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Mean-Variance and Expected Utility:
The Borch Paradox

David Johnstone and Dennis Lindley

Abstract. The model of rational decision-making in most of economics and
statistics is expected utility theory (EU) axiomatised by von Neumann and
Morgenstern, Savage and others. This is less the case, however, in financial
economics and mathematical finance, where investment decisions are com-
monly based on the methods of mean—variance (MV) introduced in the 1950s
by Markowitz. Under the MV framework, each available investment oppor-
tunity (“asset”) or portfolio is represented in just two dimensions by the ex
ante mean and standard deviation (i, o) of the financial return anticipated
from that investment. Utility adherents consider that in general MV methods
are logically incoherent. Most famously, Norwegian insurance theorist Borch
presented a proof suggesting that two-dimensional MV indifference curves
cannot represent the preferences of a rational investor (he claimed that MV
indifference curves “do not exist”). This is known as Borch’s paradox and
gave rise to an important but generally little-known philosophical literature
relating MV to EU. We examine the main early contributions to this litera-
ture, focussing on Borch’s logic and the arguments by which it has been set

aside.
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There is no inevitable connection between
the validity of the expected utility maxim
and the validity of portfolio analysis based
on, say, expected return and variance (Mar-
kowitz, 1959, page 209).

1. INTRODUCTION

This paper looks back at a little-known but highly
interesting chapter in the history of business decision-
making (call it “investment”) under uncertainty. In a
once féted but now rarely mentioned paper, titled po-
litely A Note on Uncertainty and Indifference Curves,
the Norwegian insurance theorist and economist Karl
Borch (1969) argued that the mean—variance theory
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of investment, invented and popularized by Markowitz
(1952, 1959), is logically absurd. In this delightfully
provocative note, Borch (1969) proved, he claimed,
that it is impossible to draw indifference curves in
the mean—variance (i, o'2) or mean—standard deviation
(u, 0) plane. The same proof appears in at least two
other works by Borch (1973, 1974), who concluded
that mean—variance is an interesting but not serious al-
ternative to expected utility:

... I shall continue to use mean—variance
analysis in teaching, but I shall warn stu-
dents that such analysis must not be taken
seriously and applied in practice (Borch,
1974, page 430).

The proof presented by Borch (pronounced “Bork™)
became known to theorists as “Borch’s paradox”.
While of much interest theoretically, the academic dis-
cussion that stemmed from Borch’s work had virtually
no impact on the practice of finance. To the contrary,
mean—variance (MV) analysis, for which Markowitz
later won a Nobel Prize in Economic Sciences, has be-
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come by far the most recognized decision framework
in the practice of business decision-making, including
especially capital budgeting (e.g., whether to build a
new factory), investment management (e.g., whether
to increase the weight of oil stocks in a pension fund)
and corporate financial valuation (e.g., whether a firm
is worth its current value on the stock market). Each of
these common applications is built implicitly on MV,
and explicitly on the so-called “capital asset pricing
model” (CAPM) that arose as a corollary from the MV
foundations set out by Markowitz.

Although business applications of MV portfolio the-
ory and the CAPM are commonplace, and effectively
the industry standard (witness any modern textbook
in financial economics), proponents of this decision
framework remain conscious that the proven philo-
sophical foundations of decision analysis under uncer-
tainty remain the axioms and theorems of expected
utility theory (EU), formalized by Von Neumann and
Morgenstern (1953) and Savage (1954). Utility the-
ory, or more specifically the maximization of sub-
jective expected utility satisfying the von Neumann—
Morgenstern or similar axioms, remains the hallmark
of rationality in economics and statistical decision
analysis (e.g., DeGroot, 1970; Bernardo and Smith,
1994; Pratt, Raiffa and Schlaifer, 1995; Lengwiler,
2004; Eeckhoudt, Gollier and Schlesinger, 2005). As a
mark of respect for this intellectual legacy, Markowitz
(1991) devoted his 1990 Nobel Lecture to an empirical
comparison of his MV methods of portfolio selection
with a model based on EU theory. Authoritative recog-
nition also goes the other way. In its second edition,
one of the standard references on neoclassical decision
theory, Pratt, Raiffa and Schlaifer (1995) contains an
elegant exposition of the MV investment framework,
albeit without reconciliation with other explicitly EU
parts of the book. Completing the circle, Markowitz
(2006) and Rubinstein (2006a) have lately pointed
to an early paper in Italian, authored by de Finetti
(1940), the most revered of all subjective probabil-
ity theorists, as having been first to express a formal
model of decision-making within a MV framework.
Two further expositions concentrated on de Finetti’s
previously little-known anticipation of Markowitz are
Barone (2008) and Pressacco and Serafini (2007).

