover,
the Adjacency-Faithfulness condition also justifies a
couple of measures to improve the efficiency of S2,
used by the PC algorithm. Here we are concerned with
showing how the basic SGS procedure may be modified
to be correct under increasingly weaker assumptions of
faithfulness, so we will not go into the details of the
optimization measures in the PC algorithm. Whether
these or similar measures are available to the modified
algorithms we introduce below is an important ques-
tion to be addressed in future work.
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Let us start with the modification proposed by
Ramsey, Zhang and Spirtes (2006), who observed
that assuming the Causal Markov and Adjacency-
Faithfulness assumptions are true, any failure of the
Orientation-Faithfulness assumption is detectable, in
the sense that the probability distribution in question
is not both Markov and Faithful to any DAG (Zhang
and Spirtes, 2008). In our formulation of the SGS al-
gorithm, it is easy to see how failures of Orientation-
Faithfulness can be detected. As already mentioned,
the role of the Orientation-Faithfulness assumption in
justifying the SGS algorithm is to guarantee that at
the step S3, either the antecedent of (i) or that of (ii)
will obtain. Therefore, if it turns out that for some
unshielded triple neither antecedent is satisfied, the
Orientation-Faithfulness assumption is detected to be
false for that triple.

This suggests a simple modification to S3 in the SGS
algorithm.

S3*. Let K be the undirected graph resulting from
S2. For each unshielded triple 〈X,Y,Z〉,

(i) If X and Z are not independent conditional on
any subset of V \ {X,Z} that contains Y, then orient
the triple as a collider: X → Y ← Z.

(ii) If X and Z are not independent conditional on
any subset of V \ {X,Z} that does not contain Y, then
mark the triple as a noncollider.

(iii) Otherwise, mark the triple as ambiguous (or un-
faithful).

Ramsey, Zhang and Spirtes (2006) applied essen-
tially this modification to the PC algorithm and called
the resulting algorithm the Conservative PC (CPC) al-
gorithm. (Their results show that the main optimiza-
tion measures used in the PC algorithm still apply
to this generalization of SGS because the Adjacency-
Faithfulness condition is still assumed.) We will thus
call the algorithm that results from replacing S3 with
S3* the Conservative SGS (CSGS) algorithm.

It is straightforward to prove that the CSGS algo-
rithm is correct under the Causal Markov and the
Adjacency-Faithfulness assumptions alone, in the
sense that if the Causal Markov and Adjacency-
Faithfulness assumptions are true and if the oracle of
conditional independence is perfectly reliable, then ev-
ery adjacency, nonadjacency, orientation and marked
noncollider in the output of the CSGS are correct. As
pointed out in Ramsey, Zhang and Spirtes (2006), the
output of the CSGS can be understood as an extended
pattern that represents a set of patterns. For example,
a sample output used in Ramsey, Zhang and Spirtes

FIG. 1. (a) is a sample output of the CSGS algorithm. The am-
biguous (or unfaithful) unshielded triples are marked by straight
lines crossing the two edges. There is no explicit mark for noncol-
liders, with the understanding that all and only unshielded triples
that are not oriented as colliders or marked as ambiguous are (im-
plicitly) marked noncolliders. (b)–(d) are the three patterns repre-
sented by (a).

(2006) is given in Figure 1(a). There are two am-
biguous unshielded triples in the output: 〈Y,X,Z〉 and
〈Z,U,Y 〉, which are marked by crossing straight lines.
Note that there is no explicit mark for noncolliders,
with the understanding that all and only unshielded
triples that are not oriented as colliders or marked as
ambiguous are (implicitly) marked noncolliders. Fig-
ure 1(a) represents a set of three patterns, depicted in
Figure 1(b)–(d). Each pattern results from some dis-
ambiguation of the ambiguous triples in Figure 1(a).
The pattern in Figure 1(b), for example, results from
taking the triple 〈Y,X,Z〉 as a noncollider and taking
the triple 〈Z,U,Y 〉 as a collider. Note that not every
disambiguation results in a pattern. Taking both am-
biguous triples as noncolliders would force a directed
cycle: Z → U → Y → X → Z, and so would not lead
to a pattern. That is why there are only three instead of
four patterns in the set represented by Figure 1(a).

It is easy to see that when the Orientation-
Faithfulness assumption happens to hold, the CSGS
output will be a single pattern (i.e., without ambigu-
ous triples), which is the same as the SGS output. In
other words, CSGS is as informative as SGS when the
stronger assumption needed for the output of the latter
to be guaranteed to be correct happens to be true.

The Adjacency-Faithfulness assumption may be
further weakened. In an earlier paper (Zhang and
Spirtes, 2008), we showed that some violations of
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the Adjacency-Faithfulness assumption are also de-
tectable, and we specified some conditions weaker than
the Adjacency-Faithfulness assumption under which
any violation of Faithfulness (and so any violation
of Adjacency-Faithfulness) is detectable. One of the
weaker conditions is known as the Causal Minimal-
ity assumption (Spirtes, Glymour and Scheines, 1993,
page 31), which states that the true causal DAG is a
minimal DAG that satisfies the Markov condition with
the true probability distribution, minimal in the sense
that no proper subgraph satisfies the Markov condi-
tion. This condition is a consequence of the Adjacency-
Faithfulness assumption. If the Adjacency-Faithfulness
assumption is true, then no edge can be taken away
from the true causal DAG without violating the Markov
condition.

The other weaker condition is named Triangle-
Faithfulness:

Triangle-Faithfulness assumption. Suppose the true
causal DAG of V is G. Let X, Y, Z be any three variables
that form a triangle in G (i.e., each pair of vertices is
adjacent):

1. If Y is a noncollider on the path 〈X,Y,Z〉, then X
and Z are not independent conditional on any subset of
V \ {X,Z} that does not contain Y;

2. If Y is a collider on the path 〈X,Y,Z〉, then X
and Z are not independent conditional on any subset of
V \ {X,Z} that contains Y.

Clearly, the Adjacency-Faithfulness assumption en-
tails the Triangle-Faithfulness assumption, and the lat-
ter, intuitively, is much weaker. Our result in Zhang and
Spirtes (2008) is that given the Causal Markov, Mini-
mality and Triangle-Faithfulness assumptions, any vi-
olation of faithfulness is detectable. But we did not
propose any algorithm that is provably correct under
the Markov, Minimality and Triangle-Faithfulness as-
sumptions.

