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From Science to Management: Using
Bayesian Networks to Learn
about Lyngbya
Sandra Johnson, Eva Abal, Kathleen Ahern and Grant Hamilton

Abstract. Toxic blooms of Lyngbya majuscula occur in coastal areas world-
wide and have major ecological, health and economic consequences. The ex-
act causes and combinations of factors which lead to these blooms are not
clearly understood. Lyngbya experts and stakeholders are a particularly di-
verse group, including ecologists, scientists, state and local government rep-
resentatives, community organisations, catchment industry groups and local
fishermen. An integrated Bayesian network approach was developed to better
understand and model this complex environmental problem, identify knowl-
edge gaps, prioritise future research and evaluate management options.
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1. INTRODUCTION

One of the most common marine pests in waterways
around the world is algae. Harmful algal blooms oc-
cur across the world and have a wide range of detri-
mental impacts (Hamilton, McVinish and Mengersen,
2009). For example, they can replace or degrade other
algal species that act as fish breeding grounds, poi-
son fish and mammal marine life through the produc-
tion of toxins (Arthur et al., 2006; Arthur et al., 2008),
adversely affect coastal economies through reduced
tourism and fishing (Watkinson, O’Neil and Denni-
son, 2005), and affect human health through dermati-
tis (Osborne, Webb and Shaw, 2001; Osborne, Shaw
and Webb, 2007), neural disorders and contamination
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of other seafood such as shellfish (Pittman and Pittman,
2005). One of the most common forms of harmful al-
gae is cyanobacteria, or blue-green algae, and one of
the most common species of cyanobacteria in tropi-
cal and subtropic coastal areas worldwide is Lyngbya
majuscula (Dennison et al., 1999b; Arquitt and John-
stone, 2004). Lyngbya, also known as mermaid’s hair,
stinging limu or fireweed, appears to be increasing in
both frequency and extent (Dennison et al., 1999a;
Albert et al., 2005). These blooms are due to a complex
system of biological and environmental factors, exac-
erbated by human activities (Watkinson, O’Neil and
Dennison, 2005). Thus, while there is a wealth of sci-
entific and social literature on different aspects of the
Lyngbya problem, for example, the role that nutrients
play in the initiation and extent of Lyngbya blooms,
or the effect of industry practices in the catchment on
the nutrients available for Lyngbya growth, effective
management of Lyngbya requires a “whole-of-system”
approach that comprehensively integrates the different
scientific factors with the available management op-
tions (Johnson et al., 2010). There is also a need to
understand the different factors that trigger the initi-
ation of a bloom versus the sustained growth of the
cyanobacteria bloom.

Bayesian models are natural vehicles for describ-
ing complex systems such as these (Johnson and
Mengersen, 2012). Key attributes of Bayesian models
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in this context include flexibility of the model struc-
ture, the ability to incorporate diverse sources of in-
formation through priors and the provision of proba-
bilistic estimates that take appropriate account of un-
certainty in the system (McCann, Marcot and Ellis,
2006; Jensen and Nielsen, 2007; Hamilton, McVin-
ish and Mengersen, 2009). A Bayesian network (BN)
is a graphical Bayesian model that uses conditional
probabilities to encode the strength of the dependen-
cies between any two variables (Pearl, 1985). Causal
and evidential inferential reasoning may be performed
by the BN, depending on the nature of the dependen-
cies (Pearl, 1985). BNs are increasingly used to model
complex systems (Bromley et al., 2005). Variables in
the model are represented by nodes, and links between
variables are represented by directed arrows. Each
node is then ascribed a probability distribution condi-
tional on its parent nodes. The information used to de-
velop these distributions can be obtained from a variety
of sources, including data relevant to the system, re-
lated experiments or observations, literature and expert
judgement (McCann, Marcot and Ellis, 2006; Jensen
and Nielsen, 2007). A common practice is to discretise
the variables into a set of states, resulting in a series
of conditional probability tables; hence, under the as-
sumptions of directional separation (d-separation, so
that the nodes are conditionally independent) and the
Markov property (so that the probability distribution
of a node depends only on its parents), the target re-
sponse node is quantified as the product of the cas-
cade of conditional probability tables in the network
(Uusitalo, 2007). The quantified model can then be
used to identify influential factors, perform scenario
assessments, identify configurations of node states that
lead to optimal response outcomes and so on. BNs
can be expanded into object-oriented and dynamic net-
works (Jensen and Nielsen, 2007; Johnson et al., 2010);
they can include extensions such as decision, cost and
utility nodes (Jensen and Nielsen, 2007); and they can
be linked to other BNs to create systems of systems
models.

