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Object-Oriented Programming, Functional
Programming and R
John M. Chambers

Abstract. This paper reviews some programming techniques in R that have
proved useful, particularly for substantial projects. These include several ver-
sions of object-oriented programming, used in a large number of R packages.
The review tries to clarify the origins and ideas behind the various versions,
each of which is valuable in the appropriate context.

R has also been strongly influenced by the ideas of functional programming
and, in particular, by the desire to combine functional with object oriented
programming.

To clarify how this particular mix of ideas has turned out in the current R
language and supporting software, the paper will first review the basic ideas
behind object-oriented and functional programming, and then examine the
evolution of R with these ideas providing context.

Functional programming supports well-defined, defensible software giving
reproducible results. Object-oriented programming is the mechanism par ex-
cellence for managing complexity while keeping things simple for the user.
The two paradigms have been valuable in supporting major software for fit-
ting models to data and numerous other statistical applications.

The paradigms have been adopted, and adapted, distinctively in R. Func-
tional programming motivates much of R but R does not enforce the
paradigm. Object-oriented programming from a functional perspective dif-
fers from that used in non-functional languages, a distinction that needs to be
emphasized to avoid confusion.

R initially replicated the S language from Bell Labs, which in turn was
strongly influenced by earlier program libraries. At each stage, new ideas
have been added, but the previous software continues to show its influence
in the design as well. Outlining the evolution will further clarify why we
currently have this somewhat unusual combination of ideas.

Key words and phrases: Programming languages, functional programming,
object-oriented programming.

1. INTRODUCTION

R has become an important medium for communi-
cating new methodology in statistics and related tech-
nology. References to the supporting R software fre-
quently accompany journal articles or other publica-
tions describing new results. The software is available
to other R users, ideally as a package in a standard
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repository. The benefits for statistics as a discipline are
considerable: The community has rapid access to new
ideas in a free, open-source format as software that can
in most cases be installed and used immediately by
those interested in the statistical techniques. The user
community has both created and benefited from this
resource.

This paper examines two of the most significant
paradigms in programming languages generally:
object-oriented programming (OOP) and functional
programming. R makes use of both, but in its own

167

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/13-STS452
http://www.imstat.org
mailto:jmc@stat.stanford.edu


168 J. M. CHAMBERS

way. Both paradigms are valuable for serious program-
ming with the language. But in both cases, understand-
ing the relevant ideas in the context of R is needed to
avoid confusion. The confusion sometimes arises, in
both cases, from applying to R interpretations of the
paradigms that apply to other languages but not to this
one. Section 2 of the paper will review the ideas, gener-
ally and in their R versions, with the goal of clarifying
the basics. Given the importance of R software to the
community, creators of new R software should benefit
from understanding these concepts.

We will also examine in Section 3 of the paper the
evolution that led to these versions of functional pro-
gramming and OOP. The prime motivation was not lan-
guage design in the abstract but to provide the tools
needed for research and data analysis by the user com-
munity at the time. R originally reproduced the func-
tionality of the S language at Bell Labs, which itself
had evolved through several stages beginning in the
late 1970s and which was in turn based on earlier sta-
tistical software libraries, mainly in Fortran.

R added important new ideas and has continued
to evolve, but the main contents inherited through S
shaped the capabilities and the approach to statistical
computing. In a surprising number of areas, what we
think of as “the R way” of organizing the computa-
tions actually reflects software developed twenty years
or more before R existed.

Having been involved in all the stages, I am naturally
inclined to a historical perspective, but it is also the
case that the history itself had substantial impact on
the results. It may be comforting to view programming
languages as abstract definitions, but in practice they
evolve from the needs, interests and limitations of their
creators and users.

2. FUNCTIONAL AND OBJECT-ORIENTED
PROGRAMMING: THE MAIN IDEAS

Functional and object-oriented programming fit nat-
urally into statistical applications and into R. The origi-
nal motivating use case, fitting models to data, remains
compelling. An expression such as

irisFit <- lm(Sepal.Width ∼
. - Sepal.Length, iris)

calls a function that creates an object representing the
linear model specified by the first argument, applied to
the data specified by the second argument. The com-
putation is functional, well-defined by the arguments.
It returns an object whose properties provide the infor-
mation needed to study and work with the fitted model.

Other functions and other objects can adapt to different
models in a form that is convenient for both the user
and the implementer.

Principles of functional programming guide us in
writing reliable, reproducible functions for the dif-
ferent models. Object-oriented programming provides
tools for defining the model objects clearly, and adapt-
ing to new ideas and new forms of models. Section 3.4
goes into details of the R implementations.

As they have been realized in R, both paradigms cen-
ter on a few, intuitive concepts. The details are more
complicated, as they usually are. In the case of func-
tional programming, the realization in R is only par-
tial, reflecting the language’s origins as well as practi-
cal considerations. In the case of OOP, there are now
at least three realizations of the ideas in R, using two
different paradigms. All three have significant applica-
tions and practical value.

Despite all these devilish details, the main ideas re-
main visible and useful, particularly when program-
ming serious applications using the language.

2.1 Functional Programming

For our purposes, the main principles of functional
programming can be summarized as follows:

1. Programming consists largely of defining func-
tions.

2. A function definition in the language, like a func-
tion in mathematics, implies that a function call returns
a unique value corresponding to each valid set of argu-
ments, but only dependent on these arguments.

3. A function call has no side effects that could alter
other computations.

The implication of the second point is that functions in
the programming language are mappings from the al-
lowed set of arguments to some range of output values.
In particular, the returned value should not depend on
other quantities that affect the “state” of the software
when the function call is evaluated.

