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The Bayesian Analysis of Complex,
High-Dimensional Models:
Can It Be CODA?
Y. Ritov, P. J. Bickel, A. C. Gamst and B. J. K. Kleijn

Abstract. We consider the Bayesian analysis of a few complex, high-
dimensional models and show that intuitive priors, which are not tailored
to the fine details of the model and the estimated parameters, produce esti-
mators which perform poorly in situations in which good, simple frequentist
estimators exist. The models we consider are: stratified sampling, the partial
linear model, linear and quadratic functionals of white noise and estimation
with stopping times. We present a strong version of Doob’s consistency the-
orem which demonstrates that the existence of a uniformly

√
n-consistent

estimator ensures that the Bayes posterior is
√

n-consistent for values of the
parameter in subsets of prior probability 1. We also demonstrate that it is, at
least, in principle, possible to construct Bayes priors giving both global and
local minimax rates, using a suitable combination of loss functions. We argue
that there is no contradiction in these apparently conflicting findings.

Key words and phrases: Foundations, CODA, Bayesian inference, white
noise models, partial linear model, stopping time, functional estimation,
semiparametrics.

1. INTRODUCTION

We show, through a number of illustrative examples
of general phenomena, some of the difficulties faced by
application of the Bayesian paradigm in the analysis of
data from complex, high-dimensional models. We do
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not argue against the use of Bayesian methods. How-
ever, we judge the success of these methods from the
frequentist/robustness point of view, in the tradition of
Bernstein, von Mises, and Le Cam; and more recently
Cox (1993). Some references are: Bayarri and Berger
(2004), Diaconis and Freedman (1993), Diaconis and
Freedman (1998), Freedman (1963), Freedman (1999),
Le Cam and Yang (1990) and Lehmann and Casella
(1998).

The extent to which the subjective aspect of data
analysis is central to the modern Bayesian point of
view is debatable. See the dialog between Goldstein
(2006) and Berger (2006a) and the discussion of these
two papers. However, central to any Bayesian approach
is the posterior distribution and the choice of prior.
Even those who try to reconcile Bayesian and frequen-
tist approaches (cf. Bayarri and Berger, 2004), in the
case of conflict, tend to give greater weight to consider-
ations based on the posterior distribution, than to those
based on frequentist assessments; cf. Berger (2006b).

An older and by now less commonly held point of
view is that rational inquiry requires the choice of a
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Bayes prior and exclusive use of the resulting poste-
rior in inference; cf. Savage (1961) and Lindley (1953).
A modern weaker version claims: “Bayes theorem pro-
vides a powerful, flexible tool for examining the actual
or potential ranges of uncertainty which arise when
one or more individuals seek to interpret a given set
of data in light of their own assumptions and ‘uncer-
tainties about their uncertainties’,” (Smith, 1986). This
point of view, which is the philosophical foundation
of the Bayesian paradigm, has consequences. Among
them are the strong likelihood principle, which says
that all of the information in the data is contained in
the likelihood function, and the stopping time princi-
ple, which says that stopping rules are irrelevant to in-
ference. We argue that a commitment to these princi-
ples can easily lead to absurdities which are striking in
high dimensions. We see this as an argument against
ideologues.

We discuss our examples with these two types of
Bayesian analysts in mind:

I. The Bayesian who views his prior entirely as re-
flecting his beliefs and the posterior as measuring
the changes in these beliefs due to the data. Note
that this implies strict adherence to the likelihood
principle, a uniform plug-in principle, and the stop-
ping time principle. Loss functions are not specifi-
cally considered in selecting the prior.

II. The pragmatic Bayesian who views the prior as a
way of generating decision theoretic procedures,
but is content with priors which depend on the data,
insisting only that analysis starts with a prior and
ends with a posterior.

For convenience, we refer to these Bayesians as type I
and type II.

The main difference we perceive between the type
II Bayesian and a frequentist is that when faced with a
specific problem, the type II Bayesian selects a unique
prior, uses Bayes rule to produce the posterior and is
then committed to using that posterior for all further
inferences. In particular, the type II Bayesian is free
to consider a particular loss function in selecting his
prior and, to the extent that this is equivalent to us-
ing a data-dependent prior, change the likelihood; see
Wasserman (2000). That the loss function and prior are
strongly connected has been discussed by Rubin; see
Bock (2004).

We show that, in high-dimensional (non or semipara-
metric) situations Bayesian procedures based on priors
chosen by one set of criteria, for instance, reference

priors, selected so that the posterior for a possibly in-
finite dimensional parameter β converges at the min-
imax rate, can fail badly on other sets of criteria, in
particular, in yielding asymptotically minimax, semi-
parametrically efficient, or even

√
n-consistent esti-

mates for specific one-dimensional parameters, θ . We
show by example that priors leading to efficient es-
timates of one-dimensional parameters can be con-
structed but that the construction can be subtle, and
typically does not readily also give optimal global
minimax rates for infinite dimensional features of the
model. It is true, as we argue in Section 7, that by gen-
eral considerations, Bayes priors giving minimax rates
of convergence for the posterior distributions for both
single or “small” sets of parameters and optimal rates
in global metrics can be constructed, in principle. Al-
though it was shown in Bickel and Ritov (2003) that
this can be done consistently with the “plug-in prin-
ciple,” the procedures optimal for the composite loss
are not natural or optimal, in general, for either com-
ponent. There is no general algorithm for construct-
ing such priors and we illustrate the failure of classi-
cal type II Bayesian extensions (see below) such as the
introduction of hyperparameters. Of course, Bayesian
procedures are optimal on their own terms and we
prove an extension of a theorem of Doob at the end
of this paper which makes this point. As usual, the ex-
ceptional sets of measure zero in this theorem can be
quite large in nonparametric settings.

For smooth, low-dimensional parametric models, the
Bernstein–von Mises theorem ensures that for priors
with continuous positive densities, all Bayesian pro-
cedures agree with each other and with efficient fre-
quentist methods, asymptotically, to order n−1/2; see,
for example, Le Cam and Yang (1990). At the other
extreme, even with independent and identically dis-
tributed data, little can be said about the extreme
nonparametric model P , in which nothing at all is
assumed about the common distribution of the obser-
vations, P . The natural quantities to estimate, in this
situation, are bounded linear functionals of the form
θ = ∫

g(x) dP (x), with g bounded and continuous.
There are unbiased, efficient estimates of these func-
tionals and Dirichlet process priors, concentrating on
small but dense subsets of P yielding estimates equiv-
alent to order n−1/2 to the unbiased ones; see Ferguson
(1973), for instance.

The interesting phenomena occur in models between
these two extremes. To be able to even specify natural
unbounded linear functionals such as the density p at a
point, we need to put smoothness restrictions on P and,
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to make rate of convergence statements, global met-
rics such as L2 must be used. Both Bayesians and fre-
quentists must specify not only the structural features
of the model but smoothness constraints. Some of our
examples will show the effect of various smoothness
assumptions on Bayesian inference.

For ease of exposition, in each of our examples, we
consider only independent and identically distributed
(i.i.d.) data and our focus is on asymptotics and esti-
mation. Although our calculations are given almost ex-
clusively for specific Bayesian decision theoretic pro-
cedures under L2-type loss, we believe (but do not
argue in detail) that the difficulties we highlight carry
over to other inference procedures, such as the con-
struction of confidence regions. Here is one implica-
tion of such a result. Suppose that we can construct
a Bayes credible region C for an infinite dimensional
parameter β which has good frequentist and Bayesian
properties, for example, asymptotic minimax behavior
for the specified model, as well as P(β ∈ C|X) and
P(β ∈ C(X)|β) > 1 − α. Then we automatically have
a credible region q(C) for any q(β). Our examples will
show, however, that this region can be absurdly large.
So, while a Bayesian might argue that parameter esti-
mation is less important than the construction of credi-
ble regions, our examples carry over to this problem as
well.

Our examples will be discussed heuristically rather
than exhaustively, but we will make it clear when a for-
mal proof is needed. There is a body of theory in the
area (cf. Ghosal, Ghosh and van der Vaart, 2000, Kleijn
and van der Vaart, 2006, and Bickel and Kleijn, 2012,
among others), giving specific conditions under which
some finite dimensional intuition persists in higher di-
mensions. However, in this paper we emphasize how
easily these conditions are violated and the dramatic
consequences of such violations. Our examples can be
thought of as points of the parameter space to which
the prior we use assigns zero mass. Since all points of
the parameter space are similarly assigned zero mass,
we have to leave it to the readers to judge whether these
points are, in any sense, exceptional.

In Section 2, we review an example introduced in
Robins and Ritov (1997). The problem is that of esti-
mating a real parameter in the presence of an infinite
dimensional “nuisance” parameter. The parameter of
interest admits a very simple frequentist estimator
which is

√
n-consistent without any assumptions on

the nuisance parameters at all, as long as the sam-
pling scheme is reasonable. In this problem, the type I
Bayesian is unable to estimate the parameter of interest

at the
√

n-rate at all, without making severe smooth-
ness assumptions on the infinite dimensional nuisance
parameter. In fact, we show that if the nuisance pa-
rameters are too rough, a type I Bayesian is unable to
find any prior giving even a consistent estimate of the
parameter of interest. On the other hand, we do con-
struct priors, tailored to the parameter we are trying to
estimate, which essentially reproduce the frequentist
estimate. Such priors may be satisfactory to a type II
Bayesian, but surely not to Bayesians of type I. The
difficulty here is that a commitment to the strong like-
lihood principle forces the Bayesian analyst to ignore
information about a parameter which factors out of the
likelihood and he is forced to find some way of con-
necting that parameter to the parameter of interest, ei-
ther through reparameterization, which only works if
the nuisance parameter is smooth enough, or by tailor-
ing the prior to the parameter of interest.

In Section 3, we turn to the classical partial linear
regression model. We recall results of Wang, Brown
and Cai (2011) which give simple necessary and suffi-
cient conditions on the nonparametric part of the model
for the parametric part to be estimated efficiently. We
use this example to show that a natural class of Bayes
priors, which yield minimax estimates of the nonpara-
metric part of the model under the conditions given in
Wang, Brown and Cai (2011), lead to Bayesian estima-
tors of the parametric part which are inefficient. In this
case, there is auxiliary information in the form of a con-
ditional expectation which factors out of the likelihood
but is strongly associated with the amount of informa-
tion in the data about the parameter of interest. The fre-
quentist can estimate this effect directly, but the type I
Bayesian is forced to ignore this information and, de-
pending on smoothness assumptions, may not be able
to produce a consistent estimate of the parameter of in-
terest at all. The fact that, for a sieve-based frequentist
approach, two different bandwidths are needed for lo-
cal and global estimation of parameters in this problem
has been known for some time; see Chen and Shiau
(1994).