What need we modify in the SGS algorithm if
all we can assume are the Markov, Minimality and
Triangle-Faithfulness assumptions? In the step S2, the
inferred adjacencies are still correct, which, as already
mentioned, is guaranteed by the Causal Markov as-
sumption alone. The inferred nonadjacencies, however,
are not necessarily correct, because the Adjacency-
Faithfulness assumption might fail. So the first mod-
ification we need make is to acknowledge that the non-
adjacencies resulting from S2 are only “apparent” but
not “definite”: there might still be an edge between two
variables even though the edge between them was re-
moved in S2 because a screen-off set was found.

Since we do not assume the Orientation-Faithfulness
assumption, obviously we need at least modify S3 into
S3*. A further worry is that the unshielded triples re-
sulting from S2 are only “apparent”: they might be
shielded in the true causal DAG but appear to be un-
shielded due to a failure of Adjacency-Faithfulness.
Fortunately, this possibility does not affect the sound-
ness of S3*. Take clause (i) for example. For an appar-
ently unshielded triple 〈X,Y,Z〉, either X and Z are re-
ally nonadjacent in the true DAG or they are adjacent.
In the former case, clause (i) is sound by the Markov
assumption. In the latter case, clause (i) is still sound
by the Triangle-Faithfulness assumption. A similar ar-
gument shows that clause (ii) is also sound. So S3* is
still sound. Moreover, clause (iii) can now play a big-
ger role than simply conceding ignorance or ambigu-
ity. If the antecedent of clause (iii) is satisfied, then one
can infer that X and Z are really nonadjacent, for oth-
erwise the Triangle-Faithfulness assumption would be
violated no matter whether 〈X,Y,Z〉 is a collider or
not.

The soundness of S4 is obviously not affected.
Therefore, if we only assume the Causal Markov,
Minimality and Triangle-Faithfulness assumptions, the
CSGS algorithm is still correct if we take the nonadja-
cencies in its output as uninformative (except for those
warranted by S3*).

The question now is whether we can somehow
test the Adjacency-Faithfulness assumption in the
procedure and confirm the nonadjacencies when the
test returns affirmative. The following lemma gives
a sufficient condition for verifying the Adjacency-
Faithfulness assumption and hence the nonadjacencies
in the CSGS output. (Recall that the CSGS output in
general represents a set of patterns, and each pattern
represents a set of Markov equivalent DAGs.) A pat-
tern O is Markov to an oracle when for every DAG
represented by O, each vertex is independent of the set
of variables that are neither descendants nor parents in
the DAG conditional on the parents in the DAG accord-
ing to the oracle.

LEMMA 1. Suppose the Causal Markov, Minimal-
ity and Triangle-Faithfulness assumptions are true,
and E is the output of CSGS given a perfectly reli-
able oracle of conditional independence. If every pat-
tern in the set represented by E is Markov to the oracle,
then the true causal DAG has exactly those adjacencies
present in E.

PROOF. As we already pointed out, the true causal
DAG, GT , must have at least the adjacencies in E (in
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order to satisfy the Causal Markov assumption), and
must have the colliders and noncolliders in E (in or-
der to satisfy the Causal Markov and the Triangle-
Faithfulness assumptions). Now suppose every pattern
in the set represented by E is Markov to the oracle, and
suppose, for the sake of contradiction, that GT has still
more adjacencies. Let G be the proper subgraph of GT

with just the adjacencies in E. Then every unshielded
collider and every unshielded noncollider in E are also
present in G, and other unshielded triples in G, if any,
are ambiguous in E. Thus, the pattern that represents
the Markov equivalence class of G is in the set repre-
sented by E. It follows that G is Markov to the oracle,
which shows that GT is not a minimal graph that is
Markov to the oracle. This contradicts the Causal Min-
imality assumption. Therefore, GT has exactly the ad-
jacencies present in E. �

So we have the following Very Conservative SGS
(VCSGS):

VCSGS algorithm.

V1. Form the complete undirected graph H on the
given set of variables V.

V2. For each pair of variables X and Y in V, search
for a subset S of V \ {X,Y } such that X and Y are
independent conditional on S. Remove the edge
between X and Y in H and mark the pair 〈X,Y 〉 as
“apparently nonadjacent,” if and only if such a set
is found.

V3. Let K be the graph resulting from V2. For each
apparently unshielded triple 〈X,Y,Z〉 (i.e., X and
Y are adjacent, Y and Z are adjacent, but X and Z
are apparently nonadjacent),

(i) If X and Z are not independent conditional on
any subset of V\ {X,Z} that contains Y, then
orient the triple as a collider: X → Y ← Z.

(ii) If X and Z are not independent conditional on
any subset of V\{X,Z} that does not contain
Y, then mark the triple as a noncollider.

(iii) Otherwise, mark the triple as ambiguous (or
unfaithful), and mark the pair 〈X,Z〉 as “def-
initely nonadjacent.”

V4. Execute the same orientation rules as in S4, until
none of them applies.

V5. Let M be the graph resulting from V4. For
each consistent disambiguation of the ambiguous
triples in M (i.e., each disambiguation that leads
to a pattern), test whether the resulting pattern sat-
isfies the Markov condition. If every pattern does,
then mark all the “apparently nonadjacent” pairs
as “definitely nonadjacent.”

[An obvious way to test the Markov condition in V5
on a given pattern is to extend the pattern to a DAG
and test the local Markov condition. That is, we need
to test, for each variable X, whether X is independent
of the variables that are neither its descendants nor its
parents conditional on its parents. In linear Gaussian
models, this can be done by regressing X on its non-
descendants and testing whether the regression coeffi-
cients are zero for its nonparents. More generally, as-
suming composition, we need only run a conditional
independence test for each nonadjacent pair, and, thus,
in the worst case the number of conditional indepen-
dence tests is O(n2), where n is the number of ver-
tices. The number of patterns to be tested in V5 is
O(2a), where a is the number of ambiguous unshielded
triples.]

As we already explained, steps V1–V4 are sound
under the Causal Markov, Minimality and Triangle-
Faithfulness assumptions. Lemma 1 shows that V5 is
also sound. Hence, the VCSGS algorithm is correct
under the Causal Markov, Minimality and Triangle-
Faithfulness assumptions, in the sense that given a
perfectly reliable oracle of conditional independence,
all the adjacencies, definite nonadjacencies, directed
edges and marked noncolliders are correct. Moreover,
when the Causal Faithfulness assumption happens to
hold, the CSGS output will be a single pattern and this
single pattern will satisfy the Markov condition; hence,
the VCSGS algorithm will return a single pattern with
full information about nonadjacencies. Therefore, VC-
SGS is also as informative as SGS when the Causal
Faithfulness assumption happens to be true.

One might think (or hope) that the VCSGS al-
gorithm is as informative as the CSGS algorithm
when Adjacency-Faithfulness (but not Orientation-
Faithfulness) happens to hold. Unfortunately this is not
true in general because the sufficient condition given in
Lemma 1 (and checked in V5) is not necessary for the
Adjacency-Faithfulness assumption.