True functional languages conform to these ideas
both by what they do provide, such as pattern expres-
sions, and what they do not provide, such as procedural
iteration or dynamic assignments. The classic tutorial
example of the factorial function, for example, could
be expressed in the Haskell language by the pattern:

factorial x = if x > 0
then x * factorial (x-1) else 1,

plus some type information, such as that a value for x
must be an integer scalar.
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Is R a functional programming language in this
sense? No. The structure of the language does not en-
force functionality; Section 2.3 examines that struc-
ture as it relates to functional programming and OOP.
The evolution of R from earlier work in statistical
computing also inevitably left portions of earlier pre-
functional computations; Section 3 outlines the history.
Random number generation, for example, is imple-
mented in a distinctly “state-based” model in which an
object in the global environment (.Random.seed)
represents the current state of the generators. Purely
functional languages have developed techniques for
many of these computations, but rewriting R to elimi-
nate its huge body of supporting software is not a prac-
tical prospect and would require replacing some very
well-tested and well-analyzed computations (random
number generation being a good example).

Functional programming remains an important
paradigm for statistical computing in spite of these lim-
itations. Statistical models for data, the motivating ex-
ample for many features in S and R, illustrate the value
of analyzing the software from a functional program-
ming perspective. Software for fitting models to data
remains one of the most active uses of R. The func-
tional validity of such software is important both for
theoretical justification and to defend the results in ar-
eas of controversy: Can we show that the fitted models
are well-defined functions of the data, perhaps with
other inputs to the model such as prior distributions
considered as additional arguments? The structure of R
as described in Section 2.3 can provide support for an-
alyzing functional validity. Equally usefully, such anal-
ysis can also illuminate the limits of functional validity
for particular software, such as that for model-fitting.

2.2 Object-Oriented Programming

The main ideas of object-oriented programming are
also quite simple and intuitive:

1. Everything we compute with is an object, and ob-
jects should be structured to suit the goals of our com-
putations.

2. For this, the key programming tool is a class def-
inition saying that objects belonging to this class share
structure defined by properties they all have, with the
properties being themselves objects of some specified
class.

3. A class can inherit from (contain) a simpler su-
perclass, such that an object of this class is also an ob-
ject of the superclass.

4. In order to compute with objects, we can define
methods that are only used when objects are of certain
classes.

Many programming languages reflect these ideas, ei-
ther from their inception or by adding some or all of
the ideas to an existing language.

Is R an OOP language? Not from its inception, but
it has added important software reflecting the ideas. In
fact, it has done so in at least three separate forms, giv-
ing rise to some confusion that this paper attempts to
reduce.

Some of the confusion arises from not recognizing
that the final item in the list above can be implemented
in radically different ways, depending on the general
paradigm of the programming language. A key dis-
tinction is whether the methods are to be embedded in
some form of functional programming.

Traditionally, most languages adopting the OOP
paradigm are not functional; either the language be-
gan with objects and classes as a central motivation
(SIMULA, Java) or added the paradigm to an exist-
ing non-functional language (C++, Python). In such
languages, methods were naturally associated with
classes, essentially as callable properties of the objects.
The language would then include syntax to call or in-
voke a method on a particular object, most often using
the infix operator “.”. The class definition then en-
capsulates all the software for the class. Where meth-
ods are needed for other computations, such as special
method names in Python or operator overloading in
C++, these are provided by ad-hoc mechanisms in the
language, but the method remains part of the class def-
inition.

In a language that is functional or that aspires to
behave functionally as S and R do, the natural role
of methods corresponds to the intuitive meaning of
“method”—a technique for computing the desired re-
sult of a function call. In functional OOP, the particu-
lar computational technique is chosen because one or
more arguments are objects from recognized classes.

Methods in this situation belong to functions, not to
classes; the functions are generic. In the simplest and
most common case, referred to as a standard generic
function in R, the function defines the formal argu-
ments but otherwise consists of nothing but a table of
the corresponding methods plus a command to select
the method in the table that matches the classes of the
arguments. The selected method is a function; the call
to the generic is then evaluated as a call to the selected
method.
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We will refer to this form of object-oriented pro-
gramming as functional OOP as opposed to the encap-
sulated form in which methods are part of the class
definition.

2.3 Their Relationship to R

To understand computations in R, two slogans are
helpful:

• Everything that exists is an object.
• Everything that happens is a function call.

In contrast to languages such as Java and C++ where
objects are distinct from more primitive data types, ev-
ery reference in R is to an object, in particular, to a sin-
gle internal structure type in the underlying C imple-
mentation. This applies to data in the usual sense and
also to all parts of the language itself, such as func-
tion definitions and function calls. Computations that
are more complex than a constant or a simple name
are all treated as function calls by the R evaluator, with
control structures and operators simply alternative syn-
tax hiding the function call. [Details and examples are
shown in (Chambers, 2008, pages 458–468).]

The two slogans, however, do not imply that com-
putations in R must follow either functional or object-
oriented programming in the senses outlined in the pre-
ceding sections. With respect to object-oriented pro-
gramming, R has several implementations that have
evolved as outlined in Section 3. These can be used
by programmers to provide software following either
of the OOP paradigms.

Functional programming’s relationship to R is less
straightforward. The evaluation process in R does not
enforce functional programming, but does encourage
it to a degree. In particular, the evaluation process in
R contributes to functional programming by largely
avoiding side effects when function calls are evaluated,
but some mechanisms in the language and especially
in the underlying support code can behave in a non-
functional way. To understand in a bit more detail, we
need to examine this evaluation process.

Computations in R are carried out by the R evalua-
tor by evaluating function call objects. These have an
expression for the function definition (usually a refer-
ence to it by name) and zero or more expressions for
the arguments to the call. The full details are some-
what beyond our scope here, but an essential question
is how references to objects are handled. Any program-
ming language must have references to data, which in
R means references to objects. As discussed in Sec-
tion 3, the evolution of such references is central to

the evolution of programming languages, especially for
statistics.