In Section 4, we consider the Gaussian white noise
model of Ibragimov and Hasminskii (1984), Donoho
and Johnstone (1994), and Donoho and Johnstone
(1995). Here, we show that from a frequentist point of
view we can easily construct uniformly

√
n-consistent

estimates of all bounded linear functionals. However,
both the type I and type II Bayesian, who are restricted
to the use of one and only one prior, must fail to esti-
mate some bounded linear functionals at the

√
n-rate.
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This is because both are committed to the plug-in prin-
ciple and, as we argue, any plug-in estimator will fail to
be uniformly consistent. On the positive side, we show
that it is easy to construct tailor-made Bayesian proce-
dures for any of the specific functionals we consider in
this section. Again, reparameterization, which in this
case is a change of basis, is important. The resulting
Bayesian procedures are capable of simultaneously es-
timating both the infinite dimensional features of the
model at the minimax rate and the finite dimensional
parameters of interest efficiently, but linear functionals
which might be of interest in subsequent inferences,
and cannot be estimated consistently, remain. We give
a graphic example, in this section, to demonstrate our
claims.

A second example, examined in Section 5, concerns
the estimation of the norm of a high-dimensional vec-
tor of means, β . Again, for a suitably large set of β ,
we can show that the priors normally used for mini-
max estimation of the vector of means in the L2 norm
do not lead to Bayesian estimators of the norm of β
which are

√
n-consistent. Yet there are simple frequen-

tist estimators of this parameter which are efficient. We
then give a constructive argument showing how a type
II Bayesian can bypass the difficulties presented by
this model at the cost of selecting a nonintuitive prior
and various inconsistencies. A type II Bayesian can use
a data-dependent prior which allows for simultaneous
estimation of β at the minimax rate and this specific
parameter of interest efficiently. These examples show
that, in many cases, the choice of prior is subtle, even
in the type II context, and the effort involved in con-
structing such a prior seems unnecessary, given that
good, general-purpose frequentist estimators are easy
to construct for the same parameters.

In Section 6, we give a striking example in which,
for Gaussian data with a high-dimensional parame-
ter space, we can, given any prior, construct a stop-
ping time such that the Bayesian, who must ignore the
nature of the stopping times, estimates the vector of
means with substantial bias. This is a common feature
of all our examples. In high dimensions, even for large
sample sizes, the bias induced by the Bayes prior over-
whelms the data.

In Section 7, we extend Doob’s theorem, showing
that if a suitably uniform

√
n-consistent estimator of

a parameter exists, then necessarily the Bayesian es-
timator of the parameter is

√
n-consistent on a set of

parameter values which has prior probability one. We
also give another elementary result showing that it is in
principle possible to construct Bayes priors giving both

global and local minimax rates, using a suitable com-
bination of loss functions. We summarize our findings
in Section 8.

In Appendix B, we give proofs of many of the asser-
tions we have made in the previous sections. Through-
out this paper, θ is a finite-dimensional parameter of
interest, β is an infinite-dimensional nuisance param-
eter and g is an infinite-dimensional parameter which
is important for estimating θ efficiently, but is missing
from the joint likelihood for (θ, β); g might describe
the sampling scheme, the loss function or the specific
functional θ(β) = θ(β, g) of interest. We use π for pri-
ors and g and β are given as g and β when it is easier
to think of them as infinite-dimensional vectors than
functions.

2. STRATIFIED RANDOM SAMPLING

Robins and Ritov (1997) consider an infinite-dimen-
sional model of continuously stratified random sam-
pling in which one has i.i.d. observations Wi = (Xi,Ri,

Zi), i = 1, . . . , n; the Xi are uniformly distributed in
[0,1]d ; and Zi = RiYi . The variables Ri and Yi are
conditionally independent given Xi and take values in
the set {0,1}. The function g(X) = E(R|X) is known,
with g > 0 almost everywhere, and β(X) = E(Y |X) is
unknown. The parameter of interest is θ = E(Y ).

It is relatively easy to construct a reasonable estima-
tor for θ in this problem. Indeed, the classical Horvitz–
Thompson (HT) estimator (cf. Cochran, 1977),

θ̂ = n−1
n∑

i=1

Zi/g(Xi),

solves the problem nicely. Because

E
{
RY/g(X)

} = E
{
E(R|X)E(Y |X)/g(X)

}
= EE(Y |X) = θ,

the estimator is consistent without any further assump-
tions. If we assume that g is bounded from below, the
estimator is

√
n-consistent and asymptotically normal.

2.1 Type I Bayesian Analysis

As g is known and we have assumed that the Xi

are uniformly distributed, the only parameter which re-
mains is β , where β(X) = E(Y |X). Let π be a prior
density for β with respect to some measure μ. The joint
density of β and the observations W1, . . . ,Wn is given
by

p(β,W) = π(β)
∏

i:Ri=1

β(Xi)
Yi
(
1 − β(Xi)

)1−Yi

·
n∏

i=1

g(Xi)
Ri
(
1 − g(Xi)

)1−Ri ,
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as Zi = Yi when Ri = 1. But this means that the poste-
rior for β has a density π(β|W) with

π(β|W) ∝ π(β)
∏

i:Ri=1

β(Xi)
Yi
(
1 − β(Xi)

)1−Yi .(1)

Of course, this is a function of only those observa-
tions for which Ri = 1, that is, for which the Yi are
directly observed. The observations for which Ri = 0
are deemed uninformative.

If β is assumed to range over a smooth parametric
model, and the known g is bounded away from 0, one
can check that the Bernstein–von Mises theorem ap-
plies, and that the Bayesian estimator of θ is efficient,√

n-consistent and necessarily better than the HT es-
timator. Heuristically, this continues to hold for mini-
max estimation of θ and β over “small” nonparametric
models for β; that is, sets of very smooth β; see Bickel
and Kleijn (2012).

In the nonparametric case, if we assume that the
prior for β does not depend on g, then, because the
likelihood function does not depend on g, the type I
Bayesian will use the same procedure whether g is
known or unknown; see (1). That is, the type I Bayesian
will behave as if g were unknown. This is problematic
because, as Robins and Ritov (1997) argued and we
now show, unless β or g are sufficiently smooth, the
type I Bayesian cannot produce a consistent estimator
of θ . To the best of our knowledge, the fact that there
is no consistent estimator of θ when g is unknown, un-
less β or g are sufficiently smooth, has not been em-
phasized before.

Note that our assumption that the prior for β does
not depend on g is quite plausible. Consider, for exam-
ple, an in-depth survey of students, concerning their
scholastic interests. The design of the experiment is
based on all the information the university has about
the students. However, the statistician is interested only
in whether a student is firstborn or not. At first, he gets
only the list of sampled students with their covariates.
At this stage, he specifies his prior for β . If he is now
given g, there is no reason for him to change what he
believes about β , and no reason for him to include in-
formation about g in his prior.

The fact that, if g is unknown, θ cannot be estimated
unless either g or β is smooth enough, is true even in
the one-dimensional case. Our analysis is similar to
that in Robins et al. (2009). Suppose the Xi are uni-
formly distributed on the unit interval, and g is given
by

g(x) = 1

2
+ 1

4

m−1∑
i=0

siψ(mx − i),

where m = mn is such that mn/n → ∞; the sequence
s1, . . . , sm ∈ {−1,1} is assumed to be exchangeable
with

∑
si = 0, and ψ(x) = 1(0 ≤ x < 1

2) − 1(1
2 ≤ x <

1). Furthermore, assume that β(x) ≡ 5/8 or β(x) ≡
g(x). With probability converging to 1, there will be no
interval of length 1/m with more than one Xi . How-
ever, given that there is one Xi ∈ (j/m, (j + 1)/m),
then the distribution of (Ri,Zi) is the same whether
β(x) ≡ 5/8 or β(x) ≡ g(x), and hence θ is not identi-
fiable; it can be either 5/8 or 1/2. This completes the
proof.

Note that, in principle, both E(YR|X) = β(X)g(X)

and E(R|X) = g(X) are, in general, estimable, but
not uniformly to adequate precision on “rough” sets of
(g,β). One can also reparameterize in terms of ξ(X) =
E(YR|X) and θ . This forces g into the likelihood, but
one still needs to assume ξ(X) is very smooth. In the
above argument, the roughness of the model goes up
with the sample size, and this is what prevents consis-
tent estimation.

2.2 Bayesian Procedures with Good Frequentist
Behavior

In this section, we study plausible priors for Type II
Bayesian inference. These priors are related to those
in Wasserman (2004), Harmeling and Toussaint (2007)
and Li (2010). We need to build knowledge of g into
the prior, as we argued in Section 2.1. We do so first by
following the suggestion in Harmeling and Toussaint
(2007) for Gaussian models.

Following Wasserman (2004), we consider now a
somewhat simplified version of the continuously strat-
ified random sampling model, in which the Xi are uni-
formly distributed on 1, . . . ,N , with N = Nn 	 n,
such that, with probability converging to 1, there are
no ties. In this case, the unknown parameter β is just
the N -vector, β = (β1, . . . , βN). Our goal is to estimate
θ = N−1 ∑N

i=1 βi .
To construct the prior, we proceed as follows. As-

sume that the components βi are independent, with βi

distributed according to a Beta distribution with param-
eters pτ (i) and 1 − pτ (i), and

pτ (i) = eτ/gi

1 + eτ/gi
,

with τ an unknown hyperparameter. Let θ∗ = N−1 ·∑N
i=1 pτ (i). Note that under the prior θ = N−1 ·∑N
i=1 βi = θ∗ + OP (N−1/2), by the CLT. We now aim

to estimate θ∗. In the language of Lindley and Smith
(1972), we shift interest from a random effect to a
fixed effect. This is level 2 analysis in the language
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of Everson and Morris (2000). The difference between
θ and θ∗ is apparent in a full population analysis; see,
for example, Berry, Reese and Larkey (1999) and Li
(1999), where the real interest is in θ∗.

In this simplified model, marginally, X1, . . . ,Xn are
i.i.d. uniform on 1, . . . ,N , Yi and Ri are indepen-
dent given Xi , with Yi |Xi ∼ Binomial(1,pτ (Xi)), and
Ri |Xi ∼ Binomial(1, g(Xi)). The log-likelihood func-
tion for τ is given by

	(τ ) = ∑
Ri=1

[
Yi logpτ (Xi)+ (1−Yi) log

(
1−pτ (Xi)

)]
.

