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Abstract. In clinical practice, physicians make a series of treatment deci-
sions over the course of a patient’s disease based on his/her baseline and
evolving characteristics. A dynamic treatment regime is a set of sequential
decision rules that operationalizes this process. Each rule corresponds to a
decision point and dictates the next treatment action based on the accrued in-
formation. Using existing data, a key goal is estimating the optimal regime,
that, if followed by the patient population, would yield the most favorable
outcome on average. O- and A-learning are two main approaches for this
purpose. We provide a detailed account of these methods, study their perfor-
mance, and illustrate them using data from a depression study.
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1. INTRODUCTION

An area of current interest is personalized medicine,
which involves making treatment decisions for an in-
dividual patient using all information available on the
patient, including genetic, physiologic, demographic
and other clinical variables, to achieve the “best” out-
come for the patient given this information. In treating
a patient with an ongoing disease or disorder, a clini-
cian makes a series of decisions based on the patient’s
evolving status. A dynamic treatment regime is a list
of sequential decision rules formalizing this process.
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Each rule corresponds to a key decision point in the dis-
ease/disorder progression and takes as input the infor-
mation on the patient to that point and outputs the treat-
ment that s/he should receive from among the avail-
able options. A key step toward personalized medicine
is thus finding the optimal dynamic treatment regime,
that which, if followed by the entire patient population,
would yield the most favorable outcome on average.
The statistical problem is to estimate the optimal
regime based on data from a clinical trial or ob-
servational study. Q-learning (Q denoting “quality,”
Watkins, 1989, Watkins and Dayan, 1992, Nahum-
Shani et al., 2010) and advantage learning (A-learning,
Murphy, 2003, Robins, 2004, Blatt, Murphy and Zhu,
2004) are two main approaches for this purpose and are
related to reinforcement learning methods for sequen-
tial decision-making in computer science. Q-learning
is based roughly on posited regression models for the
outcome of interest given patient information at each
decision point and is implemented through a backward
recursive fitting procedure that is related to the dy-
namic programming algorithm (Bather, 2000), a stan-
dard approach for deducing optimal sequential deci-
sions. A-learning involves the same recursive strategy,
but requires only posited models for the part of the out-


http://www.imstat.org/sts/
http://dx.doi.org/10.1214/13-STS450
http://www.imstat.org
mailto:phillip.schulte@duke.edu
mailto:tsiatis@ncsu.edu
mailto:eblaber@ncsu.edu
mailto:davidian@ncsu.edu

Q- AND A-LEARNING METHODS FOR OPTIMAL REGIMES 641

come regression representing contrasts among treat-
ments and for the probability of observed treatment
assignment given patient information at each decision
point. As discussed later, this may make A-learning
more robust to model misspecification than Q-learning
for consistent estimation of the optimal treatment
regime.

Examples of the use of Q- and A-learning and alter-
native methods to deduce optimal strategies for treat-
ment of substance abuse, psychiatric disorders, can-
cer and HIV infection and for dose adjustment in re-
sponse to evolving patient status have been presented
(Rosthgj et al., 2006, Murphy et al., 2007a, 2007b,
Zhao, Kosorok and Zeng, 2009, Henderson, Ansell and
Alshibani, 2010). Relevant work includes Thall, Mil-
likan and Sung (2000), Thall, Sung and Estey (2002),
Robins (2004), Moodie, Richardson and Stephens
(2007), Thall et al. (2007), van der Laan and Pe-
tersen (2007), Robins, Orellana and Rotnitzky (2008),
Almirall, Ten Have and Murphy (2010), Orellana, Rot-
nitzky and Robins (2010), Zhang et al. (2012a, 2012b,
2013) and Zhao et al. (2012, 2013).

The objective of this article is to provide readers
interested in an introduction to estimation of optimal
dynamic treatment regimes with a self-contained, de-
tailed description of an appropriate statistical frame-
work in which to define formally an optimal regime, of
some of the operational and philosophical considera-
tions involved, and of Q- and A-learning methods. Sec-
tion 2 introduces the statistical framework, and Sec-
tions 3 and 4 discuss the form of the optimal regime.
We describe and contrast Q- and A-learning in Sec-
tion 5 and present systematic empirical studies of their
relative performance and the effects of misspecifica-
tion of the postulated models involved in Section 6.
The methods are demonstrated using data from the Se-
quenced Treatment Alternatives to Relieve Depression
(STAR*D, Rush et al., 2004) study in Section 7.

2. FRAMEWORK AND ASSUMPTIONS

Consider the setting of K prespecified, ordered de-
cision points, indexed by k =1, ..., K, which may
be times or events in the disease or disorder process
that necessitate a treatment decision, where, at each
point, a set of treatment options is available. Assume
that there is a final outcome Y of interest for which
large values are preferred. The outcome may be ascer-
tained following the K'th decision, as with CD4 T-cell
count at a prespecified follow-up time in HIV infection
(Moodie, Richardson and Stephens, 2007), or may be

a function of information accrued over the entire se-
quence of decisions, as in Henderson, Ansell and Al-
shibani (2010), where the outcome is the overall pro-
portion of time a measure of blood clotting speed is
kept within a target range in dosing of anticoagulant
agents.

In order to define an optimal treatment regime and
discuss its estimation based on data from an observa-
tional study or clinical trial, we define a suitable con-
ceptual framework. For simplicity, our presentation is
heuristic. Imagine that there is a superpopulation of pa-
tients, denoted by €2, where one may view an element
w € Q2 as a patient from this population. We assume
that patients in the population have been treated ac-
cording to routine clinical practice for the disease or
disorder prior to the first treatment decision. Conse-
quently, immediately prior to this first decision, patient
o would present to the decision-maker with a set of
baseline information (covariates) denoted by the ran-
dom variable S1, discussed further below. Thus, S1(w)
is the value of his/her information immediately prior to
decision 1, taking values si, say, in a set S1. Assume
that, at each decision point k =1, ..., K, there is a fi-
nite set of all possible treatment options 4, with el-
ements a;. We do not consider the case of continuous
treatment and henceforth restrict attention to a finite
set of options. Denote by ay = (ay, ..., ax) a possible
treatment history that could be administered through
decision k, taking values in Ay = A; x - - - x Ay, where
Ak is the set of all possible treatment histories ax
through all K decisions.