In R a reference to an object is the combination
of a name and a context in which to look up that
name; the contexts in R are themselves objects, of type
“environment”. A reference is therefore the combi-
nation of a name and an environment. (We’ll look at an
example shortly.)

Note that we are talking about references to objects;
most objects in R are not themselves reference objects.
Languages implementing OOP in the traditional, non-
functional form essentially always include reference
objects, in particular, what are termed mutable refer-
ences. If a method alters an object, say, by assigning
new values to some of its properties, all references to
that object see the change, regardless of the context of
the call to the method. Whether the reassignment of
the property takes place where the object originated or
down in some other method makes no difference; the
object itself is the reference.

In contrast, the reference in R consists of a name and
an environment—the environment in which the object
referred to has been assigned with that name. Most R
programming is based on a concept of local references;
that is, reassigning part of an object referred to by name
alters the object referred to by that name, but only in
the local environment. If that local reference started out
as a reference in some other environment, that other
reference is still to the original object.

To understand the relation of local references to
functional programming in R, an example and a few
more details of function call evaluation are needed. R
evaluates function calls as objects. For example, when
the evaluator encounters the call

lm(Sepal.Width
∼ . - Sepal.Length, iris),

it uses the object representing the call to create an en-
vironment for the evaluation.

The call identifies the function, also an object of
course, typically referring to it by name. In this case
lm refers to an object in the stats package. That ob-
ject has formal arguments [14 of them, in the case of
lm()]. The evaluator initializes an environment for
the call with objects corresponding to the formal argu-
ments, as unevaluated expressions built from the two
actual arguments and default expressions found in the
function definition. For details see Section 4 of the lan-
guage definition, R Core Team (2013) and Chapter 13
of Chambers (2008). As an aside, the common use of
terms like “call by value” (and the contrasting “call by
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reference”) for argument passing in R is invalid and
misleading. Arguments are not “passed” in the usual
sense.

Local references operate on all the objects in the en-
vironment to prevent side effects. The formal argument
data to lm() matches the expression iris, which
refers to an object in the datasets package. Expres-
sions that extract information from data work on that
object. But the local reference defined by data and
the environment of the evaluation is distinct from the
reference to iris in the package. If an assignment or
replacement expression is encountered that would al-
ter data, the evaluator will duplicate the object first to
ensure locality of the reference.

The local reference paradigm is helpful in validating
the functionality of an R function. Only the local as-
signments and replacements need to be examined; calls
to other functions will not alter references in this envi-
ronment, so long as those functions stick to local refer-
ence behavior. If a function f() calls a function g()
and both functions stick to local reference assignments,
then knowing that the value of a call to g() depends
only on the arguments is all that is needed; how g()
computes that value is irrelevant.

While local references help avoid side effects, they
do not prevent computations from referring to objects
or other data outside the functions being called, and
therefore potentially returning a result that depends on
a non-functional “state.” Whether a particular compu-
tation in R is strictly functional can only be determined
by examining it in detail, including all the functions
that call code in C or Fortran.

The rest of this section takes a slight detour to con-
sider how one might do that examination.

Validating Functionality in R

In principle, the functional validity of particular
computations could be analyzed and either certified
or the limitations to functionality reported. Such func-
tional validation would be useful in cases where ei-
ther the theoretical validity or the implications of the
result in an application are being questioned. Fitting
models to data provides a natural example for both as-
pects. Given a function taking as arguments data and
a model specification and returning a fitted model ob-
ject, can one validate that the returned object is func-
tionally defined by the arguments? If not, can the non-
functionality be parametrized meaningfully, in which
case one can construct a functional version of the com-
putation by including such parameters as implicit ar-
guments? R does not have organized support for such

validity investigations, but developing tools for the pur-
pose would be a worthwhile project.

Functional validation is a bottom-up construction.
The bottom layer consists of any functions called that
are not implemented in R, typically those that call rou-
tines in C++, C or Fortran. Included are the R primi-
tives, routines from numerical libraries and a variety of
other standard sources, plus any new code brought in
to implement the computation in question. The func-
tional validity of each of these is an empirical asser-
tion. Some are clearly non-functional, such as the “«-”
operator and assign() function that do nonlocal as-
signments.

Many computations in R eventually call subpro-
grams not originally written for R. Each of these must
be examined for potential non-functional behavior,
sometimes a daunting task. However, good practice in
using well-tested, preferably open-source supporting
software will often provide a plausible basis.

If R code includes an interface to code in C, Fortran
or other languages whose functional validity cannot be
established, nothing more can be said. Other than such
code, functional validity is likely to fail for one of three
reasons:

• dependance on nonlocal values;
• using low-level computations in R known to violate

functionality;
• changing functions or other objects at run time.

A prime example of the first is the use of external
data, such as the global options object, for convergence
tolerances or other parameters for iterative numerical
computations. An example of the second is the inclu-
sion of pseudo-random values in the calculation. The
third problem might be caused, for example, by using
a function from the global environment.

The third danger is greatly reduced when the code
resides in the namespace of a package with explicit im-
port rules. Any reasonable approach to validating func-
tionality would make this a requirement.

My feeling is that most examples of failures could
be corrected to create functionally valid extensions of
the computation in question. Tolerances are often orga-
nized through the R options() function, explicitly
designed to avoid functional programming by allowing
users to set state parameters that are then queried by
the calculation. Once identified, such options could be
converted to additional arguments to the function being
validated. [A general mechanism would be a version of
getOption() that required the option in question to
be supplied as an argument.]
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Pseudo-random values are used in a variety of proce-
dures, including some optimization techniques where
they are expected to provide more robust numerical be-
havior by jittering values during iteration. These can
be made functionally valid by using well-defined gen-
erator software, such as that supplied in R itself, and
by treating the initial state of the generator as another
nonlocal value to be incorporated as an additional ar-
gument. One should always include an explicit initial-
ization via set.seed() in any example expected to
be reproducible, and that practice can be the basis for a
functionally valid version of the computation.