This is maximized at τ̂ satisfying

0 = n−1
∑
Ri=1

(
Yi

ṗτ̂ (Xi)

pτ̂ (Xi)
− (1 − Yi)

ṗτ̂ (Xi)

1 − pτ̂ (Xi)

)

= n−1
∑
Ri=1

ṗτ̂ (Xi)

pτ̂ (Xi)(1 − pτ̂ (Xi))

(
Yi − pτ̂ (Xi)

)
= n−1

∑
Ri=1

(
Yi − pτ̂ (Xi)

)
/g(Xi)

= θ̂HT − 1

n

n∑
i=1

Ri

g(Xi)
pτ̂ (Xi),

where ṗτ is the derivative of pτ with respect to τ .
A standard Bernstein–von Mises argument shows that
τ̂ is within oP (n−1/2) of the Bayesian estimator of τ ,
thus θ̂∗

B , the Bayesian estimator of θ∗, satisfies

θ̂∗
B = 1

N

N∑
i=1

pτ̂ (i) + oP

(
n−1/2)

= 1

n

n∑
i=1

Ri

g(Xi)
pτ̂ (Xi) + OP

(
n−1/2)

= θ̂HT + OP

(
n−1/2)

(where OP and oP are evaluated under the population
model).

The estimator presented in Li (2010) is somewhat
similar; however, his estimator is inconsistent, in gen-
eral, and consistent only if E(Y |R = 1) = EY (as, in
fact, his simulations demonstrate).

With this structure, it is unclear how to define sets
of β on which uniform convergence holds. This con-
struction merely yields an estimator equivalent to the
nonparametric HT estimator.

This prior produces a good estimator of θ∗ but,
for other functionals, for example, E(Y |g(X) > a) or
E(β ′β), the prior leads to estimators which are not even

consistent. So, if we are stuck with the resulting poste-
rior, as a type II Bayesian would be, we have solved the
specific problem with which we were faced at the cost
of failing to solve other problems which may come to
interest us.

3. THE PARTIAL LINEAR MODEL

In this section, we consider the partial linear model,
also known as the partial spline model, which was
originally discussed in Engle et al. (1986); see also
Schick (1993). In this case, we have observations Wi =
(Xi,Ui, Yi) such that

Yi = θXi + β(Ui) + εi,(2)

where the (Xi,Ui) form an i.i.d. sample from a joint
density p(x,u), relative to Lebesgue measure on the
unit square, [0,1]2; β is an element of some class of
functions B; and the εi are i.i.d. standard-normal. The
parameter of interest is θ and β is a (possibly very non-
smooth) nuisance parameter. Let g(U) = E(X|U). For
simplicity, assume that U is known to be uniformly dis-
tributed on the unit interval.

3.1 The Frequentist Analysis

Up to a constant, the log-likelihood function equals

	(θ,h,p) = −(
y − θx − β(u)

)2
/2 − logp(x,u).

It is straightforward to argue that the score function for
θ , the derivative of the log-likelihood in the least fa-
vorable direction for estimating θ (cf. Schick, 1993;
Bickel et al., 1998), is given by

	̃θ (θ, h) = (
x − g(u)

)(
y − θx − β(u)

) = (
x − g(u)

)
ε,

and that the semiparametric information bound for θ is

I = E
[
var(X|U)

]
.

We assume that I > 0 (which implies, in particular,
that X is not a function of U ). Regarding estimation
of θ , intuition based on (2) says that for small neigh-
borhoods of u, the conditional expectation of Y given
X is linear with intercept β(u), and slope θ which does
not depend on the neighborhood. The efficient estima-
tor should average the estimated slopes over all such
neighborhoods.

Indeed, under some regularity conditions, an effi-
cient estimator can be constructed along the following
lines. Find initial estimators g̃ and β̃ of g and β , re-
spectively, and estimate θ by computing

θ̂ =
∑

(Xi − g̃(Ui))(Yi − β̃(Ui))∑
(Xi − g̃(Ui))2 .
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The idea here is that θ is the regression coefficient as-
sociated with regressing Y on X, conditioning on the
observed values of U . In order for this estimator to be√

n-consistent (or minimax), we need to assume that
the functions g and β are smooth enough that we can
estimate them at reasonable rates.

We could, for example, assume that the functions β

and g satisfy Hölder conditions of order α and δ, re-
spectively. That is, there is a constant 0 ≤ C < ∞ such
that |β(u) − β(v)| ≤ C|u − v|α and |g(u) − g(v)| ≤
C|u− v|δ for all u, v in the support of U . We also need
to assume that var(X|U) has a version which is con-
tinuous in u. In this case, it is proved in Wang, Brown
and Cai (2011) that a necessary and sufficient condi-
tion for the existence of a

√
n-consistent and semi-

parametrically efficient estimator of θ is that α + δ >

1/2.

3.2 The Type I Bayesian Analysis

We assume that the type I Bayesian places indepen-
dent priors on p(u, x), β and θ , π = πp ×πβ ×πθ . For
example, the prior on the joint density may be a func-
tion of the environment, the prior on the nonparametric
regression function might be a function of an underly-
ing physical process, and the third component of the
prior might reflect our understanding of the measure-
ment engineering. We have already argued that such
assumptions are plausible. The log-posterior-density is
then given by

−
n∑

i=1

(
Yi − θXi − β(Ui)

)2
/2 + logπθ(θ) + logπβ(β)

+
n∑

i=1

logp(Ui,Xi) + logπp(p) + A,

where A depends on the data only. Note that the pos-
terior for (θ, β) does not depend on p. The type I
Bayesian would use the same estimator regardless of
what is known about the smoothness of g.

Suppose now that, essentially, it is only known that
β is Hölder of order α, while the range of U is divided
up into intervals such that, on each of them, g is either
Hölder of order δ0 or of order δ1, with

α + δ0 < 1/2 < α + δ1.

A
√

n-consistent estimator of θ can only make use of
data from the intervals on which g is Hölder of order
of δ1. The rest should be discarded. Suppose these in-
tervals are disclosed to the statistician. If the number
of observations in the “good” intervals is of the same

order as n, then the estimator is still
√

n-consistent.
For a frequentist, there is no difficulty in ignoring the
nuisance intervals—θ is assumed to be the same ev-
erywhere. However, the type I Bayesian cannot ignore
these intervals. In fact, his posterior distribution cannot
contain any information on which intervals are good
and which are bad.

More formally, let us consider a discrete version
of the partial linear model. Let the observations be
Zi = (Xi1,Xi2, Yi1, Yi2), with Z1, . . . ,Zn indepen-
dent. Suppose

Xi1 ∼ N(gi,1),

Xi2 ∼ N(gi + ηi,1),

Yi1 = θXi1 + βi + εi1,

Yi2 = θXi2 + βi + μi + εi2,

εi1, εi2
i.i.d.∼ N(0,1),

where Xi1,Xi2, εi1, εi2 are all independent, while
gi, ηi, βi , and μi are unknown parameters. We assume
that under the prior (g1, η1), . . . , (gn, ηn) are i.i.d. in-
dependent of θ and the (β1,μ1), . . . , (βn,μn) are i.i.d.
This model is connected to the continuous version, by
considering isolated pairs of observations in the model
with values differing by O(1/n). The Hölder con-
ditions become ηi = OP (n−δi ), and μi = OP (n−α),
where δi ∈ {δ0, δ1}, as above.

From a frequentist point of view, the (Xi1,Xi2, Yi1,

Yi2) have a joint normal distribution and we would then
consider the statistic[

Xi2 − Xi1
Yi2 − Yi1

]
∼ N

([
ηi

θηi + μi

]
,

[
2 2θ

2θ 2θ2 + 2

])
.

Now consider the estimator

θ̂ =
∑

δi=δ1
(Xi2 − Xi1)(Yi2 − Yi1)∑
δi=δ1

(Xi2 − Xi1)2

= θ +
∑

δi=δ1
(Xi2 − Xi1)(εi2 − εi1)∑
δi=δ1

(Xi2 − Xi1)2

+
∑

δi=δ1
(Xi2 − Xi1)μi∑

δi=δ1
(Xi2 − Xi1)2

= θ + OP

(
n−1/2)+ R,

where

R =
∑

δi=δ1
ηiμi∑

δi=δ1
(Xi2 − Xi1)2 = oP

(
n−1/2),

since α + δ1 > 1/2.
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Note that if the sum were over all pairs, and if the
number of pairs with δi = δ0 is of order n, then the es-
timator would not be

√
n-consistent, since now

√
nR

diverges, almost surely. In general, this model involves
2n + 1 parameters and the parameter of interest can-
not be estimated consistently unless the nuisance pa-
rameters can be ignored, at least, asymptotically. How-
ever, these parameters can only be ignored if we con-
sider the smooth pairs—that is, those pairs for which
α + δi > 1/2, making the connection between variabil-
ity, here, and smoothness, in the first part of this sec-
tion. Of course, the information on which pairs to use
in constructing the estimator is unavailable to the type
I Bayesian.

The type I Bayesian does not find any logical contra-
diction in this failure. The parameter combinations on
which the Bayesian estimator fails to be

√
n-consistent

have negligible probability, a priori. He assumes that a
priori, β and g are independent and short intervals are
essentially independent since β and g are very rough.
Under these assumptions, the intervals on which g is
Hölder of order δ0 contribute, on average, 0 to the es-
timator. There are no data in these intervals that con-
tradict this a priori assessment. Hence, assumptions,
made for convenience in selecting the prior, dominate
the inference. The trouble is that, as discussed in Ap-
pendix A, even if we assume a priori that β and g are
independent, their cross-correlation may be nonzero
with high probability, in spite of the fact that this ran-
dom cross-correlation has mean 0.

4. THE WHITE NOISE MODEL AND BAYESIAN
PLUG-IN PROPERTY

We now consider the white noise model in which we
observe the process

dX(t) = β(t) dt + n−1/2 dW(t), t ∈ (0,1),

where β is an unknown L2-function and W(t) is
standard Brownian motion. This model is asymptoti-
cally equivalent to models in density estimation and
nonparametric regression; see Nussbaum (1996) and
Brown and Low (1996). It is also clear that this model
is equivalent to the model in which we observe

Xi = βi + n−1/2εi,
(3)

εi
i.i.d.∼ N(0,1), i = 1,2, . . . ,

where Xi , βi and εi are the ith coefficients in an
orthonormal (e.g., Fourier) series expansion of X(t),
β(t) and W(t), respectively. Note that the entire se-
quence X1,X2, . . . is observed, and n serves only as a

scaling parameter. We are interested in estimating β =
(β1, β2, . . .) as an object in 	2 with the loss function
‖β̂ −β‖2 and linear functionals θ = g(β) = ∑∞

i=1 giβi

with (g1, g2, . . .) ∈ 	2, also under squared error loss.
From a standard frequentist point of view, estimation
in this problem is straightforward. Simple estimators
achieving the optimal rate of convergence are given in
the following proposition.