We then define the potential outcomes (Robins,
1986)

0 W* ={S5(a1), S3@2), ..., S{@—1), ...,

Sk (ak—1), Y*(ag) for all ag € Ag}.

In (1), S} (ax—1)(w) denotes the value of covariate in-
formation that would arise between decisions k — 1 and
k for a patient w € 2 in the hypothetical situation that
s/he were to have previously received treatment his-
tory ay—1, taking values s in a set Sg, k=2,..., K.
Similarly, Y*(ak)(w) is the hypothetical outcome that
would result for w were s/he to have been administered
the full set of K treatments in ag. This notation im-
plies that, for random variables such as S} (ax—1), ax—1
is an index representing prior treatment history. Write
Siak—1) = {81, S5(ar), ..., S§ak-1}, k=1,..., K,
where S‘If (ar—1)(w) takes values sy in Sp=8 x - x
Sk; this definition includes the baseline covariate S
and is taken equal to S; when k = 1. The elements of
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the S’,f (ar—1) and Y*(ag) may be discrete or continu-
ous; in what follows, for simplicity, we take these ran-
dom variables to be discrete, but the results hold more
generally.

A dynamic treatment regime d = (dy,...,dg) is a
set of rules that forms an algorithm for treating a pa-
tient over time; it is “dynamic” because treatment is
determined based on a patient’s previous history. At
the kth decision point, the kth rule di(sx, ax—1), say,
takes as input the patient’s realized covariate and treat-
ment history prior to the kth treatment decision and
outputs a value ag € Wi (5k, ag—1) C Ayg; for k =1,
there is no prior treatment (ag is null), and we write
di(s1) and Wi(s1). Here, W (5k, ax—1) is a specified
set of possible treatment options for a patient with re-
alized history (5, ar—1), discussed further below. Ac-
cordingly, although we suppress this in the notation for
brevity, the definition of a dynamic treatment regime
we now present depends on the specified Wi (S, ak—1),
k=1,...,K. Because di (5, ar—1) € Vi (s, ax—1) C
Ay, dr need only map a subset of Sp x Ax_1 to Ag.
We define these subsets recursively as

T = { Gk, Gx—1) € Sk x Ag—_1 satisfying
2) Dajev¥;j,aj—1),j=1,...,k—1and
(i) pr{S;(@x—1) =5} >0}, k=1,..., K,

determined by ¥ = (W, ..., Wg). The I't contain all
realizations of covariate and treatment history consis-
tent with having followed such W-specific regimes to
decision k. Define the class D of (W-specific) dynamic
treatment regimes to be the set of all d for which d,
k=1,..., K,is amapping from I'y into A satisfying
di(Sk, ak—1) € W (5, ax—1) for every (5k, ar—1) € I'g.

Specification of the Wy (Sk, ax—1), k =1,..., K, is
dictated by the scientific setting and objectives. Some
treatment options may be unethical or impossible for
patients with certain histories, making it natural to re-
strict the set of possible options for such patients. In
the context of public health policy, the focus may be
on regimes involving only treatment options that are
less costly or widely available unless a patient’s con-
dition is especially serious, as reflected in his/her co-
variate information. In what follows, we assume that a
particular fixed set W is specified, and by an optimal
regime we mean an optimal regime within the class of
corresponding W-specific regimes.

An optimal regime should represent the “best” way
to intervene to treat patients in €2. To formalize, for any
d e D, writing dy = (d1, ..., dy), k=1,...,K,dg =
d, define the potential outcomes associated with d

as (S5, .., SE(—), ..., Si(dx—1), Y*(d)} such
that, for any w € 2, with S1(w) = s1,

di(s1) =ui,
85 (d1)(w) = S5 (u1)(@) = 52,
dy(So,uy) =ua, ...,

(3) dxk-1(5k-1,lUk-2) =uUg—1,
Sk(dg-1)(w) = Sk ik —1)(®) = sk,
dg (Sg,ug—1) = Uk,

Y*(d)(w) = Y*(ig) (@) = y.

The index di_; emphasizes that Sj (dr—1) () repre-
sents the covariate information that would arise be-
tween decisions k — 1 and k were patient w to receive
the treatments sequentially dictated by the first k — 1
rules in d. Similarly, Y*(d) (w) is the final outcome that
o would experience if s/he were to receive the K treat-
ments dictated by d.

With these definitions, the expected outcome in the
population if all patients with initial state S; = s; were
to follow regime d is E{Y*(d)|S1 = s1}. An optimal
regime, d°P* € D, say, satisfies

E{Y*(d)|S1 =51} <E{Y*(d°")|S1 =51}
4)
for all d € D and all s; € S;.

Because (4) is true for any fixed s1, in fact, E{Y*(d)} <
E{Y*(d°P")} for any d € D. In Section 3, we give the
form of d°P' satisfying (4).

Alternative specifications of ¥ may lead to differ-
ent classes of regimes across which the optimal regime
may differ. We emphasize that the definition (4) is
predicated on the particular set W, and hence class D,
of interest. In principle, the class D of interest is con-
ceived based on scientific or policy objectives without
reference to data available from a particular study.

Of course, potential outcomes for a given patient for
all d € D are not observed. Thus, the goal is to esti-
mate d°P! in (4) using data from a study carried out
on a random sample of n patients from €2 that record
baseline and evolving covariate information and treat-
ments actually received. Denote these available data
as independent and identically distributed (i.i.d.) time-

ordered random variables (S1;, A1, ..., Ski, Aki, Yi),
i =1,...,n, on Q. Here, Sy is as before; Si, k =
2,..., K, is covariate information recorded between

decisions k — 1 and k, taking values sy € Si; Ag,
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k=1,...,K, is the recorded, observed treatment as-
signment, taking values a; € Ay; and Y is the ob-
served outcome, taking values y € ). As above, de-
fine S¢ = (Si,...,5) and Ax = (Ay,..., Ag), k =
1,..., K, taking values s; € Sy and ay € Ay.

The available data may arise from an observational
study involving n participants randomly sampled from
the population; here, treatment assignment takes place
according to routine clinical practice in the popula-
tion. Alternatively, the data may arise from an inter-
vention study. A clinical trial design that has been ad-
vocated for collecting data suitable for estimating opti-
mal treatment regimes is that of a so-called sequential
multiple-assignment randomized trial (SMART, Lavori
and Dawson, 2000, Murphy, 2005). In a SMART in-
volving K pre-specified decision points, each partici-
pant is randomized at each decision point to one of a
set of treatment options, where, at the kth decision, the
randomization probabilities may depend on past real-
ized information S, aj—1.