Beyond these specific examples, numerical compu-
tations often depend on the underlying parameters of
the floating-point computations, for example, to select
convergence criteria for iteration. Fortunately, several
decades of work by numerical analysts and hardware
designers have greatly standardized the specification of
the numerical engine in modern computers: just know-
ing 32-bit or 64-bit gets us a long way.

Developing a framework for validating functionality
seems to me an interesting cooperative research direc-
tion that could be of value to the statistical community.

3. THE EVOLUTION OF FUNCTIONAL
PROGRAMMING, OOP AND R

The computational paradigms for functional pro-
gramming and for object-oriented programming have
evolved from a sequence of changes in software, begin-
ning with the earliest programable computers. During
the same period, software for statistics was also evolv-
ing, one thread of which led through early libraries to
S and then to R.

There may be an appearance of earlier languages
being replaced by later and presumably improved ap-
proaches. It is true that each major revision asserts im-
provements that will extend our abilities to express our
ideas in software. However, none of the versions of S or
R actually totally replaced earlier software paradigms.

The current software in, and interfaced from, R il-
lustrates this evolution. R has developed important new
techniques, but originated from the S language, repro-
ducing nearly all of S as it was described at that time.
S in turn went through several evolutionary changes
and was itself based on extensive earlier software, par-
ticularly subroutine libraries for Fortran programming.
Examining the history shows that a surprising portion
of what we see now is structure inherited from the early
stages.

The form in which functional programming and
OOP were adopted was also influenced by the exist-
ing software. Examining the history will explain many
of the choices made.

3.1 From Hardware to Data and Libraries

The earliest general-purpose computers were pro-
grammed in terms of the physical machine, its storage
and the basic operations provided to move data around
and perform arithmetic and other operations. The IBM
650 (Figure 1) was probably the first computer widely
sold and used (and the machine on which I did my first
programming, around 1960).

In this pre-silicon world, storage for data or pro-
grams resided on a rotating magnetic drum, holding
2000 decimal words. Data could be read or written only
when the corresponding segment of the drum passed
under the appropriate fixed head, so that physical posi-
tioning of data was a serious aspect of performance.
With this close view of the hardware, programming
languages (assembly languages for the actual machine
instructions) defined storage in terms of single physi-
cal units (words in the 650) and blocks of sequential
storage.

This was not an environment to encourage abstrac-
tion of ideas about data. However, by 1960 the first
generation of “high-level” languages had been intro-
duced and would support profound changes. For statis-
tical computing this meant primarily Fortran.

In terms of data storage, Fortran actually continued
the basic notion of single items (scalars) and contigu-
ous blocks (arrays). Two major changes, however, were
made. First, the contents were described in terms of
their content, the first data types including integer and
floating point numbers. Second, the language encour-
aged operations that iterated over the contents of the
arrays. By interpreting an array as a sequence of equal-
length subarrays, this indexing extended to matrices
and to multi-way tables.

Along with the new paradigm for data and facilities
for iteration, the high-level languages encouraged soft-
ware to be organized in subroutines, so that a computa-
tional method could be realized as one or several units
of software. While the changes may seem modest from
the current perspective, they in fact supported a major
revolution in scientific computing generally and em-
phatically so in computing for statistics.

Algorithm series and other publications supported
by professional societies began to accumulate refer-
eed, trustworthy procedures for many key computa-
tions. The statistics research group at Bell Labs de-
veloped a large Fortran library that reflected our needs
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FIG. 1. An IBM 650 computer, mid 1950s. Under the glass is the magnetic drum storage unit (memory), 2000 words for data and programs.

and our philosophy of research and data analysis. The
book “Computational Methods for Data Analysis”,
Chambers (1977), did not present software but did re-
flect the tools that would later form the basis for S. Af-
ter an introduction and discussion of program design,
the remaining six chapters covered computations sup-
ported by the library:

3. Data Management and Manipulation (including
sorting and table lookup).

4. Numerical Computations (approximations,
Fourier transforms, integration).

5. Linear Models (numerical linear algebra, regres-
sion, multivariate methods).

6. Nonlinear Models (optimization, nonlinear least
squares).

7. Simulation of Random Processes (random num-
ber generation and Monte Carlo).

8. Computational Graphics (plotting techniques,
scatter plots, histograms and probability plots).

Each of these was supported in the pre-S era by sub-
routines that would then become the basis for corre-
sponding functions in S.

Much of the organization for basic tools in R has
inherited, through S, the structure of the subroutine

library. That includes the graphical computations, in
particular, features essential to S and R: separation of
graphic device specification from plotting; the plot, fig-
ure and margins structure; graphical parameter specifi-
cation to control style. These were not created for S but
taken over from previous Fortran software, described in
Becker and Chambers (1977).

The Bell Labs software was in the background of
Chambers (1977), but general readers were given in-
structions for obtaining similar software from publicly
available sources for the methods described. The pro-
cedure would not always be simple, but the potential
availability marked a big step forward. For the first
time, statisticians could draw on an extensive range of
relevant software to support their research, at least in
principle. Various statistical software packages had ex-
isted for some time, but these were by and large ori-
ented to routine analysis, to teaching or to specialized
statistical techniques. Chambers (1977) and the soft-
ware it reflected were aimed at research in statistics
and challenging data analysis. For this purpose, a more
general and open-ended approach was needed.