To illustrate, consider the following example. Sup-
pose the true causal DAG is the one given in Fig-
ure 2(a). Suppose the causal Markov assumption and
the Adjacency-Faithfulness assumption are satisfied.
And suppose that, besides the conditional indepen-
dence relations entailed by the graph, the true distribu-
tion features one and only one extra conditional inde-
pendence: I (X,Z|Y), due, for example, to some sort of
balancing-out of the path 〈X,Y,Z〉 (active conditional
on {Y}) and the path 〈X,W,Z〉 (active conditional
on {Y}). This violates the Orientation-Faithfulness as-
sumption. The CSGS output will thus be the graph in
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FIG. 2. An example in which the test in step V5 of VCSGS does
not confirm the nonadjacencies even though the nonadjacencies are
correct.

Figure 2(b), in which both the triple 〈X,Y,Z〉 and the
triple 〈X,W,Z〉 are ambiguous. This output represents
a set of three patterns, as shown in Figure 2(c)–(e).
(Again, the two ambiguous triples cannot be noncol-
liders at the same time.) However, only the patterns in
Figure 2(c) and 2(d) satisfy the Markov condition. The
pattern in Figure 2(e) violates the Markov condition
because it entails that I (X,Z|∅), which is not true.

For this example, then, the VCSGS will not return
the full information of nonadjacencies, even though the
Adjacency-Faithfulness assumption is true.

In light of this example, it is natural to consider the
following variant of step V5 in VCSGS:

V5*. Let M be the graph resulting from V4. If some
disambiguation of the ambiguous triples in M leads to
a pattern that satisfies the Markov condition, then mark
all remaining “apparently nonadjacent” pairs as “defi-
nitely nonadjacent.”

We suspect that V5* is also sound under the Causal
Markov, Minimality and Triangle-Faithfulness
assumptions, but we have not found a proof. In other
words, we conjecture that the sufficient condition pre-
sented in Lemma 1 can be weakened to that some pat-
tern in the set represented by the CSGS output satis-
fies the Markov condition. (This conjecture is a conse-
quence of the following plausible conjecture: Suppose
a DAG G and a probability distribution P satisfy the
Markov, Minimality and Triangle-Faithfulness condi-
tions. Then no DAG with strictly fewer adjacencies
than in G is Markov to P. We thank an anonymous
referee for making the point and the conjecture.) Note
that if the Adjacency-Faithfulness assumption happens

to hold, then at least one pattern (i.e., the pattern rep-
resenting the true causal DAG) satisfies the Markov
condition. Therefore, if our conjecture is true, we can
replace V5 with V5* in the VCSGS algorithm, and the
condition tested in V5* is both sufficient and neces-
sary for Adjacency-Faithfulness. The resulting algo-
rithm will then be as informative as the CSGS algo-
rithm whenever the Adjacency-Faithfulness assump-
tion happens to hold, and as informative as the SGS
algorithm whenever both the Adjacency-Faithfulness
assumption and the Orientation-Faithfulness assump-
tion happen to hold.

It is worth noting that if we adopt a natural, inter-
ventionist conception of causation (e.g., Woodward,
2003), the Causal Minimality assumption is guaran-
teed to be true if the probability distribution is positive
(Zhang and Spirtes, 2011). Since positivity is a prop-
erty of the probability distribution alone, we may also
try to incorporate a test of positivity at the beginning
of VCSGS, and proceed only if the test returns affirma-
tive. We then need not assume the Causal Minimality
assumption in order to justify the procedure.

4. WEAKENING THE STRONG CAUSAL
FAITHFULNESS ASSUMPTION

In this section we consider sample versions of the
CSGS and VCSGS algorithms, assuming Gaussianity
and linearity, and prove some positive results on uni-
form consistency, under a generalization and strength-
ening of the Triangle-Faithfulness assumption, which
we call the k-Triangle-Faithfulness assumption.

If a model M does not satisfy the Causal Faithful-
ness assumption, then M contains a zero partial cor-
relation ρM(X,Y |W) even though the Causal Markov
assumption does not entail that ρM(X,Y |W) is zero. If
ρM(X,Y |W) = 0 but is not entailed to be zero for all
values of the parameters, the parameters of the model
satisfy an algebraic constraint. A set of parameters
that satisfies such an algebraic constraint is a “surface
of unfaithfulness” in the parameter space that is of a
lower dimension than the full parameter space. Lying
on such a surface of unfaithfulness is of Lebesgue mea-
sure zero. For a Bayesian with a prior probability over
the parameter space that is absolutely continuous with
Lebesgue measure, the prior probability of unfaithful-
ness is zero.

However, in practice, the SGS (or PC) algorithm
does not have access to the population correlation coef-
ficients. Instead it performs statistical tests of whether
a partial correlation is zero. If |ρM(X,Y |W)| is small
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enough, then with high probability a statistical test of
whether ρM(X,Y |W) equals zero will not reject the
null hypothesis. If ρM(X,Y |W) = 0 fails to be re-
jected, this can lead to some edges that occur in the
true causal DAG not appearing in the output of SGS
and to errors in the orientation of edges in the output of
SGS. (Such errors can also lead to the output of the SGS
algorithm to fail to be a pattern, either because it con-
tains double-headed edges or undirected nonchordal
cycles.) Robins et al. (2003) showed that even if it
is assumed that there are no unfaithful models, there
are always models so “close to unfaithful” [i.e., with
|ρM(X,Y |W)| nonzero but small enough that a statis-
tical test will probably fail to reject the null hypothesis]
that there is no algorithm that is a uniformly consistent
estimator of the pattern of a causal model.

Kalisch and Bühlmann (2007) showed that under
a strengthened version of the Causal Faithfulness as-
sumption, the PC algorithm is a uniformly consistent
estimator of the pattern that represents the true causal
DAG. Let n be the sample size. Their strengthened set
of assumptions were as follows:

(A1) The distribution Pn is multivariate Gaussian
and faithful to the DAG Gn for all n.

(A2) The dimension pn = O(na) for some 0 ≤ a <

∞.
(A3) The maximal number of neighbors in the DAG

Gn is denoted by

qn = max
1≤j≤pn

∣∣adj(G, j)
∣∣

with qn = O
(
n1−b

)
for some 0 < b ≤ 1.

(A4) The partial correlations between X(i) and
X(j) given {X(r); r ∈ k} for some set k ⊆ {1, . . . , pn}\
{i, j} are denoted by ρn;i,j |k. Their absolute values are
bounded from below and above:

inf
{|ρi,j |k|; i, j,k with ρi,j |k �= 0

} ≥ cn,

c−1
n = O

(
nd)

,

for some 0 < d < b/2,

sup
n;i,j,k

|ρi,j |k| ≤ M < 1,

where 0 < b ≤ 1 is as in (A3).