In order to use the observed data from either type of
study to estimate an optimal regime, several assump-
tions are required. As is standard, we make the con-
sistency assumption (e.g., Robins, 1994) that the co-
variates and outcomes observed in the study are those
that potentially would be seen under the treatments ac-
tually received, that is, Sy = S;(Ak_l), k=2,...,K,
and Y = Y*(Ak). We also make the stable unit treat-
ment value assumption (Rubin, 1978), which ensures
that a patient’s covariates and outcome are unaffected
by how treatments are allocated to her/him and other
patients. The critical assumption of no unmeasured
confounders, also referred to as the sequential ran-
domization assumption (Robins, 1994), must be sat-
isfied. A strong version of this assumption states that
Ay is conditionally independent of W* in (1) given
{St, Ak_1), k =1,..., K, where Ag is null, written
ArILW*|Si, Ag_1. In a SMART, this assumption is
satisfied by design; in an observational study, it is
unverifiable from the observed data. The strong ver-
sion is sufficient for identification of the distribution
of not only Y*(ag) but of the joint distribution of
Y*(akg) and S‘}‘( (ax—1) and allows the results of Sec-
tion 4 to hold. Although in the population patients and
their providers may make decisions based only on past
covariate information available to them, the issue is
whether or not all of the information that is related
to treatment assignment and future covariates and out-
come is recorded in the Si; see Robins [(2004), Sec-
tions 2-3] for discussion and a relaxation of the ver-
sion of the sequential randomization assumption given

here. We assume henceforth that these assumptions
hold.

Whether or not it is possible to estimate d°P' from
the available data is predicated on the treatment op-
tions in Wi (sk, ax—1), k =1, ..., K, being represented
in the data. For a prospectively-designed SMART, or-
dinarily, W defining the class D of interest would dic-
tate the design. At decision k, subjects would be ran-
domized to the options in Wy (S, ar—1), satisfying this
condition. If the data are from an observational study,
all treatment options in Wi (5, ax—1) at each decision
k must have been assigned to some patients. That
is, if we define recursively '™ = {s; € S;:pr(S| =
s1) > 0}, W™ (s1) = {a1 € Ap:pr(A; = ai1lS1 =
s1) > 0 forall sy € T}, T = [(5y, ax—1) € Sk x
Aj—y satistying () aj € WI™Gj,a;-1),j = 1,...,
k — 1, and (ii) pr{S’Z‘(sz_l) = 5} > 0], W™ (5,
ak-1) = {ax € Ag:pr(Ax = ar|Sk = Sk, Ak—1 =
ax—1) > Oforall (sg,ar—1) € F}r{naX}’ k=2,...,K,
we must have Wi(sk,ax—1) S W™ (Sk, ax—1), k =
1,..., K. The class of regimes dictated by W™ =
(W, L, W) s the largest that can be consid-
ered based on the data, sometimes referred to as the
class of “feasible regimes” (Robins, 2004). If this in-
clusion condition does not hold for all k =1, ..., K,
d°P! cannot be estimated from the data, and the class of
regimes D of interest must be reevaluated or another
data source found.

3. OPTIMAL TREATMENT REGIMES

Q- and A-learning are two approaches to estimat-
ing d°P' satisfying (4) under the foregoing framework.
Both involve recursive fitting algorithms; the main dis-
tinguishing feature is the form of the underlying mod-
els. To appreciate the rationale, one must understand
how d°P' is determined via dynamic programming, also
known as backward induction. We demonstrate the for-
mulation of d°P' in terms of the potential outcomes
and then show how d°P' may be expressed in terms of
the observed data under assumptions including those
in Section 2. We sometimes highlight dependence on
specific elements of quantities such as ay, writing, for
example, ai as (ax—1, ax).

At the Kth decision point, for any sx € Sk, dx_1 €
AK—l for which 5k, C_l[(_l) € 'k, define

1opt , - —
dP Gy ak 1)

(5) =—arg  max_
ag €V (Sk.ag—1)

E{Y*(ax—1,ak)|

Sk (ak—1) =35k},
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.- -
V,(( )Gk, ax—_1)

(6) = max
ag €Wk (Sk,ag-1)

E{Y*(ak—1,ak)|

Sk (ax—1) =5k}

For k=K —1,...,1 and any s € Sk, ar—1 € A1
for which (s, ax—1) € I'x, which clearly holds if
(Sk,ag—1) € 'k, let

Dopt,—  ~
d;E PP Sy, 1)

(1) =arg  max_ B[V, 5k, Sty @t an),

ax €V (Sk,ak—1)
ak—1, a}|S; ar—1) = 5x],

.- -
V" Ge, a—1)

1D (- _
(8) =  max E[V,((Jr)l{sk, St1(@r—1, ar),

ap €V (Sk,ax—1)
ar—1, ar }1SE(@r—1) = 5k ];
thus, for s; € Si,
1)opt
d{"™ (s1)

—arg max E[Vz(l){sl,S§(a1),a1}|Sl:sl],

a eV (sy)
1
ViV (sp)

— E[vV (s, s Si=s1].
o [Vy {51, 83(a1), a1}1S1 = s1]

Conditional expectations are well defined by (2)(ii).

Clearly, d(VoPt = (dl(l)()pt, e, d;(l)om) is a treatment
regime, as it comprises a set of rules that uses patient
information to assign treatment from among the op-
tions in W. The superscript (1) indicates that d‘!)Pt
provides K rules for a patient presenting prior to de-
cision 1 with baseline information S| = s1; Section 4
considers optimal treatment of patients presenting at
subsequent decisions after receiving possibly subop-
timal treatment at prior decisions. Note that d(DPt is
defined in a backward iterative fashion. At decision K,
(5) gives the treatment that maximizes the expected po-
tential final outcome given the prior potential informa-
tion, and (6) is the maximum achieved. At decisions
k=K —1,...,1, (7) gives the treatment that maxi-
mizes the expected outcome that would be achieved
if subsequent optimal rules already defined were fol-
lowed henceforth. In Section A.1 of the supplemental
article [Schulte et al. (2014)], we show that d(D°P! de-
fined in (5)—(8) is an optimal treatment regime in the
sense of satisfying (4).