PROPOSITION 4.1. Assume that β ∈ Bα = {β :
|βi | ≤ i−α} and α > 1/2. The estimator θ̂ = ∑

giXi

is
√

n-consistent for any g ∈ 	2 and the estimator

β̂i =
{

Xi, iα ≤ n1/2,
0, iα > n1/2,

achieves the minimax rate of convergence, n−(2α−1)/2α .

The proof is given in Appendix B.

4.1 The failure of Type I Bayesian analysis

A critical feature of Bayesian procedures for estimat-
ing linear functionals is that they necessarily have the
plug-in property (PIP). For example, for squared error
loss, since

Eg(β̂) =
n∑

i=1

giEβ̂i ,

we have ĝ(β) = g(β̂), for any Bayesian estimators of
g(β) and β based on the same prior.

We say that β̂ is a uniformly efficient plug-in estima-
tor for a set  of functionals and model P if{

r−2
n ‖β̂ − β‖2

2 + n sup
θ∈

(
θ(β̂) − θ

)2
}

= OP (1),

and θ̂ = θ(β̂) is semiparametrically efficient for θ ,
where rn is the minimax rate for estimation of β .

Bickel and Ritov (2003) argued that there is no uni-
formly efficient plug-in estimator in the white noise
model when  is large enough, for example, the set
of all bounded linear functionals. Every plug-in esti-
mator fails to achieve either the optimal nonparametric
rate for estimating β or

√
n-consistency as a plug-in-

estimator (PIE) of at least one bounded linear func-
tional g(β). The argument given in Bickel and Ritov
(2003) that no estimator with the PIP can be uni-
formly efficient in the white noise model can be refined
slightly as follows.

We need the following lemma; the proof of which is
given in Appendix B.
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LEMMA 4.2. Suppose X ∼ N(β,σ 2), |β| ≤
a ≤ σ . Let β̂ = β̂(X) be the posterior mean when
the prior is π , assuming π is supported on [−a, a],
and let bβ be its bias under β . Then |bβ | + |b−β | >

2(1−(a/σ)2)|β|. In particular, if π is symmetric about
0, then |bβ | > (1 − (a/σ)2)|β|.

This lemma shows that any Bayesian estimator is
necessarily biased and puts a lower bound on this bias.
We use this lemma to argue that any Bayesian estimator
will fail to yield

√
n-consistent estimators for at least

one linear functional.

THEOREM 4.3. For any Bayesian estimator β̂ with
respect to prior π supported on Bα , with α > 1/2,
there is a pair (g,β) ∈ 	2 × Bα such that n[g(β̂) −
g(β)]2 p→ ∞. In fact, lim infn→∞ n(2α−1)/4α[Eβg(β̂)−
g(β)] > 0.

PROOF. It follows from Lemma 4.2 that for any
i > 2n1/2α there are βi such that if bi = Eβ̂i − βi then
|bi | > 3i−α/4. Define

gi =
⎧⎨⎩0, i ≤ 2n1/2α ,

Cn(2α−1)/4αi−α, i > 2n1/2α, bi > i−α/2,
−Cn(2α−1)/4αi−α, i > 2n1/2α, bi < −i−α/2,

where C is such that
∑∞

i=1 g2
i = 1. (Note that C is

bounded away from 0 and ∞.) We have

E

[ ∞∑
i=1

gi(β̂i − βi)

]
≥ 3Cn(2α−1)/4α

∑
i>2n1/2α

i−2α/4

≥ 3Cn−(2α−1)/4α/4. �
Thus, any Bayesian estimator will fail to achieve op-

timal rates on some pairs (g,β). These pairs are not
unusual. Actually they are pretty “typical” members of
	2 × Bα . In fact, for any Bayesian estimator β̂ and for
almost all β with respect to the distribution with inde-
pendent uniform coordinates on Bα , there is a g such
that g(β̂) is inconsistent and asymptotically biased, as
in the theorem. Formally, let μ be a probability mea-
sure such that the βi are independent and uniformly
distributed on [−i−α, i−α]. Then, for any sequence of
Bayesian estimators, {β̂n},

lim inf
n→∞ μ

{
β : sup

g∈	2

n(2α−1)/4α[Eβg(β̂n)

− g(β)
]
> M

}
= 1,

for some M > 0. This statement follows from the proof
of the Theorem 4.3, noting that μ{|bi | > i−α/2} > 1/2.

What makes the pairs that yield inconsistent estima-
tors special, is only that the sequences β1, β2, . . . and
g1, g2, . . . are nonergodic. Each of them has a non-
trivial autocorrelation function, and the two autocor-
relation functions are similar (see Appendix A). The
prior suggests that such pairs are unlikely and, there-
fore, that the biases of the estimators of each compo-
nent cancel each other out. If the prior distribution rep-
resents a real physical phenomenon, this exact cance-
lation might be reasonable to assume, by the law of
large numbers, and the statistician should not worry
about it. If, on the other hand, the prior is a way to
express ignorance or subjective belief, then the analyst
should worry about these small biases. This is partic-
ularly true if the only reason for assuming that these
small biases are not going to accumulate is mathemat-
ical convenience. Indeed, in high-dimensional spaces,
auto-correlation functions may be complex, with un-
known neighborhood structures which are completely
hidden from the analyst.

We consider a Bayesian model to be honestly non-
parametric on Bα , if the distribution of βi , given X−i ,
is symmetric around 0, and P(βi > εi−α|X−i) > ε,
for some ε > 0, where X−i = X1, . . . ,Xi−1,Xi+1, . . . .
That is, at least in some sense, all the components of βi

are free parameters. In this case, we have the follow-
ing.

THEOREM 4.4. Let the prior π be honestly non-
parametric on Bα and 1/2 < α < 3/4. Suppose g =
(g1, g2, . . .) ∈ Bα , and lim sup

√
n|∑∞

i=νn1/2α giβi | =
∞ for some ν > 1. Then the Bayesian estimator of
g(β) = ∑∞

i=1 giβi is not
√

n-consistent.

Note that if the last condition is not satisfied, then an
estimator that simply ignores the tails (i > n1/2α) could
be

√
n-consistent. However, for g,β ∈ Bα , in general,

all the first n1/(4α−2) terms must be used, a number
which is much greater than n1/2α for α in the range
considered.

PROOF OF THEOREM 4.4. Again, we consider the
bias, as in the second part of Lemma 4.2. Under our
assumptions, we have

√
n

∣∣∣∣ ∑
i>νn1/2α

gi(Eβ̂i − βi)

∣∣∣∣
= √

n

∣∣∣∣ ∑
i>νn1/2α

(1 − di)giβi

∣∣∣∣ (
0 ≤ di ≤ ni−2α)

≥ √
n

∣∣∣∣ ∑
i>νn1/2α

giβi

∣∣∣∣− √
n

∑
i>νn1/2α

n|giβi |i−2α
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≥ √
n

∣∣∣∣ ∑
i>νn1/2α

giβi

∣∣∣∣− √
n

∑
i>νn1/2α

ni−4α

= √
n

∣∣∣∣ ∑
i>νn1/2α

giβi

∣∣∣∣− o(1).
�

Note that the assumptions of the theorem are natu-
ral if the prior corresponds to the situation in which
the βi tend to 0 slowly, so that we need essentially all
the available observations to estimate g(β) at the

√
n-

rate. As in the last two examples, if either βi or gi con-
verges to 0 quickly enough—that is, β or g are smooth
enough—then the difficulty disappears, as the tails do
not contribute much to the functional g(β) and they
can be ignored. However, when the prior is supported
on Bα , then the estimator β̂i = Xi is unavailable to the
Bayesian (whatever the prior) and g(β) cannot be esti-
mated at the minimax rate with g ∈ Bα , much less 	2.

4.2 Type II Analysis

It is easy to construct priors which give the global
and local minimax rates separately. For the nonpara-
metric part β , one can select a prior for which the
βi are independent and the estimator of βi based on
Xi ∼ N(βi, n

−1) with βi restricted to the interval
[−i−α, i−α] is minimax; see Bickel (1981). For the
parametric part, one can use an improper prior under
which the βi are independent and uniformly distributed
on the real line. This prior works, but it completely ig-
nores the constraints on the coordinates of β . If one
permits priors which are not supported on the parame-
ter space, then this prior is perfect, in the sense that any
linear functional can be estimated at the minimax rate.

If we are permitted to work with a prior which is not
supported by the parameter space, then we can con-
struct a prior which yields good estimators for both
β and any particular linear functional. Indeed, sup-
pose that gi �= 0, infinitely often, and change bases
so that X̃ = B ′X, where B is an orthonormal ba-
sis for 	2 with first column equal to g/‖g‖. Note
that X̃1 = ∑∞

j=1 gjXj/‖g‖ and the X̃i are indepen-

dent, with X̃i ∼ N(β̃i, n
−1), i = 0,1, . . . , where β̃1 is

the parameter of interest, and ‖β̃‖2 = ‖β‖2. Thus, a
Bayesian who places a flat prior on θ = β̃1 and a stan-
dard nonparametric prior on the other coordinates of β̃ ,
such that β̃i is estimated by X̃i , properly thresholded,
will be able to estimate θ efficiently and (β̃2, β̃3, . . .) at
the minimax rate, simultaneously; cf. Zhao (2000). Of
course, this prior was tailor-made for the specific func-
tional θ = g(β) and would yield estimators of other
linear functionals which are not

√
n-consistent, should

the posterior be put to such a task.