3.2 From Fortran to S

For those involved with statistical theory or appli-
cations, in academia or industry, there were two main
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limitations to the software described so far: availabil-
ity and the programming interface. The Appendix to
Chambers (1977) was a set of tables for each of the
chapters, with rows corresponding to computational
tools that were more or less available to readers. The
last column of the table listed sources for the corre-
sponding software. The entries in that column were
not uniformly helpful; in the best situation, a gener-
ally available program library could be ordered that
provided a number of the subroutines, but these were
not designed for statistical applications, most being di-
rected at numerical methods typically motivated by ap-
plications in physics. More than half of the entries read
“Listing,” implying a laborious and error-prone man-
ual procedure for the user. [As an example, many “bug
reports” came to us as a result of confusing an “I” and
a “1” when typing in the stable distribution software,
Chambers, Mallows and Stuck (1976).]

Substantial in-house libraries, such as the one at
Bell Labs, gave users a fairly wide range of compu-
tations, supported by improved numerical and other al-
gorithms. However, to apply the computations specif-
ically to a particular dataset with particular results in
mind required some substantial additional Fortran pro-
gramming. That programming had to be repeated and
revised for each analysis or research question.

In the 1970s the situation was therefore a combina-
tion of improved basic computational capabilities but
with a high programming barrier for most statisticians.
The classical linear regression in Fortran as shown in
Becker and Chambers (1985), for example, was fairly
straightforward:

call lsfit(X, N, P, y, coef, resid).

This computes the fitted model and returns it as vectors
of coefficients and residuals. The data as objects are re-
stricted to arrays, a matrix X and vector y for the data
and two arrays, coef and resid for the fitted model.
The structure of the objects and their storage alloca-
tion remains the programmer’s responsibility. Linking
the basic computation to the data in an actual anal-
ysis remained nontrivial and mistakes along the way
were likely. And this is for the most standard of mod-
els. Even given an extensive library, the programming
to apply the tools to most applications was a laborious,
error-prone activity, usually assigned to dedicated pro-
grammers, research assistants or students. The statisti-
cian’s ideas went through nontrivial translation before
they were expressed as computations.

The first two versions of S were designed to provide
an “interactive environment” that included the compu-
tational areas described in Chambers (1977) and that

allowed the statistician to formulate ideas directly for
computation. The second version of S was licensed
for general use and described in Becker and Chambers
(1984).

In S, the linear regression computation became a
simpler expression, storage for data was provided au-
tomatically and the returned model was now an object,
with components for the coefficients and residuals:

fit <- reg(X, y).

At this stage, S had a functional appearance, not
radically unlike R, but its paradigm was essentially
an extension of the Fortran view. Dynamically cre-
ated, self-describing objects were assigned in a sin-
gle workspace, but the underlying computations were
those of the earlier subroutine library: The functions in
S, documented in Becker and Chambers (1984), were
in fact interfaces to Fortran subroutines: reg() would
in fact be programmed by calling lsfit().

Although there was a macro facility in the language,
programming a function in this version of S meant
“extending S” as described in the book of that name,
Becker and Chambers (1985). The definition of the
new function was programmed in an “interface lan-
guage” built on Fortran and compiled from its Fortran
translation. As the main programming mechanism this
was unsatisfactory, in the sense that extending the lan-
guage had a substantial learning barrier beyond using
the language. The ability to access other software via
an inter-system interface remains a key feature of R,
however, one still under active development.

Equally as important as the technical side was the
beginning of a network of statisticians involved in cre-
ating and sharing software through the medium of the
language. S was licensed from the early 1980s, avail-
able thanks to the newly distributed UNIX operating
system, with inexpensive academic licenses to encour-
age adoption by university researchers, also following
the example of UNIX. Open-source software was not an
option, but the research community was increasingly
involved and their interest stimulated further develop-
ments on our part, particularly from contacts with in-
terested users belonging to a “beta testing” network.

Simultaneously, we were thinking about a new ap-
proach to the language itself, emphasizing the pro-
gramming aspect of creating new software for sta-
tistical and other quantitative applications. Described
initially in Chambers (1987) as a language separate
from S, this research later merged with other changes
to form the next version, labeled S3 and described in
the “blue book,” Becker, Chambers and Wilks (1988).
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The slogans in Section 2.3 were basic to this version of
S: everything is an object (stated explicitly) and func-
tion calls do all the computation (implicit).

This was functional programming (more or less)
and object-based but not object-oriented. Objects were
given structure through attributes attached to vectors
and through named components, but there were no
classes or methods.

3.3 From Data to Classes and Methods

The languages that originated the concepts of
classes, properties, inheritance and methods came out
of several motivations. The first, Simula, was con-
cerned with simulating systems. In retrospect, model-
ing by simulation and modeling by fitting to data have
clear correspondences but with quite a different per-
spective. For an example, suppose we want to simulate
a simple model for an evolving population of individ-
uals. In R notation, but quite in the style of Simula,
we define a class SimplePop. An object from this
class is a specific realization of the model population
with properties that define the probabilities of birth and
death, and a vector of population size at each genera-
tion. An object from the population is created by call-
ing the generator for the class:

p <- SimplePop(birth = 0.08,
death = 0.1,

size = 100).

Rather than a single functional computation as in the
case of linear regression, computations proceed by
simulating the evolution of the population object p.
The object itself evolves; in the terminology of OOP,
it is a mutable reference.

A corresponding difference in the programming
paradigms of S and the emerging OOP languages was
that the latter did not take a functional view of com-
putation. Instead, computations largely consisted of
invoking a method on an object. In the Simple-
Pop example, the fundamental computation is to sim-
ulate one generation of the evolution by invoking the
evolve() method

p$evolve().