The foregoing developments express optimal
regimes in terms of the distribution of potential out-
comes. If an optimal regime is to be identifiable, it
must be possible under the assumptions in Section 2
to express d‘V°P in terms of the distribution of the ob-
served data. To this end, define

(9) QxGk.ax)=E(Y|Sx =5k, Ax = ax),

opt ,— —
dy 5k, ak—1)

(10)
=arg max Ok (Sk,dk—1,ak),
ax €Yk (Sk,ag—1)
Vk(Sk,ak—1)
(11)

= max
ag €Yk (Sk,ag—1)

andfork=K —1,...,1, define

O (5k, ak)

Ok (Sk,ak—1,ak),

(12) B B
= E{ Vi1 Gk, Sk+1, @) 1Sk = 5k, Ax = dx},
4™ 5k, dk—1)
(13)
=arg  max_  Qk(Sk, dr—1,ar),
ax €V (Sk,ak—1)
(14) Vi (S, ak—1) = max Ok (Sk, ak—1, ar).

ar €V (Sk,ax—1)

The expressions in (9)—(14) are well defined under as-
sumptions we discuss next. In (9) and (12), Qr (5, ax)
are referred to as “Q-functions,” viewed as measuring
the “quality” associated with using treatment ay at de-
cision k given the history up to that decision and then
following the optimal regime thereafter. The “value
functions” Vi (Sk, ax—1) in (11) and (14) reflect the
“value” of a patient’s history 5, ax—1 assuming that op-
timal decisions are made in the future. We emphasize
thatthe &', k =1, ..., K, defined in (9)~(14) may not
be optimal unless the sequential randomization, consis-
tency and positivity assumptions hold.

As in Section 2, the treatment options in W must
be represented in the data, that is, Wi(5g,ar—1) €
W (g, ax—1), k=1, ..., K, in order to estimate an
optimal regime. Formally, this implies that

pr(Ax = ax|Sk = 5k, Ak—1 = ax—1) > 0
(15)
if (Sk, ak—1) € T'x and ar € Wi (5k, ar—1)

for all k =1,..., K. In Section A.2 of the supple-
mental article [Schulte et al. (2014)], under the consis-
tency and sequential randomization assumptions and
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the positivity assumption (15), we show that, for any
(S, ak—1) € Ty and ar € Wi (S, ar—1), k=1,..., K,

(16) pr(Sk =5, A k =ag) >0,
pr(Sk+1 = sk+11Sk = Sk, Ak = ax)

= pr{Si 1 (@) = sk+11Sk = 5k, Ak—1 = dk—1)

:pr{S;:-i-l(&k) =Sk+1|3j =§j, Aj—l :6_141'_],
(18) i ]
S}'k+1(aj) =S8j4ls -, Sy (ax—1) =Sk},
for j=1,...,k, where (18) with j =k is the same as

the right-hand side of (17), Sx+1 =Y and SI*(Jrl (ag) =
Y*(ak), and when j = 1 the conditioning events do
not involve treatment. By (16), the quantities in (9)—
(14) are well defined. Under (17)—(18), the conditional
distributions of the observed data involved in (9)-(14)
are the same as the conditional distributions of the po-
tential outcomes involved in (5)—(8). It follows that

" G, ak-1) = di7 Gie, Gk 1),
(19)

v )(Sk ak—1) = Vi(Sk, ak-1),

for (sx,ax—1) € 'y, k = 1,..., K. The equivalence
in (19) shows that, under the consistency, sequential
randomization and positivity assumptions, an optimal
treatment regime in the (W -specific) class of interest D
may be obtained using the distribution of the observed
data.

There may not be a unique d°P'. At any decision k, if
there is more than one possible option a; maximizing
the Q-function, then any rule d,?pt yielding one of these
ay defines an optimal regime.

4. OPTIMAL “MIDSTREAM” TREATMENT REGIME

In Section 3 we define an (W-specific) optimal treat-
ment regime starting at decision point 1 and elucidate
conditions under which it may be estimated using data
from a clinical or observational study collected through
all K decisions on a sample from the patient popula-
tion. The goal is to estimate the optimal regime and
implement it in new such patients presenting at the first
decision.

In routine clinical practice, however, a new patient
may be encountered subsequent to decision point 1.
For definiteness, suppose a new patient presents “mid-
stream,” immediately prior to the ¢th decision point,
£=2,..., K. A natural question is how to treat this
patient optimally henceforth. For such a patient, the
first £ — 1 treatment decisions presumably have been

made according to routine practice, and s/he has a real-
ized past history that may be viewed as realizations of

random variables (S(P) A(P) LS, AP ép))'

-1 “"—1
Here, A(P) k=1,...,¢ — 1, represent the treat-
ments recelved by such a patient according to the

treatment assignment mechanism governing routine

practice; and S(P) k=1,...,¢ — 1, denote covari-
ate information collected up to the £th decision. Write

AP = AP AP k=1,... e—1,and 57 =
(S(P),.. (P)) k=1,....L.

As Ay denotes the set of all possible treatment op-
tions at decision k, AE}_))l takes on values a;_1 € f_lg_l.
To define W-specific regimes starting at decision £,
at the least, S ") must contain the same information
as Sy in the data, k =1,...,¢. Because the avail-
able data dictate the covariate information incorpo-
rated in the class of regimes D, if S,EP) contains ad-
ditional information, it cannot be used in the context
of such regimes. We thus take S,EP) and S; to con-
tain the same information, stated formally as the con-
sistency assumption S(P) = S;f(A(P)) k=1,...,¢.
Moreover, we can only consider treating new patlents
with realized histories (s¢,ay—1) that are contained
in 'y, that is, that could have resulted from follow-
ing a W-specific regime through decision £ — 1. If
the data arise from a SMART including only a subset
of the treatments employed in practice, this may not
hold.

We thus desire rules d,ge)(Ek,sz_l), k=1¢010+
1,..., K, say, that dictate how to treat such mid-
stream patients presenting with realized past history
(S(P) A(P)l) = (S¢,ap—1). In the following, we re-
gard (s¢,ar—1) as fixed, corresponding to the partic-
ular new patient. Let F,EZ) be all elements of I'y with
(5S¢, ag—1) fixed at the values for the given new patient.