Our primary purpose is to examine the historical lit-
erature surrounding Borch’s paradox. To assist readers
who are not familiar with this branch of applied sta-
tistical literature, we first recount the basic elements
of investment decision-making under the two compet-
ing conceptual frameworks, expected utility and mean—
variance. We then consider how MV can be justified

on axiomatic foundations, in the face of critics such as
Borch, and by comparison with EU theory generally.
Finally, to better understand the practical appeal of MV
methods, and why finance theory so readily adopted the
language of MV over EU, we introduce the capital as-
set pricing model (CAPM) and observe how such a the-
oretically insightful model arose almost automatically
once decisions were depicted in terms of MV rather
than EU.

2. EXPECTED UTILITY THEORY

A decision is a choice between some (usually strict)
subset of all of the available “lotteries,” “assets,” “in-
vestments” (these terms are synonyms)—and all fea-
sible weighted portfolios thereof. Each such uncertain
prospect reduces to a probability distribution over a
domain of possible payoffs. Decision-making is there-
fore boiled down to a choice between different possible
probability distributions of returns.

Von Neumann and Morgenstern (1953) proposed an
axiomatic theory of how to decide between known
probability distributions (of payoffs). In brief, they
proved deductively that if decision-making is logical
in the sense that it obeys certain specified basic ax-
ioms of coherence or rationality, then implicitly the
decision-maker must act as if her objective is to max-
imize expected utility E[u(x)] = [, f(x)u(x), where
u(x) is a real-valued function representing the utility
obtained from certain wealth or payoff x, and f(x)
is the probability density function of x. The deci-
sion rule of maximizing E[u(x)], taken in conjunc-
tion with some plausible looking utility function such
as Bernoulli’s u(x) = log(x), is often treated as itself
axiomatic. More correctly, the extra-intuitive appeal of
the EU decision rule is that rather than being just an-
other plausible looking but arbitrary objective function,
it is a theorem deduced from a small number of far
more elementary assumptions concerning what consti-
tutes rational human preferences.

There are five essential axioms of expected utility:
(i) Completeness. All lotteries A and B can be ranked
relative to one another, A = B, A < B or A ~ B, where
~ indicates indifference. (ii) Transitivity. If A > B and
B > C, then A > C. (iii) Continuity. If A > B > C,
there exists some probability « € [0, 1] such that B ~
oA+ (1 —a)C, meaning that B is indifferent to a com-
pound lottery that returns lottery A with probability o
and lottery C with probability (1 — «). (iv) Indepen-
dence. Indifference A ~ B between lotteries A and B
implies indifference between compound lottery o A +
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(1 — )C and compound lottery B + (1 — o) C. Simi-
larly, A > B implies¢ A+ (1 —a)C > aB+ (1 —a)C,
for a > 0. (v) Dominance. Let C1 be the compound
lottery @1 A + (1 — 1) B and let Cy be the compound
lottery apA + (1 — ap)B. If A > B, then C; > C if
and only if o] > .

For further interpretation of these axioms and proof
of how they lead to the von Neumann and Morgenstern
EU decision rule, see Pennacchi (2008), pages 4—11.
Similar expositions are found in many textbooks both
in economics and statistics. See, for example, Ingersoll
(1987), pages 30-44, Huang and Litzenberger (1988),
pages 1-11, and Levy (2012), pages 25-30. In brief, by
assuming the primitive preference relationships (i)—(v),
it is shown that lottery A is preferred to lottery B if and
only if the expected utility of lottery A exceeds the ex-
pected utility of lottery B. Expected utility E[u(x)] is
therefore the proven measure by which to rank uncer-
tain investments.

The usual assumption in economics is that decision-
makers are risk averse. This means that they have pos-
itive but diminishing marginal utility for money, and
hence u(x) is increasing and concave. A risk averse
decision-maker will not accept any lottery with an ex-
pected money value of zero (or less). Actuarially fair
bets are thus unacceptable. Before accepting a bet to
win or lose some fixed sum c, a risk averse agent
requires that the probability of winning exceeds 0.5
by some premium. The amount of this premium de-
pends on the local concavity of u(x) or on how fast the
marginal utility of money is diminishing in the region
of wealth xg = ¢, where xg is her starting wealth. Tech-
nically, the Pratt—Arrow measure of local absolute risk
aversion —u”’(x)/u’(x) captures the degree of concav-
ity of u or the rate at which marginal utility is decreas-
ing at wealth x.

3. MEAN-VARIANCE THEORY

The following quick summary of MV owes much
to Liu (2004). The one-period return on an investment
over period ¢t is defined as (p; + d)/p;—1, where p;
is the time ¢ asset price and d is the income (dividend)
drawn from the asset in period ¢. This definition has the
advantage that the returns measure is always positive.