We will refer to the assumption that all nonzero par-
tial correlations are bounded below in absolute value
by a number greater than zero [as in the first part of
(A4)] as the Strong Causal Faithfulness assumption.
Uhler et al. (2013) provide some reason to believe

that unless cn is quite small, the probability of vio-
lating Strong Causal Faithfulness assumption is high,
especially when the number of variables is large. [This
problem with assumption (A4) is somewhat mitigated
by the fact that the size of cn can decrease with increas-
ing sample size. But see Lin et al. (2012), for an inter-
esting analysis of the asymptotics when cn approaches
zero.]

It is difficult to see how a uniformly consistent es-
timator of a causal pattern would be possible without
assuming something like the Strong Causal Faithful-
ness assumption. However, what we will show is that
it is possible to weaken the Strong Causal Faithfulness
assumption in several ways as long as the standard of
success is not finding a uniformly consistent estima-
tor of the causal pattern, but is instead finding a uni-
formly consistent estimator of (some of) the structural
coefficients in a pattern. The latter standard is compat-
ible with missing some edges that are in the true causal
graph, as long as the edges that have not been included
in the output have sufficiently small structural coeffi-
cients.

We propose to replace the faithfulness assumption in
(A1), and the Strong Faithfulness assumption with the
following assumption, where eM(X — Z), as we ex-
plained in Section 2, denotes the structural coefficient
associated with the edge between X and Z.

k-Triangle-Faithfulness assumption. Given a set of
variables V, suppose the true causal model over V is
M = 〈P,G〉, where P is a Gaussian distribution over
V, and G is a DAG with vertices V. For any three vari-
ables X, Y, Z that form a triangle in G (i.e., each pair of
vertices is adjacent),

1. If Y is a noncollider on the path 〈X,Y,Z〉, then
|ρM(X,Z|W)| ≥ k × |eM(X — Z)| for all W ⊆ V that
do not contain Y; and

2. If Y is a collider on the path 〈X,Y,Z〉, then
|ρM(X,Z|W)| ≥ k × |eM(X — Z)| for all W ⊆ V that
do contain Y.

As k approaches 0, the k-Triangle-Faithfulness as-
sumption approaches the Triangle-Faithfulness as-
sumption. For (small) k > 0, the k-Triangle-
Faithfulness assumption prohibits not only exact can-
cellations of active paths in a triangle, but also almost
cancellations.

The k-Triangle-Faithfulness assumption is a weak-
ening of the Strong Causal Faithfulness assumption in
two ways. First, Triangle-Faithfulness is significantly
weaker than Faithfulness. Second, it does not entail a
lower limit on the size of nonzero partial correlations; it
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only puts a limit on the size of a nonzero partial corre-
lation in relation to the size of the structural coefficient
of an edge that occurs in a triangle.

The Strong Causal Faithfulness assumption entails
that there are no very small structural coefficients
(which, if present, entail the existence of some par-
tial correlation that is very small). In contrast, the k-
Triangle-Faithfulness assumption does not entail that
there are no nonzero but very small structural coeffi-
cients. However, there is a price to be paid for weak-
ening the Strong Causal Faithfulness assumption; the
estimator we propose is both computationally more
intensive than the PC algorithm used in Kalisch and
Bühlmann (2007) and also requires testing partial cor-
relations conditional on larger sets of variables, which
means some of the tests performed have lower power
than the tests performed in the PC algorithm.

Our results also depend on the following assump-
tions. First, we assume a fixed upper bound to the size
of the set of variables that does not change as sample
size increases. We have no reason to think that there
are not analogous results that would hold even if, as in
Kalisch and Bühlmann (2007), the number of variables
and the degree of the graph increased with the sample
size; however, we have not proved any such results yet.
We also make the assumption of nonvanishing variance
(NVV) and the assumption of upper bound for partial
correlations (UBC):

Assumption NVV(J).

inf
Xi∈V

varM
(
Xi |V \ {Xi}) ≥ J

for some (small) J > 0.

Assumption UBC(C).

sup
Xi,Xj∈V,W⊆V\{Xi,Xj }

∣∣ρM(Xi,Xj |W)
∣∣ ≤ C

for some C < 1.

The assumption NVV is a slight strengthening of the
positivity requirement, which, as we noted in the pre-
vious section, is needed to guarantee the Causal Min-
imality assumption. Uniform consistency requires that
the distributions be bounded away from nonpositivity.

The assumption UBC [cf. the second part of assump-
tion (A4)] is used to guarantee that sample partial cor-
relations are uniformly consistent estimators of popula-
tion partial correlations (Kalisch and Bühlmann, 2007).

We now proceed to establish two positive results
about uniform consistency. In Section 4.1 we show that
the Conservative SGS (CSGS) algorithm, using uni-
formly consistent tests of partial correlations, is uni-
formly consistent in inferring certain features of the

causal structure. In Section 4.2 we show that the Very
Conservative SGS (VCSGS) algorithm, when com-
bined with a uniformly consistent procedure for es-
timating structural coefficients, provides a uniformly
consistent estimator of structural coefficients (that re-
turns “Unknown” in some, but not all cases).

4.1 Uniform Consistency in the Inference of
Structure

Recall that the CSGS algorithm, given a perfect or-
acle of conditional independence, is correct under the
Causal Markov, Minimality and Triangle-Faithfulness
assumptions, in the sense that the adjacencies, orien-
tations and marked noncolliders in the output are all
correct. In Gaussian models, we can implement the or-
acle with tests of zero partial correlations. A test ϕ of
H0 :ρ = 0 versus H1 :ρ �= 0 is a family of functions:
ϕ1, . . . , ϕn, . . . , one for each sample size, that takes an
i.i.d. sample Vn from the joint distribution over V and
returns 0 (acceptance of H0) or 1 (rejection of H0).
Such a test is uniformly consistent with respect to a set
of distributions � if and only if

1. limn→∞supP∈�∧ρ(P )=0P
n(ϕn(Vn) = 1) = 0,

and
2. for every δ > 0,

lim
n→∞ sup

P∈�∧|ρ(P )|≥δ

P n(
ϕn(Vn) = 0

) = 0.

For simplicity, we assume the variables in V are
standardized. Under the assumption UBC, there are
uniformly consistent tests of partial correlations based
on sample partial correlations, such as Fisher’s z test
(Robins et al., 2003; Kalisch and Bühlmann, 2007).
We consider a sample version of the CSGS algorithm
in which the oracle is replaced by uniformly consistent
tests of zero partial correlations in the adjacency step
S2. In the orientation phase, the step S3* is refined as
follows, based on a user chosen parameter L.