Write d© = (d(ﬁ) é?l, ...,d;f)) to denote regimes
starting at the £th decision point, and define the class

DO of all such regimes to be the set of all d© for
which d\” (5, a_1) = ax for 5t ar_1) € TL” and
ay € Wi (Sg,ax—1) fork=4£,..., K. Then, by analogy
to (4), we seek d©oPt satisfying

(2O)E{Y*(‘7€—lv d9)5;" =5, A”, =,

for all d®® € D® and 5y € Sy, @1 € Ay—1 for which
pr(S'LEP) = 5y, Aéli)l = ay—1) > 0. Viewing this as a
problem of making K — £ + 1 decisions at deci-

S(P)

sion points ¢,¢ + 1,..., K, with initial state
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Eg,Aé )1 = ay_1, by an argument analogous to that
in Section A.l of the supplemental article [Schulte
et al. (2014)] for £ = 1 and initial state S| = s7,
letting Vex = {S" = 5. A", = ap_1. S}, @) =
Se41, - .., S{(ax—1) = sx}, it may be shown that d®opt
satisfying (20) is given by
¢ - -
dé)OPt(SK,aK—O
2D

= arg max E{Y*(ak—1,ax)Ve k},

ag €Yk (Sk,ag—1)

Y
V1(< )Gk, ak_1)
(22)
= max
ag €Vk (Sk,ag—1)

E{Y*(ak—1,ak)Ve x}

for any s5x € Sk, ax—1 € Ag_; for which Sk,
EzK_1)eF(e);and, fork=K—1,...,¢,
¢ o
d,ﬁ P (S a1)

(23) =arg max [Vk(fr)1 {5k,

ap €V (Sk,ax—1)
S;:_Fl(('_lk*lvak)’ak*lvak}ﬂ}g,k]’
0o -
VD Gi. ax-1)

) y=

24) = max E|V Sk»
A €W (5, 1) Vi

Sei@i—1, ar), ar—1, ax}|\Ver]

for any 5 € Sk, ag—1 € Ax_; for which (5, ax_1) €
F,Ee), so that

Oopt,— -
dé Py, @)

O (= ox =
= arg max ElV Se, Sy (ape—1,ap),
ag€Wy(Sg,ap—1) [ ZH{ el
_ (P _  =(P _
ao—1,a}18 =50, A", =ap1).

Comparison of (5)—(8) to (21)—(24) shows that the
¢th to Kth rules of the optimal regime d(V°P' that
would be followed by a patient presenting at the first
decision are not necessarily the same as those of the
optimal regime d©°P' that would be followed by a pa-
tient presenting at the £th decision. In particular, noting
that the conditioning sets in (5)—(8) are V; x and V) ,
the rules are £-dependent through dependence of the
conditioning sets Vo, £ =1,..., K, k=¥{,..., K, on
£. However, we now demonstrate that these rules coin-
cide under certain conditions.

Make the consistency, sequential randomization and
positivity (15) assumptions on the available data re-
quired to show (19) in Section 3, along with the con-

sistency assumption on the § ,EP) above and the sequen-

tial randomization assumption AkP)J.LW*|S,EP) A,(CP)I,

k=1,...,£ — 1, which ensures that the S(P) in-
clude all information related to treatment as51gnment
and future covariates and outcome up to decision £.
Note that (21)-(24) are expressed in terms of the
conditional distributions pr{S;’ 1@ = sk+1|.§ép) =
Se A = ag-1, S§ @) = ..., SE@r-1) = i),
k=24£,...,K. We can then use (18) with j = ¢ to de-
duce that these conditional distributions can be written
equivalently as pr{S; (ax) = sk+1|§,f(ék_1) = 5},
k=4¢,...,K, so solely in terms of the distribution of
the potential outcomes. By (17) and (18) with j =1,
this can be written as pr(Sg+1 = Sk41|Sk = 5k, Ax =
ay). This shows that (21)-(24) can be reexpressed in
terms of the observed data, so that, for (s;, ar—1) € I'x
foré=1,...,Kandk=¢,...,K,

(E)Opt(Sk,ak D =dr "Gk, ax—1),
(25)

Vk( )Gy 1) = Vi G, ag—1)-

Note that (25) subsumes (19) when £ = 1. The equiv-
alence in (25) demonstrates not only that an optimal
treatment regime can be obtained using the distribu-
tion of the observed data but also that the correspond-
ing rules dictating treatment do not depend on ¢ un-
der these assumptions. Thus, the single set of rules
dP = (d{*, ..., dJ") defined in (10) and (13) is rel-
evant regardless of when a patient presents. That is,
treatment at the £th decision point for a patient who
presents at decision 1 and has followed the rules in d°P*
to that point would be determined by dgpt evaluated at
his/her history up to that point, as would treatment for
a subject presenting for the first time immediately prior
to decision £. See Robins [(2004), pages 305-306] for
more discussion.

5. Q- AND A-LEARNING
5.1 Q-Learning

From (10), (13) and (19), an optimal (\W-specific)
regime d°P' may be represented in terms of the Q-
functions (9), (12). Thus, estimation of d°P' based
oni.i.d. data (Sy;, Ay, ..., Ski, Aki, Yi),i=1,...,n,
may be accomplished via direct modeling and fit-
ting of the Q-functions. This is the approach under-
lying Q-learning. Specifically, one may posit mod-
els Qi (Sk,ar; &), say, for k=K, K —1,...,1, each
depending on a finite-dimensional parameter &. The
models may be linear or nonlinear in & and include
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main effects and interactions in the elements of si
and ay.