Imagine a set of available investments or “assets”.
These can be combined into arbitrarily weighted port-
folios (e.g., the investor might form a 2:1 weighted
portfolio of assets A and B, where two-thirds of her
money is invested in A and one-third in B). The avail-
able assets and their linearly weighted portfolios form

>» 0

F1G. 1. Graphical presentation of MV (o, ) analysis.

an opportunity set of investments. Each possible asset
or portfolio presents a compromise between mean re-
turn  and variance o2. Each such MV pair is reduced
following Markowitz and finance convention to its pa-
rameters (o, i). The opportunity set is then a region
of feasible (o, ) pairs. This region is depicted in its
characteristic shape by the bullet-like shaded area in
Figure 1. The investor is generally risk averse and thus
prefers portfolios with higher mean return ¢ and lower
“risk” (standard deviation) o. The opportunity set is
reduced therefore to just those portfolios on the thick
black arc called the “efficient frontier”. Each asset port-
folio on the efficient frontier dominates all assets and
portfolios to its southeast, because these have both
lower p and higher o. For example, asset (o, u)-pair
H dominates all assets and portfolios in the hatched
region.

To choose between all efficient portfolios, the in-
vestor forms a family of MV indifference curves.
These are understood as equivalue curves defined by
some indifference function V (o, ). Each such curve
shows the locus of (o, n) points for which V (o, u)
is held constant. A typical looking family of indiffer-
ence curves is shown by the dotted lines in Figure 1.
These curves are drawn convex downwards on the ba-
sis that, for assets known only by their MV parame-
ters (o, 1), the risk averse investor requires marginally
greater compensation in u for each further incre-
ment in risk o (see Meyer, 1987, for related proofs).
Since risk averse investors prefer lower o for fixed w,
higher (more northwesterly) indifference curves rep-
resent greater expected utility to the investor. Having
established both the efficient frontier and an indiffer-
ence function V (o, w), the unique MV-optimal invest-
ment in risky assets is located at the point of tangency
T between the decision-maker’s own V (o, i) and the
exogenous efficient frontier.
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4. BORCH’S PARADOX

Borch (1969), pages 2 and 3, presented a proof based
on assets with two-point distributions that revealed
(he claimed) that it is impossible to draw indifference
curves in the mean—variance (u, o2) or mean—standard
deviation (i, o) plane. Borch repeated this same proof
in 1973 and 1974, and wrote openly of his frustration
that it was not more widely acknowledged by theorists
developing portfolio optimization methods:

I have on several occasions (1969) and
(1974) tried to warn against the uncritical
use of mean—variance analysis. It was prob-
ably too much to expect that these warn-
ings should have much effect (Borch, 1978,
page 181).

The Borch paradox goes as follows. First, assume
that two assets (payoff distributions) with parameters
(;,Ll,O’IZ) and (MQ,O’ZZ) are regarded, on the basis of
those parameters alone, as indifferent (i.e., of equal
subjective merit). Now imagine two hypothetical assets
constructed simply as two-point distributions. Asset 1
produces payoff y; with probability p and payoff x
with probability (1 — p). Asset 2 produces payoff
yo with probability p and payoff x with probability
(1 — p). By common sense or some very basic ax-
iom like the “sure thing” principle raised by Savage
(Borch cites Allais’ concept of “preference absolue™),
these two assets are indifferent if and only if y; = y»
(p>0).

Now, suppose that the constants x, p, y; and y; take
values

0 o UIMZ—UZMI’
o] — oy
(11 — p12)?
2) p= 5 5
(1 — u2)* + (01 —02)
(01 —02)
3) Vi=p+op—>-—,
(1 — m2)
(01 —02)
“4) =M+ oy —m—-.
(1 — pn2)

Borch did not make any mention of where these equa-
tions come from or what they assume, except to say
that it is easy to verify that the implied values of the
mean and variance parameters of the two assets are,
respectively, (w1, 012) and (2, 022), thus matching as-
sets 1 and 2 (this is indeed easily verified).

The final step in Borch’s proof holds that because
the two assets can be of equal merit only if y; = y,,

the indifference condition (3) = (4) is
(01 —02)

(01 —02)
| =+ oy
(1 — pn2)

u1+o 2 ,
(1 — pm2)

implying that (u| — /Lz)2 + (01 — 02)% = 0 and, hence,
indifference requires that ; = up and o1 = 03. Ac-
cording to Borch’s interpretation of this result, any
supposed indifference between two arbitrary mean—
variance pairs is impossible, unless of course they
are the same. Mean—variance indifference curves are
thus merely points rather than curves, or, in Borch’s
[(1969), page 3] own words, “it is impossible to draw
indifference curves in the E-S-plane” (E and S denote
the mean and standard deviation).