The value returned by this method is irrelevant. The
method’s purpose is to change the object, in this
case by simulating one further generation and ap-
pending the resulting value to a property in the ob-
ject, namely, p$size. (See files “SimplePop.R”
and “SimplePopExample.R” in the supplementary
materials.)

Following the development of Simula in the late
1960s, a variety of languages adopted this paradigm.
C++ added classes and methods to the C language;
like C, it was initially used for a variety of program-
ming tasks implementing UNIX and application soft-
ware for UNIX. In contrast to the “add-on” nature of
C++, the Smalltalk language was a very pure, simpli-
fied realization of the ideas in Simula. Its major, and
revolutionary, application was to implement the graph-
ical user interface created at Xerox PARC in the 1970s.
Many other versions of encapsulated OOP followed,
either added on to existing languages or incorporated
into new languages from the start.

Dialects of the Lisp language and languages based
on Lisp also incorporated OOP in various forms. Dur-
ing the 1980s, several research projects built statisti-
cal software on the basis of these languages, includ-
ing some elegant and potentially widely applicable sys-
tems, notably LISP-STAT, Tierney (1990). As it turned
out, however, the most widely used version of OOP for
statistical applications would come from a somewhat
casual approach in S.

3.4 Functional OOP in S and R

The chief motivation for introducing classes and
functional methods to S was the initial application: fit-
ting, examining and modifying diverse kinds of sta-
tistical models for data. This remains arguably the
most compelling example for functional OOP in statis-
tics. The “Statistical Models in S” project reported
in Chambers and Hastie (1992)—the “white book”—
brought together ten authors presenting software for
a variety of statistical models, from linear regression
to tree-based models. The different models were pre-
sented as consistently as possible.

Each type of model had a definition as an object
having the information, such as coefficients and other
properties, required. The object was created by a corre-
sponding function taking as arguments the data, model
description and possibly other controlling parameters.
A linear regression fit, for example, called the function
lm():

irisFit <- lm(Sepal.Width
∼ . - Sepal.Length, iris)

and returned a corresponding linear regression object.
Further computations on this object would examine
the model, return information about it, or update the
fit. The underlying computations still used basic soft-
ware similar to that for lsfit() and reg(). How-
ever, the description of the model (a formula) and the
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data (a data frame) were designed to apply to statistical
models generally. For example, to fit a generalized lin-
ear model the user called glm()with formula and data
arguments typically similar to those in a call to lm().
Other arguments would provide information suitable to
the particular type of model (a link function, e.g.).

For the convenience of the user, further computa-
tions should have a uniform appearance. To print or
plot the fitted model or to compute predictions or an
updated model corresponding to new data, the user
should call the same function [print(), plot(),
predict() or update()] in the same way, regard-
less of the type of model. The owner of the software
for a particular type of model, on the other hand, would
like to write just that version of each function, without
being responsible for the other versions.

Once stated, this is essentially a prescription for
functional OOP: a class of objects for each kind of
model, generic functions for the computations on the
objects and methods for each function for each class.
Where one class of models is an extension of another
(analysis of variance as a subclass of linear models,
e.g.), methods can be inherited when that makes sense.

An implementation of generic functions and meth-
ods was introduced as part of the statistical models
project and described in the Appendix to the white
book. The central mechanism was an explicit method
dispatch. The function print(), for example, would
evaluate the expression:

UseMethod("print").

The evaluation of this call would examine the
“class” attribute of the first formal argument to the
function. If present, this would be a character vector.
Eligible methods would be those matching one of the
strings in the class vector; if none matched, a method
matching the string “default” would be used. In-
heritance was implemented by having more than one
string in the class, with the first string being “the” class
and the remainder corresponding to inherited behavior.

Chambers and Hastie (1992), in the discussion of
classes and methods, noted that S differed from other
OOP languages because of its functional programming
style. In fact, this version of functional OOP finessed
the resulting distinction from encapsulated OOP in two
ways. First, the methods were dispatched according
to a single argument, the first formal argument of the
generic function in principle. As a result, the methods
were unambiguously associated with a single class, as
they would be in encapsulated OOP. Methods were ac-
tually dispatched on either argument to the usual bi-

nary operators, but a number of encapsulated OOP lan-
guages do the same, under the euphemism of operator
overloading.

Second, the question of whether methods belonged
to a class or a function was avoided by not having
them belong to either. Methods were assigned as or-
dinary functions and identified by the pattern of their
name: “function.class”. In any case, there were no
class objects and generic functions were ordinary func-
tions that invoked UseMethod() to select and call
the appropriate method. Neither the function nor the
class was able to own the methods.

Technically, the method dispatch in this version of
OOP was instance-based, not class-based, since no rule
enforced a consistent set of classes, that is, that all ob-
jects with a given first class string would have identical
following strings for the superclasses. (R for some time
had an S3 class in the base package with a main class
string “POSIXt”, representing date/times, that could
be followed in different objects by one of two strings
that in fact represented specializations, i.e., subclasses,
of “POSIXt”.)

The classes and methods implemented for statistical
models constituted a bare-bones version of functional
OOP, which is not to imply that this was a bad idea.
Advantages include a relatively low learning barrier for
programming and a thin implementation layer above
the previously existing language, which in turn means
less computational overhead in some circumstances.
[Interestingly, the encapsulated OOP of Python has a
similarly thin implementation, with classes containing
methods but without defining the properties. A very
analogous defense is made for that implementation, in
Section 9 of the Python tutorial, Python (2013), e.g.]

A more formal version of functional OOP was devel-
oped at Bell Labs, introduced into S in the late 1990s
and described in Chambers (1998). By this time, S-
based software was exclusively licensed to the Insight-
ful Corporation, which later purchased the rights to the
S software, in 2004, and was itself subsequently pur-
chased by Tibco.