Estimators & may be obtained in a backward itera-
tive fashion fork = K, K — 1, ..., 1 by solving suitable
estimating equations [e.g., ordinary (OLS) or weighted
(WLS) least squares]. Assuming the latter, for k = K,
letting ‘7( Kk+1)i = Yi, one would first solve

"9 Ski. Axi; - _
Z Ok (Ski, Aki gK)Zgl(SKi,AKi)
P 08k
(26) - o
x {Vik+1i — Ok (Ski. Aki: éx)} =0

in £ to obtain EK, where X (Sg,ak) is a working
variance model. Substituting the model Qk (sx,ak;
£k) in (10) and ilccordingly writing dlo{pt(EK,dK_l;
&k ), substituting £g for £k, yields an estimator for the
optimal treatment choice at decision K for a patlent
with past history Sk =35k, Ax_1 =ax—_;. With SK in
hand, one would form for each i, based on (1 1) Vki =
max aKG‘I’K(SK, Ak—1)) QK(SKM A(K Di> K gl() To
obtain SK 1, setting k = K — 1, based on (12) and
letting % (5k, ax) be a working variance model, one
would then solve for &,

" dQk(Ski, AkisEk) 1= =
> 2 (Skis Axi)
i=1 0%
27 - _
X A Vie+1)i — Ok (Ski, Akiz &)} =0

The corresponding d;'(pil (Sk—1,ax—2; EK_l) yields an
estimator for the optimal treatment choice at deci-
sion K — 1 for a patient with past history Sx_| =
Sk_1,Ak_2=ax—o, assuming s/he will take the opti-
mal treatment at decision K. One would continue this
process in_the obvious fashion for k = K —2,...,1,
forming Vk, = MaXy, (5, Ay 1))Qk(Sk,,A(k Di>
ag; Sk) and solving equations of form (27) to obtain
?k and corresponding d,?pt(Ek, ak—1; ’ék).

We may now summarize the estimated optimal

regime as c/l\(épt (%ptl, e, c’i\OQITtK), where
dj(s1) =d\" (s1: 1),
(28) %ptk 5 k1) = di¥ (k. @13 ).

k=2,....K

It is important to recognize that, even under the
sequential randomization assumption, the estimated
regime (28) may not be a consistent estimator for the
true optimal regime unless all the models for the Q-
functions are correctly specified.

We illustrate the approach for K =2, where at each
decision there are two possible treatment options coded
as 0 and 1, that is, ¥;(s1) = .A; = {0, 1} for all s; and
Wy (52,a1) = Ay =1{0, 1} for all 5, and a; € {0, 1}. Let
Hi = (l,slT)T and H, = (l,s1 ,ai, s, T As in many
modeling contexts, it is standard to adopt linear models
for the Q-functions; accordingly, consider the models

Qi(s1,ar; &) =Hi Bi +a1(H{ ¥),
02(52, a2; &) = H2 Bo + azr(HI ¥n),

where & = (BL, ¥)T, k=1,2. In (29), Q2(52, a2;
&) is a model for E(YlS’g =5, Ay = @»), a standard
regression problem involving observable data, whereas
Q1(s1,ar; &1) is a model for the conditional expec-
tation of V»(52,a1) = max@e{o,l}E(YlS‘Z =85, A =
ai, A» = ap) given S = s; and A; = a;, which is
an approximation to a complex true relationship; see
Section 5.3. Under (29), Va(s2,a1;6) =
maxg,e(0,1) Q2(52, a1, a2; &) = HIB + HIyn) x
I(H] Y2 > 0) and Vi(s1: §1) = maxg,eq0,1) Q1(s1, a1
£) = HI B + HTy)I(HT Y1 > 0). Substituting
thetQ—functions in (29) in (10) and (1?) then yields
di"(s1:6) = IH{y1 > 0) and &5 (52, a1:82) =
I(HI s > 0).

We have presented (26) and (27) in the conven-
tional WLS form, with leading term in the summand
3/0& Qi (Ski, Aris &) 3¢ ' (Ski, Ai); taking T to be
a constant yields OLS. At the Kth decision, with re-
sponses Y;, standard theory implies that this is the op-
timal leading term when Var(Y|S'K =skx,Ag = ag) =
Yk (Sx,ak), yielding the (asymptotically) efficient es-
timator for £x. For k < K, with “responses” V(k+1)ia
this theory may no longer apply, however, deriving the
optimal leading term involves considerable complica-
tion. Accordingly, it is standard to fit the posited mod-
els Qi (g, ar; &) via OLS or WLS; some authors de-
fine Q-learning as using OLS (Chakraborty, Murphy
and Strecher, 2010). The choice may be dictated by ap-
parent relevance of the homoscedasticity assumption
on the \7(k+1),-, k=K,K —1,...,1, and whether or
not linear models are sufficient to approximate the re-
lationships may also be evaluated; see Section 5.3.

(29)

5.2 A-Learning

Advantage learning (A-learning, Blatt, Murphy and
Zhu, 2004) is a term used to describe a class of alterna-
tive methods to Q-learning predicated on the fact that
the entire Q-function need not be specified to estimate
the optimal regime. For simplicity, we consider here
only the case of two treatment options coded as 0 and
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1 at each decision, that is, W (5, ax—1) = Ar = {0, 1},
k=1,....K.

To fix ideas, consider (29). Note that d?pt(sl; &1) im-
plied by (29) depends only on ’HIT% =01(s1, ;&) —
01(s1,0; &1); likewise, d;pt(iz,al;éz) depends only
on Hj ¥ = 02(52, a1, 1; &) — Q2(52, a1, 0; &). This
reflects the general result that, for purposes of de-
ducing the optimal regime, for each k =1,..., K, it
suffices to know the contrast function Cy (s, ax—1) =
Ok (Sk, ak—1,1) — Ok (Sk, ar—1,0). This can be appre-
ciated by noting that any arbitrary Qy(5k, ax) may
be written as hi(Sg, ax—1) + axCr(Sk, ax—1), where
hi(Sk, ag—1) = Qx(Sk, ak—1,0), so that Qk(Sk, ar—1,
ay) is maximized by taking a; = I{Cy(5k,ar—1) >
0}; and the maximum itself is the expression Ay (g,
ax—1) + Cx Sk, ax—1)1{Cr(5k, ax—1) > 0}. In the case
of two treatment options we consider here, the con-
trast function is also referred to as the optimal-blip-
to-zero function (Robins, 2004, Moodie, Richardson
and Stephens, 2007). Murphy (2003) considers the ex-
pression Ci (Sk, Ax—)[I{Cr(Sk, Ax—1) > 0} — Ag], re-
ferred to as the advantage or regret function, as it repre-
sents the “advantage” in response incurred if the opti-
mal treatment at the kth decision were given relative to
that actually received (or, equivalently, the “regret” in-
curred by not using the optimal treatment). See Robins
(2004) and Moodie, Richardson and Stephens (2007)
for discussion of the relationship between regrets and
optimal blip functions in this and settings other than
binary treatment options.