4.3 An Example

To demonstrate that the effects described above have
real, practical consequences, consider the following ex-
ample. Take β = vec(M0) and g = vec(M1), where
M0 and M1 are the two images shown in Figure 1(a)
and (d), respectively. That is, each image is represented
by the matrix of the gray scale levels of the pixels, and
vec(M) is the vector obtained by piling the columns
of M together to obtain a single vector. These images
were sampled at random from the images which come
bundled in the standard distribution of Matlab. The
images have been modified slightly, so they both have
the same 367×300 geometry, but nothing else has been
done to them. To each element of β , we added an inde-
pendent N(0,169) random variable. This gives us X,
shown in Figure 1(b). Let π be that prior which takes
the βi i.i.d. N(μ, τ 2), where μ = ∑

wiβi/
∑

wi , with
wi independent and identically uniformly-distributed
on (0,1) and τ 2 = 315.786, the true empirical vari-
ance of the βi . The resulting nonparametric Bayesian
estimator is shown in Figure 1(c). The mean squared
error (MSE) of this Bayesian estimator is approxi-
mately 65% smaller than that of the MLE. Now con-
sider the functional defined by g, shown in Figure 1(d).
Applying g to X yields an estimator with root mean
squared error (RMSE) of 1.04, but plugging-in the
much cleaner Bayesian estimator of Figure 1(c) gives
an estimator with a RMSE of 19.01, almost twenty
times worse than the frequentist estimator. Of course,
the biggest difference between these two estimators
is bias: 0.01 for the frequentist versus 19.00 for the
Bayesian. These RMSE calculations were based on
1000 Monte Carlo simulations.

There is no reason to suspect that these images are
correlated—they were sampled at random from an ad-
mittedly small collection of images—and they are cer-
tainly unrelated, one image shows the results of an
astrophysical fluid jet simulation and the other is an
image of the lumbar spine, but neither is permutation
invariant nor ergodic, and this implies that the two im-
ages may be strongly positively or negatively corre-
lated, just by chance; see Figure 2 and Appendix A.

5. ESTIMATING THE NORM OF A
HIGH-DIMENSIONAL VECTOR

We continue with our analysis of the white noise
model, but we consider a different, nonlinear Euclidean
parameter of interest: θ = ∑∞

i=1 β2
i .

A natural estimator of βi is given in Proposition 4.1,
and one may consider a plug-in estimator of the param-
eter, given by θ̃ = ∑

β̃2
i = ∑

i<n1/2α X2
i . This estimator
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FIG. 1. Estimating linear functionals: (a) the vector β; (b) the observations X; (c) the Bayesian estimator; (d) the functional g.

FIG. 2. A scatter plot and histograms of the data X and functional g. (a) A scatter plot of 5% of all pairs, chosen at random. (b) Joint and
marginal histograms.
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achieves the minimax rate for estimating β and θ̃ is an
efficient estimator of the Euclidean parameter, so long
as α > 1. But β̃2

i has bias 1/n as an estimator of β2
i .

Summing i from 1 to n, we see that the total bias is
n−1+1/2α , which is much larger than n−1/2 if α < 1.
The traditional solution to this problem is to simply un-
bias the estimator; cf. Bickel and Ritov (1988).

PROPOSITION 5.1. Suppose 3/4 < α < 1, then an
efficient estimator of θ is given by

θ̂ = ∑
i≤m

(
X2

i − n−1),(4)

for n1/(4α−2) < m ≤ n.

PROOF. Clearly, the bias of the estimator is bound-
ed by ∑

i>m

i−2α < m−(2α−1) = oP

(
n−1/2),

and its variance is bounded by

n−1
∑
i≤m

(
4β2

i + 2/n
) = 4θn−1 + oP

(
n−1),

demonstrating
√

n-consistency. The estimator is effi-
cient since θ̂ is asymptotically normal, and 1/4θ is
the semiparametric information for the estimation of θ .

�
This is a standard frequentist approach: there is a

problem and the solution is justified because it works—
it produces an asymptotically efficient estimator of the
parameter of interest—not because it fits a particular
paradigm. The difficulty with the naive, plug-in estima-
tor

∑
i≤m β̂2

i = ∑
i≤m X2

i is that it is biased, but this is
a problem that is easy to correct. Of course, this simple
fix is not available to the Bayesian, as we show next.

5.1 The Bayesian Analysis: An Even Simpler
Model

We start with a highly simplified version of the white
noise model. To avoid confusion, we change notation
slightly and consider

Y1, . . . , Yk independent with Yi ∼ N
(
μi, σ

2),(5)

θ = θ(μ1, . . . ,μk;g1, . . . , gk) =
k∑

i=1

giμ
2
i ,(6)

where the gi are known constants. Here, we consider
the asymptotic performance of estimators of θ with
σ 2 = σ 2

k → 0 as k → ∞. Let

θ̂ =
k∑

i=1

gi

(
Y 2

i − σ 2).

Clearly,

Eθ̂ = θ, var θ̂ = 4σ 2
k∑

i=1

g2
i μ

2
i + 2σ 4

k∑
i=1

g2
i .

Suppose that the μi are a priori i.i.d. N(0, τ 2), with
τ 2 = τ 2

k known, and consider the situation in which
g1 ∼ · · · ∼ gk . If k−1/2σ 2

k � τ 2
k � σ 2

k , then the signal-
to-noise ratio τ 2/σ 2 is strictly less than 1 and no esti-
mator of μi performs much better than simply setting
μ̂i = 0. On the other hand, θ̂ remains a good estimator
of θ , with coefficient of variation, O(

√
kσ 2/kτ 2), con-

verging to 0. We call this paradoxical regime the nonlo-
calizable range, as we can estimate global parameters,
like θ , but not the local parameters, μ1, . . . ,μk .

A posteriori, the μi ∼ N(τ 2Yi/(σ
2 + τ 2), τ 2σ 2/

(σ 2 + τ 2)) and the Bayesian estimator of θ is given
by

k∑
i=1

giE
(
μ2

i |Yi

) = σ 4 + 2τ 2σ 2

(σ 2 + τ 2)2

k∑
i=1

g2
i τ

2

+ τ 4

(σ 2 + τ 2)2

k∑
i=1

gi

(
Yi − σ 2).

This expression has the structure of a Bayesian estima-
tor in exponential families: a weighted average of the
prior mean and the unbiased estimator. If the signal-to-
noise ratio is small, τ 2 � σ 2, almost all the weight is
put on the prior. This is correct, since the variance of
θ , under the prior, is much smaller than the variance
of the unbiased estimator. So, if we really believe the
prior, the data can be ignored at little cost. However, in
frequentist terms, the estimator is severely biased and,
for a type II Bayesian, nonrobust.

The Achilles heel of the Bayesian approach is
the plug-in property. That is, E(

∑m
i=1 μ2

i |data) =∑m
i=1 E(μ2

i |data). However, when the signal-to-noise
ratio is infinitesimally small, any Bayesian estimator
must employ shrinkage. Note that, in particular, the
unbiased estimator Y 2

i − σ 2 of μ2
i cannot be Bayesian,

because it is likely to be negative and is an order of
magnitude larger than μ2

i .
A “natural” fix to the nonrobustness of the i.i.d. prior,

is to introduce a hyperparameter. Let τ 2 be an unknown
parameter, with some smooth prior. Marginally, under
the prior, Y1, . . . , Yk are i.i.d. N(0, σ 2 + τ 2). By stan-
dard calculations, it is easy to see that the MLE of τ 2 is
τ̂ 2 = k−1 ∑k

i=1(Y
2
i −σ 2). By the Bernstein–von Mises

theorem, the Bayesian estimator of τ 2 must be within
oP (k−1/2) of τ̂ 2. If g1 = · · · = gk and we plug τ = τ̂
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into the formula for the Bayesian estimator, we get a
weighted average of two estimators of θ , both of which
are equal to θ̂ . But, in general, τ̂ is strictly different
from θ̂ and this estimator is inconsistent. Of course,
the Bayesian estimator is not obtained by plugging-in
the estimated value of τ , but the difference would be
small here, and the Bayesian estimator would perform
poorly.

We can, of course, select the prior so that the
marginal variance is directly relevant to estimating θ .
One way to do this is to assume that τ 2 has some
smooth prior and, given τ 2, the μi are i.i.d. N(0,

(τ 2/gi)−σ 2). Then Yi ∼ N(0, τ 2/gi), marginally, and
the marginal log-likelihood function is

−k log
(
τ 2)/2 −

k∑
i=1

giY
2
i /2τ 2.

In this case, τ̂ 2 = k−1 ∑k
i=1 giY

2
i and the posterior

mean of
∑k

i=1 giμ
2
i is approximately

∑k
i=1 gi(τ̂

2/gi −
σ 2) = ∑k

i=1 gi(Y
2
i − σ 2), as desired.

This form of the prior variance for the μi is not
accidental. Suppose, more generally, that μi ∼ N(0,

τ 2
i (ρ)), a priori, for some hyperparameter ρ. Then the

score equation for ρ̂ is
∑k

i=1 wi(ρ̂)Y 2
i = ∑k

i=1 wi(ρ̂) ·
(τi(ρ̂) + σ 2), where wi(ρ) = τi(ρ)τ̇i(ρ)/(τi(ρ̂) +
σ 2)2. If we want the weight wi to be proportional to
gi , then we get a simple differential equation, the gen-
eral solution of which is given by (τi(ρ) + σ 2)−1 =
giρ + di . Hence, the general form of the prior variance
is

τ 2
i (ρ) = (giρ + di)

−1 − σ 2.

The prior suggested above simply takes di = 0, for
all i. If the type II Bayesian really believes that all the
μi should have some known prior variance τ 2

0 , he can
take di = (τ 2

0 + σ 2)−1 − gi , obtaining the expression

τ 2
i (ρ) = τ 2

0 + (ρ − 1)(τ 2 + σ 2)σ 2gi

1 + (ρ − 1)(τ 2 + σ 2)σ 2gi

.

If the variance of the μi really is τ 2
0 , then the poste-

rior for the hyperparameter ρ will concentrate on 1 and
the τ 2

i will concentrate on τ 2
0 . If, on the other hand, τ 2

is unknown, the resulting estimator will still perform
well, although the expression for τ 2

i is quite arbitrary.
The discussion above holds when we are interested

in estimating the hyperparameter
∑k

i=1 giτ
2
i (ρ). This

is a legitimate change in the rules and the resulting es-
timator can be used to estimate θ in the nonlocaliz-
able regime, because the main contribution to the es-
timator is the contribution of the prior, conditioning

on τ 2
i (ρ). However, when τ 2

i (ρ) ≈ σ 2, there may be
a clear difference between the Bayesian estimators of∑k

i=1 τ 2
i (ρ) and

∑k
i=1 μ2

i , respectively.
We conjecture that a construction based on stratifi-

cation might be used to avoid the problems discussed
above: the use of an unnatural prior and the difference
between estimating the hyperparameter and estimating
the norm. In this case, we would stratify based on the
values of the gi and estimate

∑
μ2

i separately in each
stratum. The price paid by such an estimator is a large
number of hyperparameters and a prior suited to a very
specific task.