S3* (sample version). Let K be the undirected graph
resulting from the adjacency phase. For each un-
shielded triple 〈X,Y,Z〉,

1. If there is a set W not containing Y such that the
test of ρ(X,Z|W) = 0 returns 0 (i.e., accepts the hy-
pothesis), and for every set U that contains Y, the test
of |ρ(X,Z|U)| = 0 returns 1 (i.e., rejects the hypoth-
esis), and the test of |ρ(X,Z|U) − ρ(X,Z|W)| ≥ L

returns 0 (i.e., accepts the hypothesis), then orient the
triple as a collider: X → Y ← Z.

2. If there is a set W containing Y such that the test
of ρ(X,Z|W) = 0 returns 0 (i.e., accepts the hypothe-
sis), and for every set U that does not contain Y, the test
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of |ρ(X,Z|U)| = 0 returns 1 (i.e., rejects the hypoth-
esis), and the test of |ρ(X,Z|U) − ρ(X,Z|W)| ≥ L

returns 0 (i.e., accepts the hypothesis), then mark the
triple as a noncollider.

3. Otherwise, mark the triple as ambiguous.

Larger values of L return “Unknown” more often
than smaller values of L, but reduce the probability of
an error in orientation at a given sample size.

Step S4 remains the same as in the population ver-
sion.

Given any causal model M = 〈P,G〉 over V, let
C(L,n,M) denote the (random) output of the CSGS
algorithm with parameter L, given an i.i.d. sample of
size n from the distribution PM . Say that C(L,n,M)

errs if it contains (i) an adjacency not in GM , or (ii) a
marked noncollider not in GM , or (iii) an orientation
not in GM .1

Let ψk,J,C be the set of causal models over V that
respect the k-Triangle-Faithfulness assumption and the
assumptions of NVV(J) and UBC(C). We shall prove
that given the causal sufficiency of the measured vari-
ables V and the causal Markov assumption,

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
C(L,n,M) errs

) = 0.

In other words, given the causal sufficiency of V,
the Causal Markov, k-Triangle-Faithfulness, NVV(J)
and UBC(C) assumptions, the CSGS algorithm is uni-
formly consistent in that the probability of it making a
mistake uniformly converges to zero in the large sam-
ple limit.

First of all, we prove a useful lemma:

LEMMA 2. Let M ∈ ψk,J,C . For any Xi and Xj

such that Xj is not an ancestor of Xi , if eM(Xi →
Xj) = bj,i , then

|bj,i |√
J

≥ ∣∣ρM

(
i, j |X[1, . . . , j − 1] \ {Xi})∣∣ ≥ |bj,i |

√
J ,

where X[1, . . . , j ] is an ancestral set that contains Xi

but does not contain any descendant of Xj .

PROOF. Let � be the correlation matrix for the set
of variables {X1, . . . ,Xj }, and R = �−1. Let B be the

1Note that at this stage we are taking non-adjacencies as unin-
formative, and not counting any missing edge as an error. So an
algorithm that always returns a structure with no edges is treated
as totally uninformative and hence trivially consistent, in the sense
of triviality defined in Robins et al. (2003). The CSGS algorithm is
obviously nontrivial in that it does not always return a completely
uninformative answer.

(lower-triangular) matrix of structural coefficients in M
restricted to {X1, . . . ,Xj }, and var(E) be the (diagonal)
covariance matrix for the error terms {ε1, . . . , εj }. Then

R = (I − B)T var(E)−1(I − B).

Note that

(I − B) =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0
−b2,1 1 · · · 0

... · · · · · · 0
−bj,1 · · · −bj,j−1 1

⎤
⎥⎥⎥⎥⎦ var(E)−1

=

⎡
⎢⎢⎢⎢⎣

1/ε1 0 · · · 0
0 1/ε2 · · · 0
... · · · · · · 0
0 · · · 0 1/εj

⎤
⎥⎥⎥⎥⎦ ,

where the b’s are the corresponding structural coef-
ficients in M, and the ε’s are the variances of the
corresponding error terms. Thus, R[j, j ] = 1/εj , and
R[i, j ] = −bj,i/εj . So we have (Whittaker, 1990)

ρM

(
Xi,Xj |X[1, . . . , j − 1] \ {Xi})

= − R[i, j ]
(R[i, i] · R[j, j ])1/2 = bj,i

R[i, i]1/2ε
1/2
j

.

Since R[i, i]−1 is the variance of Xi conditional on all
of the other variables in {X1, . . . ,Xj }, which is a sub-
set of V \ {Xi}, R[i, i]−1 ≥ varM(Xi |V \ {Xi}) ≥ J .
Since the variables are standardized and the residual of
Xi regressed on the other variables is uncorrelated with
Xi , R[i, i]−1 ≤ 1. Similarly, 1 ≥ εj ≥ J . Thus,

|bj,i |√
J

≥ ∣∣ρM

(
i, j |X[1, . . . , j − 1] \ {Xi})∣∣ ≥ |bj,i |

√
J .

�
We now categorize the mistakes C(L,n,M) can

make into three kinds. C(L,n,M) errs in kind I if
C(L,n,M) has an adjacency that is not present in
GM ; C(L,n,M) errs in kind II if every adjacency
in C(L,n,M) is in GM but C(L,n,M) contains a
marked noncollider that is not in GM ; C(L,n,M) errs
in kind III if every adjacency in C(L,n,M) is in GM ,
every marked noncollider in C(L,n,M) is in GM , but
C(L,n,M) contains an orientation that is not in GM .
Obviously if C(L,n,M) errs, it errs in at least one of
the three kinds.

The following three lemmas show that for each kind,
the probability of C(L,n,M) erring in that kind uni-
formly converges to zero.
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LEMMA 3. Given causal sufficiency of the mea-
sured variables V, the Causal Markov, k-Triangle-
Faithfulness, NVV(J) and UBC(C) assumptions,

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
C(L,n,M) errs in kind I

)

= 0.

PROOF. C(L,n,M) has an adjacency not in GM

only if some test of zero partial correlation falsely re-
jects its null hypothesis. Since uniformly consistent
tests are used in CSGS, for every ε > 0, for every test
of zero partial correlation ti , there is a sample size Ni

such that for all n > Ni the supremum (over ψk,J,C) of
the probability of the test falsely rejecting its null hy-
pothesis is less than ε. Given V, there are only finitely
many possible tests of zero partial correlations. Thus,
for every ε > 0, there is a sample size N such that for all
n > N , the supremum (over ψk,J,C) of the probability
of any of the tests falsely rejecting its null hypothesis
is less than ε. The lemma then follows. �

LEMMA 4. Given causal sufficiency of the mea-
sured variables V, the Causal Markov, k-Triangle-
Faithfulness, and NVV(J) and UBC(C) assumptions,

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
C(L,n,M) errs in kind II

) = 0.