We discuss here an A-learning method based on
explicit modeling of the contrast functions, which
we refer to as contrast-based A-learning. This ap-
proach is implemented via recursive solution of cer-
tain estimating equations given below developed by
Robins (2004), often referred to as g-estimation. See
Moodie, Richardson and Stephens (2007) and the sup-
plementary material to Zhang et al. (2013) for de-
tails. Contrast-based A-learning is distinguished from
the regret-based A-learning methods of Murphy (2003)
and Blatt, Murphy and Zhu (2004), which rely on di-
rect modeling of the regret functions and are imple-
mented using a different estimating equation formula-
tion called Iterative Minimization for Optimal Regimes
by Moodie, Richardson and Stephens (2007).

All of these methods are alternatives to Q-learning,
which involves modeling the full Q-functions. For
k=K —1,...,1, the Q-functions involve possibly
complex relationships, raising concern over the con-
sequences of model misspecification for estimation of

the optimal regime. As identifying the optimal regime
depends only on correct specification of the contrast or
regret functions, A-learning methods may be less sen-
sitive to mismodeling; see Sections 5.3 and 6.

Although we consider these methods only in the case
of binary treatment options here, they may be extended
to more than two treatments at the expense of compli-
cating the formulation; see Robins (2004) and Moodie,
Richardson and Stephens (2007).

Contrast-based A-learning proceeds as follows. Posit
models Cy(sk,ar—1;¥x), k=1,..., K, for the con-
trast functions, depending on parameters ;. Consider
decision K. Let mgx(Sg,ax—1) = pr(Ax = 1|S‘K =
Sk, Agk_1 = a k—1) be the propensity of receiving
treatment 1 in the observed data as a function of past
history and ‘7(1(+ i = Y;. Robins (2004) showed that
all consistent and asymptotically normal estimators
for Yk are solutions to estimating equations of the
form

n
Z)»K(Sm, Ak-—1yi{Aki — 7k (Skis Ak—1)i)}

i—1
(30) x {Vik+1)i — AxiCx (Ski, Ak—1)i3 VK)
— 0k (Skis A1)} =0

for arbitrary functions Ag (Sx,ag—1) of the same di-
mension as ¥ g and arbitrary functions Ox (Sg, ax—1).
Assuming that the model Cx (5Sg,ax—1; ¥g) is cor-
rect, if Var(Y|S'K = s, Ag_1 = ax—1) 1s constant,
the optimal choices of these functions are given by
Ak (Sk,ak—1;V¥k) = 0/0YkCk (Sk,ak—1; ¥k) and
(91((51(,‘,&(1(,1)[) = hg(Skg,ag—1); otherwise, if the
variance is not constant, the optimal g is complex
(Robins, 2004).

To implement estimation of ¥ via (30), one may
adopt parametric models for these functions. Although
A-learning obviates the need to specify fully the Q-
functions, one may posit models for the optimal 6,
hx(Sk,ax—1; Bk), say. Moreover, unless the data are
from a SMART study, in which case the propensi-
ties mx(Sg,ag—1) are known, these may be mod-
eled as mx (sg,ax—1; o) (e.g., by a logistic regres-
sion). These models are only adjuncts to estimating
Yk; as long as at least one of these models is cor-
rectly specified, (30) will yield a consistent estimator
for Yk, the so-called double robustness property. In
contrast, Q-learning requires correct specification of
all Q-functions; see Section 5.3 and Section A.5 of the
supplemental article [Schulte et al. (2014)].
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Substituting these models in (30), one solves (30)
jointly in (Y%, BE, ¢1)T with

Xn: dhk (Sk, Ak—1; Bk)
i=1 9Bk

x {Vik+1yi — AkiCx (Ski, Ak —1yis Vk)
— hk (Ski, Aik—1yi; Bk)} =0

and the usual binary regression likelihood score equa-
tions in ¢g. We then have dlo(pt(EK,dK_l; Yg) =
I{Cg(Sk,ak—1; k) > 0}; as in Q-learning, substi-
tuting Uk yields an estimator for the optimal treatment
choice at decision K for a patient with past history
Sk =Sk, Ak—1=ag—1.

With ¢k in hand, the contrast-based A-learning
algorithm proceeds in a backward iterative fashion
to yield fﬁ\k, k=K —1,...,1. At the kth decision,
given models 7y (Sk, ax—1; fr) and i (Sk, ak—1; d),
one solves jointly in (¥, B, ¢1)T a system of esti-
mating equations analogous to those above. The kth set
of equations is based on “optimal responses’ V(k+1),,
where, for each i, Vkl estimates Vk(Sk,,A(k 1,i). It
may be shown (see Section A.3 of the supplemental ar-
ticle [Schulte et al. (2014)]) that E (Vi (Sk+1, Ap) +
Ck(Sk, Ak DI{Ck(Sk, Ak—1) > 0} — AglISk, Ak 1) =
Vk(Sk, Ar—1). Accordmgly, define recurswely sz =
K(k+1)l +  Cr(Skis Aw—1yis 1/fk)[1{Ck(Skz, Ag=1)i;
Vi) >0} — Akl k=K, K —1,.
The equations at the kth decision are then

L Vg = Y.

n
Z)»k(Ski, Ag—1yis Vi)l Aki — 0 (Skis Ak—1yis 1) }
i—1

X AV 1yi — AkiCr(Ski, Ag—1yis Vi)
— I (Skis Age—1)is Br)} =
3D o
X": 0h(Sk, Ak—1; Br)
i=1 8:3/(

X Vit 1yi — AkiCi(Skis Age—1yis Vi)
— hie(Skis Age—1yis )} =

for a given specification Ax(Sg,ax—1; ¥x), solved
jointly with the maximum likelihood score equa-
tions for binary regression in ¢y. It follows that
t- - PN L =

AP Gk, ak—1; Yu) = I{CrGk,ak—1;¥x) > 0}. As
above, the optimal A is complex (Robins, 2004); tak-
ing Ax(Sk, ar—1; i) = 0/ Cr (Sk, ak—1: V) is rea-
sonable for practical implementation.