In this paper we describe an integrated Bayesian net-
work (IBN) approach developed by our research team
to address the problem of Lyngbya blooms in Decep-
tion Bay, Queensland, Australia. With its proximity to
Brisbane, Australia’s third largest city, Deception Bay
is a popular tourist destination in the Moreton Bay re-
gion. The many waterways feeding from intensive and
rural agricultural activities into the bay and its use for
commercial and recreational fishing put pressure on

the marine environment and compound the issues re-
sulting from a Lyngbya majuscula bloom (Dennison
et al., 1999a). Our project was undertaken as part of
the Lyngbya Management Strategy funded by the lo-
cal and Queensland Government’s Healthy Waterways
Program. The project team comprised a Lyngbya sci-
ence working group and a Lyngbya management work-
ing group, representing diverse scientific disciplines,
industry groups, government agencies and community
organisations. The IBN is now a living part of the
Healthy Waterways Program and has been expanded
beyond Moreton Bay.

2. AN INTEGRATED BAYESIAN NETWORK FOR
LYNGBYA

The IBN approach that we developed involved a
“science model” linked to a “management model”. The
components of the IBN are detailed below.

2.1 The Science Model

The science BN [depicted in Supplemental Figure 1
(Johnson et al., 2014)] comprised the target node,
“Bloom Initiation”, and 22 other nodes which were
identified by the Lyngbya science working group as po-
tentially playing a key role in the initiation of a Lyng-
bya bloom (Johnson et al., 2014). It was transformed
into an object-oriented BN with subnetworks describ-
ing water (comprising nodes for past and present rain,
groundwater and runoff), sea water (tide, turbidity and
bottom current climate), air (wind and wind speed),
light (surface light, light quality, quantity and cli-
mate) and nutrients (dissolved concentrations of iron,
nitrogen, phosphorus and organics, particulates, sed-
iments nutrient climate, point sources and available
nutrient pool) (Johnson et al., 2010). The nodes of
the science model were quantified using a range of
information sources and models, including process
and simulation models, Bayesian hindcasting models,
expert elicitation, published and grey literature, and
data obtained from monitoring sites, industry records,
research projects and government agencies (Johnson
et al., 2010).

2.2 Science Model Extensions, Alternatives and
Sub-Models

The science object-oriented BN model was further
extended to incorporate temporal trends through a dy-
namic Bayesian network comprising five time slices,
one for each of the summer months November to
March (Johnson and Mengersen, 2009). Lag effects of



38 JOHNSON, ABAL, AHERN AND HAMILTON

rainwater and groundwater runoff were incorporated in
the object-oriented BN, allowing information and in-
fluence from one month to flow through to the next
(Johnson and Mengersen, 2009).

Additional BNs were also constructed to more fully
evaluate the Lyngbya problem. These included separate
BNs to model Lyngbya biomass, duration and decay (as
opposed to initiation), and a BN to focus on the critical
two month summer period in which most Lyngbya ini-
tiations occur (as opposed to annual averages of rainfall
and temperature used in the original model).