PROOF. For any M ∈ ψk,J,C , if C(L,n,M) errs
in kind II, then C(L,n,M) contains a marked non-
collider, say, 〈X,Y,Z〉 which is not in GM , but every
adjacency in C(L,n,M) is also in GM , including the
adjacency between X and Y, and that between Y and
Z. It follows that 〈X,Y,Z〉 is a collider in GM . Since
CSGS marks a triple as a noncollider only if the triple
is unshielded, X and Z are not adjacent in C(L,n,M).
Hence, errors of kind II can be further categorized into
two cases: (II.1) C(L,n,M) contains an unshielded
noncollider that is an unshielded collider in GM , and
(II.2) C(L,n,M) contains an unshielded noncollider
that is a shielded collider in GM . We show that the
probability of either case uniformly converges to zero.

For case (II.1) there is an unshielded collider 〈X,Y,

Z〉 in GM , so X and Z are independent conditional on
some set of variables W that does not contain Y, by
the Causal Markov assumption. Then the CSGS algo-
rithm (falsely) marks 〈X,Y,Z〉 as a noncollider only
if the test of ρM(X,Z|W) = 0 (falsely) rejects its null
hypothesis. Therefore, the CSGS algorithm gives rise
to case (II.1) only if some test of zero partial corre-
lation falsely rejects its null hypothesis. Then, by es-
sentially the same argument as the one used in proving

Lemma 3, the probability of case (II.1) uniformly con-
verges to zero as sample size increases.

For case (II.2), suppose for the sake of contra-
diction that the probability of CSGS making such a
mistake does not uniformly converge to zero. Then
there exists ε > 0, such that for every sample size n,
there is a model M(n) such that the probability of
C(L,n,M(n)) contains an unshielded noncollider that
is a shielded collider in M(n) is greater than ε.

Now, C(L,n,M(n)) contains an unshielded non-
collider that is a shielded collider in GM(n), say
〈XM(n), YM(n),ZM(n)〉, only if there is a set WM(n)

that contains Y such that the test of ρ(XM(n),ZM(n))|
WM(n)) = 0 returns 0 (i.e., accepts the hypothesis).

Without loss of generality, suppose ZM(n) is not
an ancestor of XM(n). Let UM(n) = AM(n) \ {XM(n),

ZM(n)}, where AM(n) is an ancestral set that con-
tains XM(n) and ZM(n) but no descendent of ZM(n).
Since YM(n) is a child of ZM(n) in GM(n), UM(n)

does not contain YM(n). Then, 〈XM(n), YM(n),ZM(n)〉
is marked as a noncollider in C(L,n,M(n)) only if
the test of |ρ(XM(n),ZM(n)|UM(n))−ρ(XM(n),ZM(n)|
WM(n))| ≥ L returns 0 (i.e., accepts the hypothesis).

The test of |ρ(XM(n),ZM(n)|UM(n)) − ρ(XM(n),

ZM(n)|WM(n))| ≥ L will be denoted by ϕn(L) and ϕn(0)

denotes the test of ρ(XM(n),ZM(n)|WM(n) = 0. By our
supposition, P n

M(n)(ϕn(0) = 0 and ϕn(L) = 0) > ε. It
follows that for all n,

(1) P n
M(n)(ϕn(0) = 0) > ε,

(2) P n
M(n)(ϕn(L) = 0) > ε.

(1) implies that there exists δn such that |ρ(XM(n),

ZM(n)|WM(n)| < δn, and δn → 0 as n → ∞ since the
tests are uniformly consistent. |eM(XM(n) —
ZM(n))| ≤ |ρ(XM(n),ZM(n)|WM(n))|/k < δn/k by k-
Triangle-Faithfulness. By Lemma 2, |ρ(XM(n),ZM(n)|
UM(n))| ≤ J−1/2|eM(XM(n) — ZM(n))| < δnJ

−1/2/k.
Thus, |ρ(XM(n),ZM(n)|UM(n)) − ρ(XM(n),ZM(n)|

WM(n))| < δn(1 + J−1/2/k) → 0 as n → ∞. There-
fore, it is not true that (2) holds for all n, which is a
contradiction. So the initial supposition is false. The
probability of case (II.2) uniformly converges to zero
as sample size increases. �

LEMMA 5. Given causal sufficiency of the mea-
sured variables V, the Causal Markov, k-Triangle-
Faithfulness, NVV(J) and UBC(C) assumptions,

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
C(L,n,M) errs in kind III

) = 0.
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PROOF. Given that all the adjacencies and marked
noncolliders in C(L,n,M) are correct, there is a mis-
taken orientation if and only if there is an unshielded
collider in C(L,n,M) which is not a collider in GM ,
for the other orientation rules in step S4 would not lead
to any mistaken orientation if all the unshielded collid-
ers were correct. Thus, C(L,n,M) errs in kind III only
if there is a noncollider 〈X,Y,Z〉 in GM that is marked
as an unshielded collider in C(L,n,M).

There are then two cases to consider: (III.1) C(L,n,

M) contains an unshielded collider that is an un-
shielded noncollider in GM , and (III.2) C(L,n,M)

contains an unshielded collider that is a shielded
noncollider in GM . The argument for case (III.1)
is extremely similar to that for (II.1) in the proof
of Lemma 4, and the argument for case (III.2) is
extremely similar to that for (II.2) in the proof of
Lemma 4. �

THEOREM 1. Given causal sufficiency of the mea-
sured variables V, the Causal Markov, k-Triangle-
Faithfulness, NVV(J) and UBC(C) assumptions, the
CSGS algorithm is uniformly consistent in the sense
that

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
C(L,n,M) errs

) = 0.

PROOF. It follows from Lemmas 3–5 [and the fact
that C(L,n,M) errs if and only if it errs in one of the
three kinds]. �
4.2 Uniform Consistency in the Inference of

Structural Coefficients

We now combine the structure search with estima-
tion of structural coefficients, when possible.

Edge Estimation algorithm.

E1. Run the CSGS algorithm on an i.i.d. sample of size
n from PM .

E2. Let the output from E1 be C(L,n,M). Apply step
V5 in the VCSGS algorithm (from Section 3), us-
ing tests of zero partial correlations.

E3. If the nonadjacencies in C(L,n,M) are not con-
firmed in E2, return “Unknown” for every pair of
variables.

E4. If the nonadjacencies in C(L,n,M) are confirmed
in E2, then

(i) For every nonadjacent pair 〈X,Y 〉, let the es-
timate ê(X — Y) be 0.