The new paradigm differed from S3 classes and
methods in three main ways:

1. Methods could be specified for an arbitrary subset
of the formal arguments, and method dispatch would
find the best match to the classes of the corresponding
arguments in a call to the generic function.

2. Classes were defined explicitly with given prop-
erties (the slots) and optional superclasses for inherit-
ing both properties and methods.
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3. Generic functions, methods and class definitions
were themselves objects of formally defined classes,
giving the paradigm reflectivity.

The new paradigm was part of the version of S de-
scribed in the 1998 book and generally referred to
as S4. The S4 label is generally applied to this OOP
paradigm, whether in S or R. S4 methods never had
much chance of replacing S3 methods. In practice,
many S4 generic functions were based on functions
that already dispatched S3 methods. In this case, the
S3 generic function became the default S4 method.

The work on S4 paralleled in time the arrival of R
and its conversion into a broad-based joint project fol-
lowing the initial publication by Ihaka and Gentleman
(1996). The implementation of R was designed to pro-
vide the functionality for S described in the blue book
and white book, including S3 methods. Beginning in
2000, an implementation of the S4 version of OOP was
added to R. The “Software for Data Analysis” book,
Chambers (2008), includes a description of the R ver-
sion.

Both versions of functional OOP will remain in R.
Many prefer the simplicity of the old form, and in
any case the very large body of existing code will
not be discarded, and should not be. Some important
extensions have been made, for example, by register-
ing the S3 methods from a package. Major forward-
looking projects have typically used the newer version,
for example, the Bioconductor project for bioinformat-
ics software, Gentleman et al. (2004), and the Rcpp in-
terface to C++, Eddelbuettel and François (2011). Re-
cent changes, such as making the S3 and S4 versions of
inheritance as compatible as possible, have been aimed
at helping the two forms to coexist productively.

Any programming paradigm with some degree of
formality is likely to have a higher initial learning
barrier and require some extra specification from the
programmer. A comparison of encapsulated OOP pro-
gramming with Python to that with Java is an inter-
esting parallel to S3 and S4. In both examples, the less
formal version is likely to be quicker to learn, while the
more formal version provides more information about
the resulting software. That information in turn can
support some forms of validation for the resulting soft-
ware, as well as tools to analyze and describe it. Python
and Java being rather different languages in other re-
spects as well, projects are not too likely to make a
choice between them based solely on the formality of
the object-oriented programming.

With R, a conscious choice is more likely. The argu-
ments for a more formal approach apply particularly, in

my opinion, to projects with one or more of the char-
acteristics: a substantial amount of software is likely to
be written; the application has a fairly wide scope in
terms of either the data or the computing methods; or
the validity and reliability of the resulting software is
important.

Nothing prevents good software being written with-
out formal tools in this case nor of bad software being
written with them. However, there are several poten-
tial benefits that can be summarized in parallel with
the main innovations noted above:

1. Allowing methods to depend on multiple argu-
ments fits the functional paradigm in R, in which the
arguments collectively define the domain of the func-
tion. Many functions in R are naturally applied to dif-
ferent classes of objects, not necessarily corresponding
to the first argument, or only to one argument. For ex-
ample, when binary operators such as arithmetic are
defined for a new class, a clean design of methods for
the operators often needs to distinguish three cases: the
first operand only belonging to the new class, the sec-
ond operand only or both operands.

2. A formal definition for a class allows program-
mers to rely on the properties of objects generated from
the class. Otherwise, the nature of the objects can only
be inferred, if at all, from analyzing all the software
that creates or modifies an object of this class.

3. Having formal definitions for the generic func-
tions, methods and class definitions themselves sup-
ports a growing set of tools for installing and us-
ing packages that include such functions, methods or
classes.

The benefits of a general, reliable form of functional
OOP extend to developments in the language itself. For
example, reference classes were built on the S4 classes
and methods, with no internal changes to the R evalua-
tor required.

3.5 Reference Classes

Functional OOP remains an active area in R. In ad-
dition, reference classes, introduced to R in 2010 in
version 2.12.0, provide an implementation of encap-
sulated OOP. Class definitions include the properties
of the class with optional type declarations; proper-
ties may also be optionally declared read-only. Class
definitions are themselves objects available at runtime.
Methods are programmed as R functions, in which the
object itself is implicitly available, not an explicit ar-
gument. Methods can access or assign properties in the
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object by name. These characteristics make the imple-
mentation more Java-like, say, than Python- or C++-
like.

The programmer defines a reference class in the
R style, calling setRefClass() instead of set-
Class(). The call returns a generator for the class
and saves the class definition object as a side effect, as
does setClass() for S4 classes.

As a side comment, while R uses a model for most
of its objects and computations that is fundamentally
different from the object references in encapsulated
OOP, a few key features made the implementation
of reference classes in R possible and even relatively
straightforward. Most importantly, the R data type
“environment” provides a vehicle for object refer-
ences and properties. Environments are universal in R
and well supported by programming tools. In particu-
lar, the active binding mechanism, which allows access
and assignment operations on objects in environments
to be programmed in R, was valuable in the implemen-
tation.

Reference classes allow the use of encapsulated
OOP for objects that suit that paradigm more naturally
than they do functional OOP. As noted in Section 3.3,
the essential distinction between functional and encap-
sulated OOP is whether an object is created, once, by a
function call or is instead a mutable object that changes
as methods are invoked.

Statistical computing has examples clearly suited to
each of these paradigms. The linear model returned
by lm() is not open to mutation. Change the num-
bers in the coefficients or residuals and you no longer
have an object that should belong to that class. In con-
trast, a model simulating a dynamic process such as
the SimplePop class in Section 3.3 exists precisely
for the purpose of changing, with its evolution being
the central point of interest. Other, less directly statisti-
cal computations in R also may correspond to mutable
objects, for example, the frames or other objects in a
graphical interface.