A variety of other statistical models were used to
quantify some of the nodes of the BN. For example,
random forest models were created to predict benthic
photosynthetically active radiation (Kehoe et al., 2012)
and Bayesian regression models were developed using
data obtained from the monitoring stations in the catch-
ment (Hamilton, McVinish and Mengersen, 2009). The
latter data set comprised Lyngbya occurrences for each
month during January 2000 to May 2007, a total of 77
observations, and monthly averages of minimum and
maximum air temperature (as proxies for water tem-
perature), solar exposure and amount of sky not cov-
ered by cloud (as proxies for light), and total rainfall
(as a proxy for nutrients available in the water col-
umn), measured over the same period. A Bayesian pro-
bit time series regression model was developed to pre-
dict the monthly probability of bloom based on a to-
tal of 17 covariates, comprising five main effects, five
first-order autoregressive terms and seven selected in-
teractions. Covariate selection was performed using a
Bayesian reversible jump Markov chain Monte Carlo
algorithm and Bayesian model averaging was used to
obtain a final predictive model. Eight of the 890 mod-
els identified by the algorithm accounted for over 75%
of the posterior model probability, and the model com-
prising a single term, average monthly minimum tem-
perature, accounted for almost 50%.

2.3 The Management Model

The aim of the management network [Supplemen-
tal Figure 2 (Johnson et al., 2014)] was to facilitate
evaluation of options available to government agencies,
communities and industry groups that could potentially
influence the delivery of nutrients to Deception Bay.
Nutrient point sources, such as industries (e.g., aqua-
culture, poultry) and council facilities (e.g., waste wa-
ter treatment plants), and diffuse sources, such as lan-
duse (e.g., grazing land, forestry) and urban activities
(e.g., stormwater), were geographically located in the
catchment. Each of these sources was then quantified

with respect to the probability of high or low emissions
of different types of nutrients under current, planned
and best practice scenarios. While not a Bayesian net-
work in the sense of propagating these probabilities,
the network structure was a valuable vehicle for collat-
ing and displaying this information.

A GIS-based nutrient hazard map for the catchment
was then developed for each unit of land in the catch-
ment, based on the nutrient emissions of the sources,
the soil pH and soil type at each source location,
and distance of the sources to the nearest waterway
(Pointon et al., 2008). This included a nutrient risk rat-
ing which was interpreted as the perceived risk that
there will be “enough” of that nutrient to cause an
increase in growth, extent and duration of a Lyngbya
bloom.

2.4 Creating and Using the Integrated Bayesian
Network

The science BN and the management network de-
scribed above were integrated via a water catchment
simulation model that was developed as part of the
Lyngbya project. The IBN was conceived as a series
of steps, whereby a management intervention is pro-
posed, and the management model is used to inform
about the expected nutrient discharge into the Decep-
tion Bay catchment. The catchment model simulates
the movement of these nutrients to the Lyngbya site in
the Bay, and the science network then integrates this
nutrient information with the other factors in the BN to
determine the probability of bloom initiation.

We briefly discuss here three ways in which the IBN
was interrogated to learn about Lyngbya majuscula
bloom initiation in Deception Bay. First, the science
BN provided an overall probability of Lyngbya bloom
initiation based on the BN structure and its inputs. For
example, in a typical year, as defined by the Lyngbya
management working group, the probability of a bloom
was predicted to be 0.28. Based on the dynamic net-
work, this probability was much higher in the months
of November and December and fell slightly in March.

Second, the IBN informed about important factors
affecting this probability. For example, based on the
science network, the seven most influential factors
were available nutrient pool (dissolved), bottom cur-
rent climate, dissolved iron, dissolved phosphorus,
light and temperature. Based on both networks, the
comparative impact of different management land uses
on the probability of a bloom could be computed: these
probabilities were lowest for waste water treatment
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plant (0.23) and grazing (0.27), and highest for waste
disposal (0.63), aquaculture (0.63) and poultry (0.62).