Summarizing, the estimated optimal regime c?f\p ‘=

3. dyl ) is

dy\(s1) =

Ot -~
d\? (s1; Y1),

(32) G, dx—1) = d" G, ax—1: V),
k=2,....K

How well El\zpt estimates d°P' and hence dV°P! depends
on how close the posited Ci(sk, ax—1; ¥x) are to the
true contrast functions as well as correct specification
of the functions Ay or my.

Henceforth, for brevity, we suppress the descriptor
“contrast-based” and refer to the foregoing approach
simply as A-learning.

5.3 Comparison and Practical Considerations

When K = 1, the Q-function is a model for E(Y|
S1 = s1,A1 = ay). If in Q-learning this model and
the variance model X in (26) are correctly specified,
then, as above, the form of (26) is optimal for estimat-
ing &1. Accordingly, even if Cy(s1; ¥1) and h1(s1; B1)
are correctly modeled, (31) with K =1 is generally
not of this optimal form for any choice Ai(sy; Y1),
and, hence, A-learning will yield relatively inefficient
inference on Y and the optimal regime. However, if
in Q-learning the Q-function is mismodeled, but in A-
learning Cy(s1; Y1) and m1(sy; ¢1) are both correctly
specified, then A-learning will still yield consistent in-
ference on v and hence the optimal regime, whereas
inference on £; and the optimal regime via Q-learning
may be inconsistent. We assess the trade-off between
consistency and efficiency in this case in Section 6. For
K > 1, owing to the complications involved in specify-
ing optimal estimating equations for Q- and A-learning,
relative performance is not readily apparent; we inves-
tigate empirically in Section 6.

In special cases, Q- and A-learning lead to identi-
cal estimators for the Q-function (Chakraborty, Mur-
phy and Strecher, 2010). For example, this holds if
the propensities for treatment are constant, as would
be the case under pure randomization at each decision
point, and certain linear models are used for C1(s1; V1)
and h1(s1; B1); Section A.4 of the supplemental article
[Schulte et al. (2014)] demonstrates when K = 1 and
pr(A; = 1|81 = s1) does not depend on s1. See Robins
[(2004), page 1999] and Rosenblum and van der Laan
(2009) for further discussion.

As we have emphasized, for Q-learning, while mod-
eling the Q-function at decision K is a standard re-
gression problem with response Y, for decisions k =
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K —1,...,1, this involves modeling the estimated
value function, which at decision k depends on rela-
tionships for future decisions k + 1, ..., K. Ideally, the
sequence of posited models Q(Sk, ax; &) should re-
spect this constraint. However, this may be difficult to
achieve with standard regression models. To illustrate,
consider (29), and assume S;, S»> are scalar, where the
conditional distribution of S, given S| =51, A| = ay is
Normal(IClTy,az), say, K1 = (1, s1,a1)”. Recall that
Va(52, a1; &) = H3 Bo+ (M3 ¥2) 1 (H} 2 > 0), where
HI Bo = KT Bo1 + 52820 and HI o = KT 01 + 50900
Then, if model Q5 in (29) were correct, from (12), ide-
ally, Qi(s1,a1) = E{Va(s1, $2,a1;6)|S1 = 51, A1 =
ai}. Letting ¢(-) and ®(-) be the standard normal den-
sity and cumulative distribution function, respectively,
it may be shown (see Section A.5 of the supplemental
article [Schulte et al. (2014)]) that

Q1(s1,a1) =E{Va(s1, $2,a1; &)|S1 =51, A1 = a1}
=K{ (Ba1 + vB2)
(33) + (KT v {1 — @)}
+ynfoe) + (KT y){1 - 2m}},
n=—K{ W21 /¥2n+7)/o,

taking > > 0. The true Q1(s1, ap) in (33) is clearly
highly nonlinear and likely poorly approximated by
the posited linear model Qi(sy,ay; 1) in (29). For
larger K, this incompatibility between true and as-
sumed models would propagate from K — 1,...,1.
Thus, while using linear models for the Q-functions is
popular in practice, the potential for such mismodeling
should be recognized.

An approach that may mitigate the risk of mismod-
eling is to employ flexible models for the Q-functions;
Zhao, Kosorok and Zeng (2009) use support vector re-
gression models. Developments in statistical learning
suggest a large collection of powerful regression meth-
ods that might be used. Many of these methods must be
tuned in order to balance bias and variance, a natural
approach to which is to minimize the cross-validated
mean squared error of the Q-functions at each deci-
sion point. An obvious downside is that the final model
may be difficult to interpret, and clinicians may not be
willing to use “black box” rules. One compromise is
to fit a simple, interpretable model, such as a decision
tree, to the fitted values of the complex model in order
to explore the factors driving the recommended treat-
ment decisions. This simple model can then be checked
against scientific theory. If it appears sensible, then

clinicians may be willing to use predictions from the
complex model. For discussion, see Craven and Shav-
lik (1996).

A-learning represents a middle ground between Q-
learning and these approaches in that it allows for flexi-
ble modeling of the functions Ay (5, ax—1) while main-
taining simple parametric models for the contrast func-
tions Cy(Sk,ax—1). Thus, the resulting decision rule,
which depends only on the contrast function, remains
interpretable, while the model for the response is al-
lowed to be nonlinear. This is also appealing in that
it may be reasonable to expect, based on the underly-
ing science, that the relationship between patient his-
tory and outcome is complex while the optimal rule for
treatment assignment is dependent, in a simple fash-
ion, on a small number of variables. The flexibility al-
lowed by a semiparametric model also has its draw-
backs. Techniques for formal model building, critique
and diagnosis are well understood for linear models
but much less so for semiparametric models. Conse-
quently, O-learning based on building a series of linear
models may be more appealing to an analyst interested
in formal diagnostics.

A-learning may have certain advantages for mak-
ing inference under the null hypothesis of no effect
of any treatment regime in D on outcome. For ex-
ample, in a SMART, the propensities are specified by
design, and, under the null, the contrast functions are
identically zero and hence correctly specified. Thus,
A-learning will yield consistent estimators for the pa-
rameters defining the contrast function. See Robins
(2004) and the references in Section 8.

6. SIMULATION STUDIES

We examine the finite sample performance of Q-
and A-learning on a suite of simple test examples via
Monte Carlo simulation. We emphasize that the meth-
ods are straightforward to implement in more com-
plex settings than those here. To illustrate trade-offs be-
tween the methods, we begin with correctly specified
models and systematically introduce misspecification
of the Q-function, the propens