The discussion above shows that θ̂ can at least be
approximated by a Bayesian estimator, but the corre-
sponding prior has to have a specific form and would
have to have been chosen for convenience rather than
prior belief. This presents no difficulty for the type II
Bayesian, who is free to select his prior to achieve a
particular goal. However, problems with the prior re-
main. The prior is tailor-made for a specific problem:
while β1, . . . , βk i.i.d. N(0, τ 2) is a very good prior
for estimating

∑k
i=1 μ2

i , when the parameter of inter-
est is not permutation invariant, the estimator is likely
to perform poorly in frequentist terms. Also, the prior
is appropriate for regular models but not sparse ones.
Consider again the nonlocalizable regime in which√

kσ 2 � θ � kσ 2, but suppose that most of the μi

are very close to zero, with only a few taking values
larger than σ 2 in absolute value. A Bayesian estima-
tor based on the prior suggested above will shrink all
the Yi toward 0, strongly biasing the estimates of the
μi , whereas a standard (soft or hard) thresholding es-
timator will have much better performance. A com-
pletely different prior is needed to deal with sparsity.
See Greenshtein, Park and Ritov (2008) and van der
Pas and Kleijn (2014) for an empirical Bayes solution
to the sparsity problem.

5.2 A Bayesian Analysis of the White Noise Model

Returning to original model, Xi ∼ N(βi,1/n),
|βi | < i−α , with θ = ∑n

i=1 β2
i , we can use a prior

for which the βi are i.i.d. N(0, τ 2), for i = 1, . . . ,m,
and 0, otherwise, where m = n1/(4α−2)+ν , for some
ν > 0. This gives us a Bayesian estimator of θ which
is asymptotically equivalent to the unbiased estima-
tor, θ̂ = ∑n

i=1(X
2
i − n−1), and asymptotically effi-

cient. However, the corresponding estimator for β
is not even consistent and, when we try to esti-
mate βi , even for i relatively small, we see that the
Bayesian estimator shrinks Xi toward 0 by a fac-
tor of 1 − ρ where ρ is asymptotically larger than
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θm/n = θn−(4α−3)/(4α−2)−ν 	 n−1/2. So our estimate
of βi fails to be

√
n-consistent.

A more reasonable approach, in this situation, is to
partition the set X1, . . . ,Xn into blocks, {Xkj−1, . . . ,

Xkj
}, j = 1, . . . , J , and use a mean-zero Gaussian

prior with unknown variance in each of the blocks.
One possible assignment is k0 = 1, k1 = o(

√
n), and

kj = 2kj−1, j > 1. Thus, O(logn) blocks are needed.
The analysis presented above shows that this prior
would yield a good estimator of θ without, hopefully,
sacrificing our ability to estimate the βi at the

√
n-rate.

Of course, this prior is not supported on the parameter
space Bα : it forces uniform shrinkage of the observa-
tions in each block (and bypasses the plug-in property
by estimating block-wise hyperparameters). But there
is nothing “natural” about these blocks and nothing in
the problem statement suggests this grouping.

As before, this “objective” prior was constructed
with a specific parameter in mind and is unlikely to be
effective for other parameters; it cannot represent prior
beliefs. The prior will also fail when sparsity makes the
block structure inappropriate. The unbiased, frequen-
tist estimator has no such difficulty. The Bayesian is
obliged to conform to the plug-in principle and, be-
cause of this, at some stage, must get stuck with the
wrong prior for some parameter which was not consid-
ered interesting initially.

Consider a general prior π . Let πi be the prior
for βi given X−i = (X1, . . . ,Xi−1,Xi+1, . . .). For
i > n1/2α+ν with ν > 0 arbitrarily small and m =
n1/(4α−2)+ν , as in Proposition 5.1,

Eπ

(
β2

i |X1, . . . ,Xm

)
=

∫ i−α

−i−α t2ϕ(n(Xi − t)) dπi(t)∫ i−α

−i−α ϕ(n(Xi − t)) dπi(t)
(7)

∈ (
a−1Eπi

β2
i , aEπi

β2
i

)
,

where for I = {i : n1/2+ν < i ≤ n1/(4α−2)+ν},
max
i∈I loga ≤ max

i∈I
|ti |<i−α

n
∣∣(Xi − t1)

2 − (Xi − t2)
2∣∣ p→ 0,

since maxi∈I n1/2−ν |Xi | p→ 0. But this means that the
estimate of β2

i depends only weakly on Xi itself. It is
mainly a function of X−i and the prior. Moreover, if
the estimate of θ is to be close to the unbiased one,
then this must be achieved through the influence of Xi

on the estimates of βj , for j �= i. This is the case in the
construction above where formally we are estimating
a hyperparameter of the prior, rather than θ , itself. The

result is a nonrobust estimator which works for the par-
ticular functional of interest but not others. In fact, we
have the following theorem.

THEOREM 5.2. Let β−i = (β1, . . . , βi−1, βi+1,

. . .). Let π be the prior on β . Suppose that there is an
η > 0 such that a.s. under the prior π : Pπ(�4i2αβ2

i � =
κ|β−i ) > η, i = 1,2, . . . , and κ = 1, . . . ,4. There ex-
ists a set S = Sn with π(Sn) → 1, such that for all
β ∈ S there is a sequence g1, g2, . . . , for which the
Bayesian estimator of

∑
giβ

2
i with respect to π is not√

n-consistent.

The proof is given in Appendix B. The conditions in
the theorem are needed to ensure that support of the
prior does not degenerate to a finite-dimensional para-
metric model.

6. DATA-DEPENDENT SAMPLE SIZES AND
STOPPING TIMES

The stopping rule principle (SRP) says that, in a se-
quential experiment, with final data xN(τ), inferences
should not depend on the stopping time τ ; see Berger
and Wolpert (1988). In so much as Bayesian techniques
follow the strong likelihood principle (SLP), they must
also follow the SRP.

To see that high dimensional data represents a chal-
lenge for the SRP, consider another version of the
white noise model. Let n−2α < βi < 3n−2α , i = 1, . . . ,
k = �n2α�, and 1/6 < α < 1/4. Suppose that, for
each i, Xi(·) is a Brownian motion with drift βi , and
that Xi is observed until some random time Ti . Take
X̄i(t) = Xi(t)/t and note that this is the sufficient
statistic for βi given {Xi(s) : s < t}. Of course, X̄i

is also the MLE. Finally, let πi be the prior for βi

given X−i = (X1, . . . ,Xi−1,Xi+1, . . .). Let fi(·) be
the density of the distribution of Xi(Ti) given X−i ;
fi = πi ∗ N(0,1/Ti). We assume that the prior πi is
non-parametric in the sense that πi is bounded away
from 0 on the allowed support, so that X−i does not
give us too much information about βi .

It is well known that the posterior mean of βi given
the data satisfies

E(βi |data) = X̄i(Ti) + 1

Ti

f ′
i (Xi(Ti))

fi(Xi(Ti))
.

If Ti = O(n), then fi ≈ πi and X̄i(Ti) ≈ βi . Sup-
pose Ti is correlated with gi(βi), where gi = f ′

i /fi ,
then the MLE of

∑k
i=1 βi , given by

∑k
i=1 Xi(Ti) is un-

biased and has a random error on the order of nαn−1/2,
while the Bayesian estimator has a bias which is ∼
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FIG. 3. (a) the MLE; (b) the Bayesian estimator.

n2αn2α/n, with n2α terms each contributing O(n2α)

to the bias, from gi , and a term of O(1/n) from 1/Ti .
With 1/6 < α < 1/4, the Bayes bias dominates the ran-
dom error.

6.1 An Example

We consider again the vector β represented in Fig-
ure 1(a), but this time the vectorized version of the
spine image shown in Figure 1(d) is used to specify the
random number of observations associated with each
element of β . Adding noise to Figure 1(a), we get the
observed data and MLE, shown in Figure 3(a). This
SNR is higher here than before (+2.72 db) and, as a
result, the Bayesian estimator shown in Figure 3(b) is
much smoother.

Here, we used a prior with independent Gaussian
components, each with a mean equal to the mean of
β and variance equal to the variance of the βi . We have
two processes on the unit square: one represents β and
the other corresponds to random stopping times, with
the number of observations proportional to the gray-
scale value of the corresponding pixel in the image
of the spine. As we have already seen, these images
are correlated, although there is no reason, a priori, to
expect they would be, having been chosen at random
from a collection of unrelated images. This correlation
causes trouble: In 500 Monte Carlo simulations, the
RMSE of the Bayesian estimator of the sum of the βi

is 0.05, whereas the RMSE of the MLE is 0.009. The
difference is due almost entirely to bias. If we replace
the stopping times with a fixed time, the Bayesian es-
timator performs better, achieving a RMSE of 0.0071
versus the RMSE of the MLE = 0.0072. This example
shows clearly that the Bayesian estimator can be badly
biased when the stopping times and the unknown pa-
rameters happen to be correlated.

7. BAYESIAN PROCEDURES ARE EFFICIENT
UNDER BAYESIAN ASSUMPTIONS

Freedman (1965) proves that in some very weak
sense consistency of Bayesian procedures is “rare.”
We, however, start with a version of Doob’s consis-
tency result and show that the existence of a uniformly√

n-consistent estimator ensures that the posterior dis-
tribution is

√
n-consistent with prior probability 1.

To simplify notation, we consider the Markov chain
β0 → Xn → βn, where β0, βn ∈ B, β0 ∼ π , Xn ∼ Pβ0 ,
and given Xn, β0 and βn are i.i.d. That is, given Xn,
βn is distributed according to the posterior distribu-
tion πXn . Let P be the joint distribution of the chain.
With some abuse of notation, Pβ0 is also the condi-
tional distribution of the chain given that it starts at β0.
Let dn be a semi-metric on the parameter space, nor-
malized to the sample size. Typically, in the nonpara-
metric situation considered in this paper, dn(β,β ′) =√

n|θ(β) − θ(β ′)| for some real-valued functional θ of
the parameter.

We consider an estimator β̃n to be dn consistent uni-
formly on B, if for every ε > 0 there is an M < ∞ such
that for all β ∈ B and n large enough, Pβ{dn(β̃n, β) ≥
M} ≤ ε. The posterior is dn consistent uniformly on B
if for every ε > 0 there is an M < ∞ such that for all
β0 ∈ B and n large enough, Pβ0{dn(βn,β0) ≥ M} ≤ ε.

Thus, we consider the inference to be dn uniformly
consistent if the frequentist Markov chain, β0 →
Xn → β̃n, or the Bayesian one, β0 → Xn → βn lands
in an Op(1) dn-ball about β0.