Not every case is clear cut. Sometimes, essentially
the same class structure may be more appropriate for
functional or encapsulated classes depending on the
purpose of the computation. Data frames are a prime
example. This essential object structure is viewed natu-
rally as functional when it is part of a functional object
related to the data frame. For example, a fitted model
that wanted to be fully reproducible could return the
data frame on which the fitting was based [e.g., lm()
includes the model frame it constructs]. Such a data
frame is clearly functional; again, change it and you

invalidate the model. On the other hand, a data frame
to be used in data cleaning and editing is an object that
needs to be mutable.

Having both paradigms in a single language is un-
usual. Some functional-style languages have imple-
mented functional OOP, notably Dylan, interesting for
its parallels with OOP in R—see Shalit (1996), par-
ticularly the discussion of method dispatch. Other lan-
guages with a functional structure have nevertheless
added what is essentially encapsulated OOP, for exam-
ple, Odersky, Spoon and Venners (2010) for the case of
Scala.

We hope that providing both paradigms in R encour-
ages software design that is natural for the application.
It does at the same time pose some subtleties. Refer-
ence classes and reference class objects are somewhat
abnormal in R. One needs to understand the distinc-
tions from standard R objects.

The key is the local reference mechanism noted in
Section 2.3. The R evaluator enforces local reference
by duplicating an object when a computation might al-
ter a nonlocal reference. Certain object types are ex-
ceptions that are not duplicated. The important ex-
ception is type “environment”. Reference classes
are implemented by extending this type. Encapsulated
OOP in R uses no special form of the function call.
Method invocation is just a call to the “$” operator,
for which reference classes have an S4 method. Refer-
ence semantics are obtained by one basic fact: environ-
ments are never duplicated automatically. The S4 class
mechanism in R nevertheless allows one to subclass
the “environment” type in order to define reference
class behavior.

The objects in the fields of a reference class object
can be ordinary R objects. They behave just as usual
and when used in function calls will have regular local
reference behavior in that call. It is only when fields in
the reference object itself are replaced that the encap-
sulated OOP is relevant.

Reference class objects are also good candidates
for interfaces to other languages that implement the
same OOP paradigm, such as Java, C++ or Python.
The R object could be a proxy for an object in the
other language with methods invoked in R but executed
on the original object. The Rcpp interface to C++,
Eddelbuettel and François (2011), has a mechanism for
extending C++ classes in this way. C++ classes can
only be inferred from the source, meaning that either
the programmer must supply the interface information
(as in the current implementation) or some processing
of the source must be applied (currently used to export
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functions from C++ but not classes). Java classes are
accessible as objects, via “reflectance” in Java termi-
nology, so that in principle proxy classes in R should
be possible. The rJavax package by Danenberg (2011)
has an initial implementation. For Python, methods are
available from the objects but properties are not for-
mally defined. At the time of writing, basic interfaces
to Python exist, for example, Grothendieck and Bel-
losta (2012), which could be extended to support class
interfaces, with methods but not properties inferred
from the Python class objects.

Further work on these and other inter-system inter-
faces would be a valuable contribution to the user com-
munity.

4. SUMMARY

R plays a major role in the communication and dis-
semination of new techniques for statistics and for re-
sults of statistical research more generally. In partic-
ular, the many packages written in R or using R as a
base for interfacing to other software constitute an es-
sential, rapidly growing resource. Therefore, the qual-
ity of such software and the ability of programmers to
create and extend it are important.

The current R language and its supporting function-
ality are the result of many years of evolution, from
early programming libraries through the S language to
R, which itself has evolved and accumulated a variety
of programming techniques. This evolution has been
much influenced by the functional and object-oriented
programming paradigms. New versions have continued
to include supporting software and programming tools
found useful at earlier stages along with improved ca-
pabilities.

The programming paradigms become especially rel-
evant when the applications are complex or the quality
of the resulting software is important. In particular, the
versions of object-oriented programming in R can as-
sist in dealing with complexity of the underlying data.
As noted, R implements OOP in two forms, functional
and encapsulated. These are complementary, with one
or the other suitable for particular applications. The lat-
ter is essentially the form of OOP used in most other
languages, but the former is distinctly different. Con-
siderable confusion has arisen in discussions of OOP
in R from not noting that distinction, which the present
paper has tried to clarify.

More generally, understanding the role of object-
oriented and functional programming in R may assist

future contributing programmers in using related pro-
gramming tools. The continuing rapid growth of R-
based software and the expanding, challenging range
of techniques it has to support make effective program-
ming an important goal for the statistical community.

The importance of object-oriented programming is
likely to increase as statistical software takes on new
and challenging applications. In particular, the need
to deal with increasingly large objects and distributed
sources of data will bring in specialized classes of data
and will need powerful computing tools. One impor-
tant direction has been to transform selected software
in R, particularly to speed up large-scale computations;
see, for example, the companion paper Temple Lang
(2014). Complementary to this is to interface to other
languages and software when these provide better per-
formance on “big data” and other computationally
demanding applications. In particular, interfaces that
match with object-oriented treatments for specialized
forms of data can exploit the OOP facilities in R. The
interface to C++, Eddelbuettel and François (2011),
is an example. Further development of such interfaces
will be of much benefit.

Functional programming is perhaps not such an ob-
viously hot topic at the moment. However, the underly-
ing philosophy that our software should be in the form
of reliable, defensible units is very much part of R. Sit-
uations where the validity of statistical computations
needs to be defended are likely to increase, given the
growing need for statistical treatment of complex prob-
lems for science and society.
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