Third, the IBN facilitated the evaluation of scenarios,
for example, about the impacts of management options
such as upgrading nominated point sources from cur-
rent to best practice (e.g., eliminating potassium out-
put from sewage treatment plants), climate events (e.g.,
a severe storm) and conditions most or least favourable
for bloom initiation. For example, under optimal light
climate and high temperature conditions, a storm event
increased the probability of bloom initiation from 0.28
to 0.42 and initiation was certain if the available nutri-
ent pool (dissolved) was enough. As another example,
changing the management land use from natural veg-
etation to agriculture throughout the catchment area
(based on the management network) results in an in-
crease of 8.8% in available nutrients compared with
baseline levels (based on the GIS hazard map), which
in turn results in a substantial increase in the prob-
ability of a Lyngbya bloom initiation to 0.62 (based
on the science BN). Note that the effect of this land
use change is diluted by the fact that the proportion of
the catchment designated as natural vegetation is only
18.24%.

Investigation of the BN also revealed unexpected re-
sults that required discussion and reflection by the sci-
ence and management teams. For example, the model
supported early suggestions that iron was a key nu-
trient in Lyngbya bloom initiation (Watkinson, O’Neil
and Dennison, 2005), which motivated additional re-
search into this important issue (Ahern, Ahern and
Udy, 2008). As another example, land runoff and point
sources contributed approximately equally to the prob-
ability of bloom initiation under the developed sci-
ence model, provoking questions about the relative ef-
fects of population pressure and industrial growth in
the catchment. Alternatively, it suggests that the infor-
mation available to quantify these nodes is somewhat
uncertain. In fact, it is a methodological challenge to
accurately model the nutrient load into Deception Bay
from land runoff (Kehoe et al., 2012) and more accu-
rate models are currently under development.

3. WHY BAYESIAN?

By their nature, a complex system is challeng-
ing to model—using traditional statistical approaches.
This is illustrated well in the Lyngbya case study de-
scribed here, which is characterised by multiple in-
teracting factors drawn from science and manage-
ment, piecemeal knowledge and diverse information

sources (Kehoe et al., 2012). Furthermore, Bayesian
models are able to capture the uncertainty in the data
and parameter estimates which is generally agreed to
be lacking in many ecological modelling paradigms
(Hamilton, McVinish and Mengersen, 2009). More
specifically, Bayesian networks (BNs) are capable of
diagnostic, predictive and inter-causal (or “explaining
away”) reasoning (Jensen and Nielsen, 2007; Johnson
and Mengersen, 2012), which was particularly relevant
for the Lyngbya problem described here.

There are several alternatives to the IBN approach
that could be considered for modelling the Lyngbya
problem. Janssens et al. (2006) proposed a decision
tree approach, but this was less able to represent the
many interactions between the factors in the system.
Other methods include stochastic petri nets which are
able to model concurrent systems (Angeli, De Leen-
heer and Sontag, 2007), but require the modeller to
have advanced statistical knowledge and were unlikely
to engage the diverse group of Lyngbya stakeholders.
Process-based modelling, which is commonplace in
ecology, requires substantial data for calibration and
validation of the models, which is very time consum-
ing and resource hungry and may take several years
(Kehoe et al., 2012). In contrast, a BN allows us to as-
similate current knowledge and modelling effort with-
out having to wait until “perfect” and “sufficient” data
are available. This is particularly important when deal-
ing with a major environmental hazard such as toxic
algal blooms. None of the alternative approaches had
the unique combination of qualities of BNs which in-
tegrated the different sources of information, repre-
sented the dependencies and uncertainty in the infor-
mation, guided future data collection and research, and
engaged a diverse group of stakeholders.

The IBN described in this paper is the most com-
prehensive local systems model of Lyngbya that has
been developed to date. There are many other exam-
ples of the use of BNs to solve “big” problems. We
have employed them to investigate infection control in
medicine, airport and train delays, wayfinding, import
risk assessment (Mengersen and Whittle, 2011), peak
electricity demand and sustainability of the dairy in-
dustry in Australia. Furthermore, there are other con-
ceptual and methodological approaches to constructing
BNs; examples include decision making in business
(Baesens et al., 2004) and protein networks in biology
(Jansen et al., 2003).

Finally, BNs are just one tool in the kit of statisti-
cal methods that should be considered for solving these
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types of problems and that can be considered as com-
plements to other approaches in order to reveal the full
picture of a complex system.
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