THEOREM 7.1. Suppose there is an estimator
which is dn consistent uniformly on B. Then there is
a B′ ⊆ B such that π(B′) = 1 and the posterior is dn

consistent uniformly on B′.

The proof is given in Appendix B.
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Thus, the existence of a uniformly good frequen-
tist estimator ensures that the there is a set with prior
probability one such that the Bayes posterior is uni-
formly consistent at the right rate on that set. The dif-
ficulty with this statement is that, in high dimensional
spaces, there is no natural extension of Lebesgue mea-
sure and null sets of very natural-looking priors are
sometimes much larger than one would expect. For a
simple example, consider a prior with hyperparameters
of the type we considered for the white noise models:
τ has standard exponential distribution, and βi, . . . , βk

are, given τ , i.i.d. N(0, τ 2). Consider the set S = {β :
k−1 ∑k

i=1(βi −β̄k)
4 < 2.5(k−1 ∑k

i=1(βi −β̄k)
2)2}. The

probability of S is 0.82 if k = 5. It drops to approxi-
mately 0.27 when k = 50. It is 0.0025 for k = 500, and
negligible when k = 5000. (These numbers are based
on 100,000 Matlab simulations.) The set S is not so un-
usual or unexpected that it can be really ignored a priori
and, unlike most sets, S is simple to comprehend. If in-
ferences depend on whether or not the fourth moment
of the parameter is exactly three times the square of the
second, as implied by the normality assumption, which
was made for convenience, these inferences would not
be robust.

Theorem 7.1 does not contradict our findings. In
the stratified sampling and partial linear model exam-
ples of Sections 2 and 3, the difference between the
Bayesian estimator and the frequentist one is that the
former ignores the information that restricts the model
to a subset of the parameter space which has prior prob-
ability 0. In the white noise models of Sections 4 and 5,
the requirement that the prior be “honestly nonpara-
metric” limits β1, β2, . . . to regular sequences obeying
a law of large numbers and, as a result, the set of non-
ergodic sequences is given prior probability 0. And,
in these examples, there are two phenomena which
make this theorem irrelevant. First, Bayesian estima-
tors must obey the plug-in principle, restricting esti-
mators to those of the form θ(β̃) for β̃ ∈ B, while the
frequentist estimator cannot be written in this form.
Second, each prior fails for a different functional, but
if the functional and the parameter are chosen together,
as we have argued might well happen, this theorem has
no consequences.

The second result of this section gives an easy ab-
stract construction which shows that, under some con-
ditions, a type II Bayesian is able to choose a prior with
good frequentist properties. Our setup is as follows. In
the nth problem, we observe X(n) ∼ P ∈ P(n) � ν,
with density p = dP/dν. Estimators take values in the
set A, and a loss function 	n :P(n) ×A → R

+ is used

to assess the “cost” associated with a particular esti-
mate. We assume that 	n is bounded by Ln < ∞ for all
n and that:

A1. The loss function is Lipschitz: for all a ∈ A and
P,P ′ ∈ P(n): |	n(P, a) − 	n(P

′, a)| ≤ cn‖p −
pn‖, where ‖ · ‖ is the variational norm.

A2. Given ε > 0 there exists a finite set P(n)
K ⊂ P(n)

with cardinality κn,ε , such that

sup
P∈P(n)

inf
P ′∈P(n)

K

∥∥P − P ′∥∥ ≤ ε.

A3. Let Rn(P, δ) = EP 	n(P, δ(X)), where δ :X (n) →
A, or more generally, δ is a randomized proce-
dure (or Markov kernel from X (n) to A). Let
Rn(δ) = supP∈P(n) Rn(P, δ). There exist δ∗ such
that Rn(δ

∗) = infδ Rn(δ) ≡ rn ≤ r < ∞ for all n.

Let μn be a probability measure on P(n)
K . The cor-

responding posterior distribution is μn(Pj |X(n)) =
μn(Pj )pj (X

(n))/
∑κ

k=1 μn(Pk)pk(X
(n)). Let δμn be

the Bayesian procedure with respect to μn.

THEOREM 7.2. If conditions A1–A3 hold, then
for all ε′ > 0, there exist μn,ε′ on P(n), such that
Rn(δμn,ε′ ) ≤ rn + ε′.

The proof is given in Appendix B and can be used
to argue that, under the conditions above, it is always
possible (for a type II Bayesian) to select a prior such
that the corresponding Bayesian procedure estimates
both the global and local parameters at their minimax
rates.

COROLLARY 7.3. Consider an estimation prob-
lem in which P(n) satisfies the conditions of Theo-
rem 7.2; 	1n(P, a), 	2n(P, a) are two loss functions,
each satisfying condition A1, with Lipschitz constants
c1n and c2n, respectively, and

inf
δ

max
P∈P(n)

EP 	kn(P, δ) = O
(
b−1
kn

)
, k = 1,2,

for some b1n, b2n. Then, given ε > 0, there exist μn on
P(n) such that simultaneously

max
P∈P(n)

EP 	kn(P, δμn) = O
(
b−1
kn

)
, k = 1,2.

The corollary follows by applying the theorem to the
combined loss function 	n(P, (a1, a2)) = b1n	1n(P,

a1) + b2n	2n(P, a2).
The conditions essentially hold in our examples

(technically, in the stratified sampling and partial lin-
ear model examples, before applying the theorem, one
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should restrict the parameter space to a compact set).
However, note that the prior may depend on informa-
tion that may not be known a priori, such as the loss
function, and on parameters that “should not” be part
of the loss, such as the weight function in the strati-
fied sampling example, the (smoothness of the) con-
ditional expectation of U given X in the partial lin-
ear model, and the linear functional in the white noise
model.

Note, however, that the theorem as proven does not
say that there exists a prior such that the two Bayesian
estimators for each of the two loss functions achieve
the corresponding minimax rates. Indeed, a single esti-
mator is produced which balances the two objectives.

8. SUMMARY

In this paper, we presented a few toy examples in
which a nonparametric prior fails to produce estima-
tors of simple functionals that are

√
n-consistent, in

spite of the fact that efficient frequentist procedures ex-
ist (and are often easy to construct). In these examples,
minimal smoothness was assumed, but we do not be-
lieve that this is necessary in order for the Bayesian
paradigm to have difficulty with high-dimensional
models. With minimal smoothness, it is easy to prove
that bias accumulates and global functionals cannot be
estimated at minimax rates (while with smoother ob-
jects, this would be more difficult to demonstrate).

Bayesian procedures are always unbiased with the
respect to the prior on which they are based. Bayesian
estimators tend to replace parameters buried in noise
by their a priori means. This would be a reasonable
strategy if the prior represented a physical reality, but
is not workable if the prior represents a subjective be-
lief or is selected for computational convenience. In
the latter case, to the extent that the beliefs or assump-
tions fail to match the physical reality, the Bayesian
paradigm will run into difficulty.

Several difficulties with the Bayesian approach were
demonstrated by our examples, including:

1. The possibility of de facto cross-correlation be-
tween two independent processes, as discussed in
Appendix A, is ignored by the Bayesian estimator.
The effect of such spurious correlations can be seen
in the stratified sampling example of Section 2, the
partial linear model of Section 3, and the discussion
on estimating linear functionals in the white noise
model of Section 4. Because the spurious correla-
tions observed have mean value 0, the Bayesian es-
timators are unbiased, on average, but this average

is only with respect to the prior. In any other sense,
the Bayesian estimators are biased.

2. For linear functionals with squared error loss, the
Bayesian paradigm requires the analyst to follow
the plug-in principle, estimating functionals θ of
high-dimensional parameters β by θ̃ = θ(β̃). The
fact that universal plug-in estimators do not ex-
ist shows that strict adherence to the Bayesian
paradigm is too rigid. This was shown in Section 4.

3. Having selected a prior, the Bayesian may assume
that some functionals of the unknown parameter are
known—for example, weighted means of many un-
known parameters. But, as a matter of fact, these
unverified assumptions, hidden in the selected prior,
force the resulting estimator to be nonrobust. See,
for example, the discussion of the partial linear
model in Section 3.

4. On the other hand, replacing components of signal
buried deeply in noise by their prior means may
cause an accumulation of bias, destroying estima-
tors of functionals which can be estimated without
bias and with bounded asymptotic variance. This is
clear from the discussion in Section 5.

5. Finally, the Bayesian paradigm forces the analyst
to follow the strict likelihood principle, cf. Berger
and Wolpert (1988), and this may force him to ig-
nore auxiliary information which could be used to
produce asymptotically unbiased, efficient estima-
tors. This was the core of the argument in the strat-
ified sampling example of Section 2 in which the
type I Bayesian cannot make use of information on
the sampling probabilities, at all, and cannot pro-
duce a

√
n-consistent estimator of the population

mean, in general, as a result. The same is true in the
partial linear model example of Section 3, in which
the type I Bayesian analyst cannot make use of in-
formation on smoothness, and in the stopping times
example of Section 6.

Real-life examples are more complex and less tracta-
ble than the toy problems we have played with in this
paper and, as a result, it would be more difficult to de-
termine the real-life effect of assumptions hidden in
the prior on the frequentist behavior of Bayesian es-
timators in such situations. It is very difficult to build
a prior for a very complicated model. Typically, one
would assume a lot of independence. However, with
many independent or nearly-independent components,
the law of large numbers and central limit theorem will
take effect, concentrating what was supposed to have
been a vague prior in a small corner of the parameter
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space. The resulting estimator will be efficient for pa-
rameters in this small set, but not in general. It is safe
to say that Bayes is not curse of dimensionality appro-
priate (or CODA, see Robins and Ritov, 1997).

APPENDIX A: INDEPENDENT BUT CORRELATED
SERIES

Much of the analysis in this paper is based on pre-
senting counterexamples on which a given estimation
procedure fails. This is satisfactory from a minimax
frequentist point of view: one example is enough to
argue that the result depends on the unknown param-
eter and is not uniformly valid, or asymptotically mini-
max. However, this may not convince a Bayesian, who
might claim that the counter example is a priori unrea-
sonable. A typical example of the argument was pre-
sented in the stratified sampling example of Section 2.
This argument can be characterized by constructing
two a priori independent processes (β and g), which
happen to be “similar.” For the Bayesian, this is a very
unlikely event. After all, he assumes that they are in-
dependent; for example, one of them depends on biol-
ogy and the other on budget constraints. In this section,
we argue that such correlations can actually be quite
likely. Harmeling and Toussaint (2007) write: “Let us
now get to the core of Robins and Ritov (1997). The
authors consider uniform unbiasedness of an estima-
tor. This means that the estimator has to be unbiased
for every possible choice of θ and ξ . In the experi-
ment, we performed above, though, we chose θ and
ξ independently, and thus it was very unlikely that we
ended up with an accidentally correlated θ and ξ , for
example, where θ tends to be large whenever also ξ is
(or inversely).” (We should remark that they consider
also a scenario in which the processes are correlated.)
We claim that this criticism ignores the fact that two
processes can be independent and yet, with high prob-
ability, have an empirical cross-correlation which is far
from 0. This would be the case, for example, if the pro-
cesses are nonergodic and have similar autocorrelation
functions.