(ii) For each vertex Z such that all of the edges
containing Z are oriented in C(L,n,M), if Y

is a parent of Z in C(L,n,M), let the esti-
mate ê(Y — Z) be the sample regression co-
efficient of Y in the regression of Z on its par-
ents in C(L,n,M).

(iii) For any of the remaining edges, return “Un-
known.”

The basic idea is that we first run the Very Conser-
vative SGS (VCSGS) algorithm, which, recall, is the
CSGS algorithm (E1) plus a step of testing whether the
output satisfies the Markov condition (E2). If the test
does not pass, we do not estimate any edge; if the test
passes, we estimate those edges that are into a vertex
that is not part of any unoriented edge.

Let M1 be an output of the Edge Estimation algo-
rithm, and M2 be a causal model. We define the struc-
tural coefficient distance, d[M1,M2], between M1 and
M2 to be

d[M1,M2]
= max

i,j

∣∣êM1(Xi → Xj) − eM2(Xi → Xj)
∣∣,

where by convention |êM1(Xi → Xj) − eM2(Xi →
Xj)| = 0 if êM1(Xi → Xj) = “Unknown.”

Intuitively, the structural coefficient distance be-
tween the output and the true causal model measures
the (largest) estimation error the Edge Estimation algo-
rithm makes. Our goal is to show that under the spec-
ified assumptions, the Edge Estimation algorithm is
uniformly consistent, in the sense that for every δ > 0,
the probability of the structural coefficient distance be-
tween the output and the true model being greater than
δ uniformly converges to zero.

Obviously, by placing no penalty on the uninfor-
mative answer of “Unknown,” there is a trivial algo-
rithm that is uniformly consistent, namely, the algo-
rithm that always returns “Unknown” for every struc-
tural coefficient. For this reason, Robins et al. (2003)
also requires any admissible algorithm to be nontrivial
in the sense that it returns an informative answer (in
the large sample limit) for some possible joint distri-
butions. The Edge Estimation algorithm is clearly non-
trivial in this sense. There is no guarantee that it will al-
ways output an informative answer for some structural
coefficient, and rightly so, because there are cases—
for example, when the true causal graph is a complete
one and there is no prior information about the causal
order—in which every structural coefficient is truly un-
derdetermined or unidentifiable. An interesting ques-
tion, however, is whether a given algorithm is maxi-
mally informative or complete in the sense that it re-
turns (in the large sample limit) “Unknown” only on
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those structural coefficients that are truly underdeter-
mined. The condition in question is of course much
stronger than Robins et al.’s condition of nontrivial-
ity. We suspect that the Edge Estimation algorithm is
not maximally informative in this sense. (We thank an
anonymous referee for raising this issue.)

THEOREM 2. Given causal sufficiency of the mea-
sured variables V, the Causal Markov, k-Triangle-
Faithfulness, NVV(J) and UBC(C) assumptions, the
Edge Estimation algorithm is uniformly consistent in
the sense that for every δ > 0

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
d
[
Ô(M),M

]
> δ

) = 0,

where Ô(M) is the output of the algorithm given an
i.i.d. sample from PM .

PROOF. Let O be the set of possible graphical out-
puts of the CSGS algorithm. Given V, there are only
finitely many graphs in O. So it suffices to show that
for each O ∈ O,

lim
n→∞ sup

M∈ψk,J,C

P n
M

(
d
[
Ô(M),M

]
> δ|

C(L,n,M) = O
)

· P n
M

(
C(L,n,M) = O

) = 0.

Given O, ψk,J,C can be partitioned into the following
three sets:

	1 = {M|All adjacencies, nonadjacencies and

orientations in O are true of M};
	2 = {M|O contains an adjacency or an

orientation not true of M};
	3 = {M|All adjacencies and orientations in O are

true of M, but some nonadjacencies are

not true of M}.
It suffices to show that for each 	i ,

lim
n→∞ sup

M∈ψi

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)

· P n
M

(
C(L,n,M) = O

) = 0.

Consider 	1 first. Given any M ∈ 	1, the zero es-
timates in Ô(M) are all correct (since all nonadja-
cencies are true). For each edge Y → Z that is esti-
mated, the true structural coefficient eM(Y → Z) is
simply rM(Y,Z,Parents(O,Z)), the population re-
gression coefficient for Y when Z is regressed on its

parents in O, because the set of Z’s parents in O is the
same as the set of Z’s parents in GM .

The sampling distribution of the estimate of an edge
X → Y in O is given by

r̂M
(
Y,Z,Parents(O,Z),n

)

∼ N
(
rM

(
Y,Z,Parents(O,Z)

)
,

σ 2
e

nvar(Y |Parents(O,Z) \ {Y })
)
,

where σ 2
e is the variance of the residual for Z when

regressed upon Parents(O,Z) in PM , and var(Y |
Parents(O,Z) \ {Y }) is the variance of Y conditional
on Parents(O,Z) \ Y in PM (Whittaker, 1990). The
numerator of the variance is bounded above by 1, since
the variance of each variable is 1, and the residual is
independent of the set of variables regressed on. The
denominator is bounded away from zero by assump-
tion NVV(J). Hence, sample regression coefficients
are uniformly consistent estimators of population re-
gression coefficients under our assumptions, and we
have

lim
n→∞ sup

M∈ψ1

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)

· P n
M

(
C(L,n,M) = O

)
≤ lim

n→∞ sup
M∈ψ1

P n
M

(
d
[
Ô(M),M

]
> δ|

C(L,n,M) = O
)

= 0.

For 	2, note that given any M ∈ 	2, the CSGS algo-
rithm errs if it outputs O. Thus, by Theorem 1,

lim
n→∞ sup

M∈ψ2

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)

· P n
M

(
C(L,n,M) = O

)
≤ lim

n→∞ sup
M∈ψ2

P n
M

(
C(L,n,M) = O

) = 0.

Now consider 	3. Let O(M) be the population ver-
sion of Ô(M), that is, all the sample regression co-
efficients in Ô(M) are replaced by the corresponding
population coefficients. Since sample regression coef-
ficients are uniformly consistent estimators of popula-
tion regression coefficients under our assumptions, and
there are only finitely many regression coefficients to
consider, for every ε > 0, there is a sample size N1,
such that for all n > N1, and all M ∈ 	3,

P n
M

(
d
[
Ô(M),O(M)

]
> δ/2|C(L,n,M) = O

)
< ε.
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For any M ∈ 	3, there are some edges in GM missing
in O. Let E(M) be the set of edges missing in O. Let M ′
be the same as M except that the structural coefficients
associated with the edges in E(M) are set to zero. Let
O(M ′) be the same as O(M) except that for each edge
with an identified coefficient, the coefficient in O(M ′)
is the relevant regression coefficient derived from P ′

M

[whereas that in O(M) is derived from PM ]. By the
setup of M ′, the identified edge coefficients in O(M ′)
are equal to the corresponding edge coefficients in M ′,
which are the same as the corresponding edge coeffi-
cients in M . Thus, the structural coefficient distance
between O(M ′) and M is simply

d
[
O

(
M ′),M] = max〈i,j 〉∈E(M)

∣∣eM(Xi → Xj)
∣∣.