Suppose U1, . . . ,Un and V1, . . . , Vn are two inde-
pendent simple random walks. Then of course Un and
Vn are uncorrelated. But we may consider the corre-
lation between these two series R = n−1 ∑n

i=1(Ui −
Ūn)(Vi − V̄n), where Ūn and V̄n are the empirical
means of the two series, respectively. R is a random
variable and clearly it has mean 0. However, it is far
from being close to 0, even if n is large. In fact, asymp-
totically, R is almost uniformly distributed on most of

the interval (−1,1); cf. McShane and Wyner (2011).
The reason for this somewhat surprising fact is that
random walks and Brownian motions are less wild
than they are sometimes thought to be. In fact given
Un, the best predictor of U�n/2� is Un/2, where �a�
is the largest integer less than a, and the sequence
tends to be, very roughly speaking, monotone. But
if both U1, . . . ,Un and V1, . . . , Vn are “somewhat”
monotone, then they will be cross-correlated; maybe
positively correlated, maybe negatively, but rarely un-
correlated. Consider now two general, independent
mean 0 random, nonmixing sequences U1, . . . ,Un and
V1, . . . , Vn. Suppose that the two sequences have the
autocorrelation functions A(i, j) = cov(Ui,Uj ) and
B(i, j) = cov(Vi,Vj ), where we assume var(Ui) =
var(Vi) = 1 (although, in the standard engineering us-
age, autocorrelation refers to what some would like to
call autocovariance). We do not assume that the series
are stationary, and we do not know their autocorrela-
tion functions. The picture we have in mind is that each
(Ui,Vi) is a characteristic of points in a large graph,
and neighboring nodes are highly correlated, but we do
not know the neighborhood structure of the graph. De-
fine

R = 〈U,V 〉0 ≡ n−1
n∑

i=1

UiVi − n−2
n∑

i=1

Ui

n∑
i=1

Vi,

where 〈·, ·〉0 is the empirical cross-covariance between
two sequences. Then ER = 0, while direct calculations
give

var(R) = n−1
n∑

i=1

〈
A(i, ·),B(i, ·)〉0

−
〈
n−1

n∑
j=1

A(·, j), n−1
n∑

j=1

B(·, j)

〉
0

.

To get some sense of the size of var(R), suppose that
n−1 ∑n

j=1 A(i, j) ≡ n−1 ∑n
j=1 B(i, j) ≡ c. Then we

get

var(R) = n−2
n∑

i=1

n∑
j=1

(
A(i, j) − c

)(
B(i, j) − c

)
.

Clearly, if the two series are mixing and
∑

j A(i, j) =∑
j B(i, j) = O(1), then var(R) = O(n−1). However,

if they are not mixing, and have similar autocorrela-
tion functions, then most realizations of these two se-
ries will have nonzero cross-correlation.
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APPENDIX B: PROOFS

PROOF OF PROPOSITION 4.1. Clearly,

E
∞∑
i=1

(β̂i − βi)
2 = ⌊

n1/2α⌋/n + ∑
i>n1/2α

β2
i

≤ n−(2α−1)/2α + ∑
i>n1/2α

i−2α

≤ 2αn−(2α−1)/2α/(2α − 1).

That this is the minimax rate is established by consid-
ering the prior � which makes β1, β2, . . . independent,
with �(βi = ±i−α) = 1/2. �

PROOF OF LEMMA 4.2. First note that because of
the monotone likelihood ratio property, θ̂ (x) is a mono-
tone increasing function of x. We have

1 + ḃθ = ∂EθEπ(|X)/∂θ

= ∂

∂θ
Eθ

∫
te−(X−t)2/2σ 2

dπ(t)∫
e−(X−t)2/2σ 2

dπ(t)
,

where Eθ is the expectation assuming the true value of
the parameter is θ , (,X) is a pair of random vari-
ables such that  ∼ π , and X| ∼ N(,σ 2) and Eπ

is the expectation under this joint distribution. Note
that Eπ is a formal expression since we assume that
X ∼ N(θ,σ 2). Let Z ∼ N(0, σ 2) then

1 + ḃθ

= ∂

∂θ
Eθ

∫
te−(Z+θ−t)2/2σ 2

dπ(t)∫
e−(Z+θ−t)2/2σ 2

dπ(t)

= 1

σ 2 E
{∫

t (t − Z − θ)e−(Z+θ−t)2/2σ 2
dπ(t)∫

e−(Z+θ−t)2/2σ 2
dπ(t)

−
∫

te−(Z+θ−t)2/2σ 2
dπ(t)∫

e−(Z+θ−t)2/2σ 2
dπ(t)

·
∫
(t − Z − θ)e−(Z+θ−t)2/2σ 2

dπ(t)∫
e−(Z+θ−t)2/2σ 2

dπ(t)

}

= 1

σ 2 Eθ

{
var(|X)

}
.

Hence, 0 ≤ 1 + ḃθ ≤ (a/σ)2, or ḃθ ∈ [−1,−(1 −
(a/σ)2)]. The lemma then follows from the mean value
theorem. �

PROOF OF THEOREM 5.2. Let β ∼ π . For any i,
let Fi be the distribution of bi = E(β2

i |X−i). Note that
bi and βi are independent given β−i . By assumption,

conditionally on β−i , Pπi×Fi
(|β2

i − bi | > i2α/4) > η.
But then it follows from (7) that for n large enough,
Pπ(|β2

i − β̂2
i | > i2α/4) > η/2. Let c′

i (β) = 1{Eβ(β̂2
i −

β2
i ) < −i2α/4}, c′′

i (β) = 1{Eβ(β̂2
i −β2

i ) > i2α/4}, and

ci(β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c′
i (β),

m∑
i=n1/2α+ν

c′
i (β) > η/3

(
m − n1/2α+ν),

c′′
i (β), otherwise.

Now,
∑

ci(β)β̂2
i picks exactly those β2

i which are es-
timated with bias, positive bias if ci = c′′

i and negative
if ci = c′

i . �
PROOF OF THEOREM 7.1. The proof is based on

the two lemmas which follow. Suppose the posterior
is not dn consistent on B′ with π(B′) > 0. Then,
by Lemma B.1, (8) must hold for β0 ∈ B′. By Lem-
ma B.2, (10) must hold. But (10) contradicts π(B) = 1,
since then, for all M , we have π{β : Pβ(dn(β̃n, β) ≥
M)} > 0. �

Recall that β0 is the true parameter. It has a prior
probability π . βn is a random variable which, given the
data Xn, has the posterior distribution πXn . The first
lemma says that if there is a dn consistent estimator,
but dn(βn,β0) is not tight, then neither is dn(βn, β̃n).

LEMMA B.1. Suppose that:

1. There is a statistic β̃n such that lim supn Pβ0(dn(β̃n,

β0) ≥ M) → 0 as M → ∞.
2. For all M < ∞, lim supn Pβ0(πXn(dn(βn,β0) ≥

2M) ≥ 2ε) ≥ 2d .

Then there is an M which may depend on β0 such that

lim sup
n→∞

Pβ0

(
πXn

(
dn(βn, β̃n) ≥ M

) ≥ ε
) ≥ d.(8)

PROOF.

Pβ0

(
πXn

(
dn(βn, β̃n) ≥ M

) ≥ ε
)

≥ Pβ0

({
πXn

(
dn(βn,β0) ≥ 2M

) ≥ 2ε
}

∩ {
dn(β̃n, β0) ≤ M

})
≥ Pβ0

(
πXn

(
dn(βn,β0) ≥ 2M

) ≥ 2ε
)

− Pβ0

(
dn(β̃n, β0) ≥ M

)
.

By assumption, the lim sup of the first term on the
right-hand side is bounded by 2d , while we can choose
M large enough such that the second term on the right-
hand side is bounded by d for all n large enough. The
lemma follows. �

The reverse is given in the following lemma.
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LEMMA B.2. Suppose there is a statistic β̃n and
M,ε, d > 0 such that

Pβ0

(
πXn

(
dn(β̃n, βn) ≥ M

) ≥ ε
) ≥ d(9)

for all β0 ∈ B′ and π(B′) ≥ γ > 0. Then for all M <

∞,

P
(
dn(β̃n, β0) ≥ M

) ≥ ε dγ.(10)

PROOF. If U,V,W are three random variables,
then E(E(E(U |V )|W)) = E(U). Computing the ex-
pected value of (9), we obtain (10). �

PROOF OF THEOREM 7.2. Let P,P ′ ∈ P(n). Then∣∣Rn(P, δ) − Rn

(
P ′, δ

)∣∣
=

∣∣∣∣∫ 	
(
p, δ(x)

)
p(x)dν(x)

−
∫

	
(
p′, δ(x)

)
p′(x) dν(x)

∣∣∣∣
≤

∫ ∣∣	(p, δ(x)
)− 	

(
p′, δ(x)

)∣∣p(x)dν(x)

+
∫

	
(
p′, δ(x)

)∣∣p(x) − p′(x)
∣∣dν(x).

The first term on the right-hand side is bounded by
cn‖P − P ′‖, and the second by Ln‖P − P ′‖, so that∣∣Rn(P, δ) − Rn

(
P ′, δ

)∣∣ ≤ (cn + Ln)
∥∥P − P ′∥∥,(11)

for all δ, P , and P ′.
By the complete class theorem, for any ε′ > 0 there

is a μn supported on P(n)
K such that

max
P∈P(n)

K

Rn(P, δμn) ≤ inf
δ

max
P∈P(n)

K

Rn(P, δ) + ε′.(12)

By (11), we also have∣∣∣ max
P∈P(n)

K

Rn(P, δ) − max
P∈P(n)

Rn(P, δ)
∣∣∣

(13)
≤ (cn + Ln)ε.

Combining (12) and (13), applied to δ and δμn ,

max
P∈P(n)

Rn(P, δμm)

≤ inf
δ

max
P∈P(n)

Rn(P, δ) + (cn + Ln)ε + ε′.

Since ε, ε′ > 0 are arbitrary, the assertion follows. �
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