For any edge Y → Z in O that has a different edge
coefficient in O(M) than that in O(M ′), the edge
coefficients are both derived from a regression of
Z on Parents(O,Z), but one is based on PM and
the other is based on PM ′ . The regression coefficient
r(Y,Z,Parents(O,Z)) is equal to the Y component of
the vector cov(Z,Parents(O,Z))var−1(Parents(O,

Z)) (Whittaker, 1990), which, given the structure GM ,
is a rational function of the structural coefficients in
M. Since M ∈ ψk,J,C , every submatrix of the covari-
ance matrix for PM is invertible, and so rM(Y,Z,

Parents(O,Z)) is defined. For M ′, rM ′(Y,Z,

Parents(O,Z)) = rM ′(Y,Z,A), where A is the small-
est ancestral set that contains Parents(O,Z) in GM .
var(A)−1 = (I − B)T var(E)−1(I − B), where B is the
submatrix of structural coefficients in M ′ for variables
in A, and var(E) is the diagonal covariance matrix of
error terms for variables in A, which is a submatrix
of �M . Since M ∈ ψk,J,C , the variance of every er-
ror term is bounded from below by J. Thus, var(A)−1

is defined and so is rM ′(Y,Z,Parents(O,Z)).
Therefore, rM(Y,Z,Parents(O,Z)) and rM ′(Y,Z,

Parents(O,Z)) are values of a rational function of the
structural coefficients.

A continuous function is uniformly continuous on a
closed, bounded interval anywhere that it is defined.
A rational function is continuous at every point of
its domain where its denominator is not zero, that
is, where the function value is defined. By Lemma 2
and assumption UBC(C), every structural coefficient
bj,i in M lies in the closed bounded interval from
−C/J 1/2 to C/J 1/2. Obviously the coefficients in M ′
still lie in this interval. Hence, given GM , the differ-
ence between rM ′(Y,Z,Parents(O,Z)) and rM(Y,Z,

Parents(O,Z)) can be arbitrarily small if the differ-
ences between the structural coefficients in M ′ and

those in M are sufficiently small. Given the set of vari-
ables V, there are only finitely many structures and
finitely many relevant regressions to consider. There-
fore, there is a γ ∈ (0, δ/4) such that for every M ∈
ψ3, d[O(M),O(M ′)] < δ/4 if

max〈i,j 〉∈E(M)

∣∣eM(Xi → Xj)
∣∣ < γ.

Consider then the partition of 	3 into

	3.1 =
{
M ∈ 	3

∣∣ max〈i,j 〉∈E(M)

∣∣eM(Xi → Xj)
∣∣ < γ

}

and

	3.2 =
{
M ∈ 	3

∣∣ max〈i,j 〉∈E(M)

∣∣eM(Xi → Xj)
∣∣ ≥ γ

}
.

It follows from the previous argument that for ev-
ery M ∈ 	3.1, d[O(M),M] ≤ d[O(M),O(M ′)] +
d[O(M ′),M] < δ/4+γ < δ/2. Then there is a sample
size N1, such that for all n > N1 and all M ∈ 	3.1,

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)
≤ P n

M

(
d
[
Ô(M),O(M)

]
> δ/2|C(L,n,M) = O

)
< ε.

For every M ∈ 	3.2, there is at least one edge, say,
X → Y missing from O such that |eM(X → Y)| ≥
γ . Then by Lemma 2, there is a set U such that
|ρ(X,Y |U)| ≥ γ J 1/2, but O entails that ρ(X,Y |U) =
0. Thus, the test of the Markov condition in step E2 is
passed only if the test of ρ(X,Y |U) = 0 returns 0 (i.e.,
accepts the null hypothesis). Note that if the test is not
passed, then every structural coefficient is “Unknown,”
and so by definition the structural coefficient distance
is zero. Therefore, the distance is greater than δ (and
so nonzero) only if the test of ρ(X,Y |U) = 0 returns 0
while |ρ(X,Y |U)| ≥ γ J 1/2. Since tests are uniformly
consistent, it follows that there is a sample size N2,
such that for all n > N2 and all M ∈ 	3.2,

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)
< ε.

Let N = max(N1,N2). Then for all n > N ,

sup
M∈ψ3

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)

· P n
M

(
C(L,n,M) = O

)
≤ sup

M∈ψ3

P n
M

(
d
[
Ô(M),M

]
> δ|C(L,n,M) = O

)

< ε. �
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5. CONCLUSION

We have shown that there is a pointwise consistent
estimator of causal patterns and a uniformly consis-
tent estimator of some of the structural coefficients in
causal patterns, even when the Causal Faithfulness as-
sumption and Strong Causal Faithfulness assumptions
are substantially weakened. The k-Triangle Faithful-
ness assumption is a restriction on many fewer partial
correlations than the Causal Faithfulness assumption
and the Strong Causal Faithfulness assumptions, and
does not entail that there are no edges with very small
but nonzero structural coefficients.

There are a number of open problems associated
with the Causal Faithfulness assumption:

1. Is it possible to speed up the Very Conservative
SGS algorithm to make it applicable to data sets with
large numbers of variables?

2. If unfaithfulness is detected, is it possible to re-
duce the number of structural coefficients where the
algorithm returns “Unknown?”

3. In practice, on realistic sample sizes, how does
the Very Conservative SGS algorithm perform?
[Ramsey, Zhang and Spirtes (2006), have already
shown that the Conservative PC algorithm is more ac-
curate and not significantly slower than the PC algo-
rithm].

4. Is the k-Triangle Faithfulness assumption un-
likely to hold for reasonable values of k and large num-
bers of variables?

5. Is there an assumption weaker than the k-Triangle
Faithfulness assumption for which there is a uniformly
consistent estimator for structural coefficients in a
causal pattern?

6. Are there analogous results that apply when the
number of variables and the maximum degree of a ver-
tex increases and the size of k decreases with increasing
sample size [as in the Kalisch and Bühlmann (2007),
results]?

7. Are there analogous results that apply when the
assumption of causal sufficiency is abandoned?

8. Are there analogous results that apply for other
families of distributions or for nonparametric tests of
conditional independence?
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