In answer to any suspicion raised by their nonexpla-
nation, there is nothing contrived about the four equa-
tions used by Borch to define the constants x, p, y; and
v in his proof. Rather, these can be derived by writ-
ing the standard equations for the means and standard
deviations, w1, (2, o1 and o, of the two Borch two-
point assets in terms of x, p, y; and y;, and then solv-
ing these four equations simultaneously to get general
expressions for all four constants in terms of the spec-
ified means and standard deviations. It follows, there-
fore, that the four Borch equations, numbered (1)—(4)
above, are not merely sufficient conditions to produce
the specified mean—variance parameters (i1, 012) and
(2, 022). Rather, they follow necessarily from those
specified parameter values as one of two possible sets
of solutions. The second set of solutions, which Borch
did not raise but could have employed to the same ef-
fect, is as follows:

o142 + o241
X=———-

o1+ 03
b= (1 — 2)?
(n1 — u2)? + (o1 + 02)?’
(o1 +02)
yi=pr+o—m—,
(1 — p2)
(o1 4+ 02)
y2 =p2+op—m—.
(1 — u2)

4.1 Our Interpretation of Borch

Borch interprets his paradox to say that mean—
variance indifference curves cannot exist. This is too
strong, as will be seen in the sections below. More rea-
sonable interpretations of Borch’s proof are as follows.

Interpretation 1: Suppose that a decision-maker is
adamant that he is indifferent between any two as-
sets with mean—variance characteristics (i1, 012) and
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(2, 0*22), where (u1, 012) #* (U3, 022). It is possible to
construct two-point assets with these very character-
istics between which no one can reasonably be indif-
ferent [these can be constructed by Borch’s equations
(1)-(4), or equally well with the second possible set of
solutions noted above].

This possibility does not imply that there are no pos-
sible assets with parameters (1, 012) and (uo, 022) that
are rationally (to someone) indifferent. Rather, it shows
that the decision-maker cannot be indifferent between
all imaginable pairs of assets with these parameters.

Interpretation 2: If we limit consideration to only the
particular subclass of two-point assets constructed by
Borch, there exists no pair of assets with (m,crlz) #+
(2, 022) between which anyone might reasonably be
indifferent. Rather, whenever (u1, 012) # (o2, 022), the
two assets (having x and p in common) necessarily dif-
fer in that y; # y,, which of itself means that they can-
not be indifferent.

4.2 Numerical lllustration

Here we exemplify Interpretation 1 numerically.
Imagine that the subject of the experiment feels that he
is indifferent between any two assets with parameters
(1, 08) = (10,225) and (12, 03) = (20, 625). Such
subjective indifference would typically require that the
security with the bigger mean has the bigger variance,
but that practicality is not necessary in Borch’s demon-
stration. Now consider two comparable lottery tickets,
ticket A and ticket B. Ticket A pays 25 with proba-
bility p = 0.5 and —5 with probability (1 — p). Simi-
larly, ticket B pays 45 with probability p = 0.5 and —5
with probability (1 — p). The mean—variance parame-
ters of these two lotteries are (10, 225) and (20, 625),
respectively. Yet contrary to any thought that two assets
with these parameters are indifferent, ticket B is obvi-
ously preferred because it has the same probability of
winning as ticket A, and the same payoff if it loses,
but pays 45 instead of 25 when it wins. Borch saw
this apparent contradiction as proof that the decision-
maker cannot logically be indifferent between two in-
vestments by reference only to their means and vari-
ances.

5. BARON’S REBUTTAL OF BORCH

Borch’s paradox is well known to those economic
theorists mindful of foundations and interested in the
history of mean—variance, yet is largely unknown
elsewhere and goes unmentioned in standard finance
and financial economics texts, even in highly so-
phisticated works such as Ingersoll (1987), Cochrane

(2001), Barucci (2003), Lengwiler (2004) and Pen-
nacchi (2008) that deal with the connections between
mean—variance models and expected utility theory.
Neither is Borch mentioned in the very thorough his-
torical annotated bibliography of Rubinstein (2006b).
This omission is justified perhaps by the findings of a
similarly important but now rarely mentioned paper by
Baron (1977).

Baron rebuts Borch’s paradox in two steps. First
comes the proposition that decision-making based on
just the two parameters, mean and variance, implies an
underlying quadratic utility function. The same argu-
ment arises in Hanoch and Levy [(1970), page 182] and
Sarnat [(1974), page 687] who both note that quadratic
(second order polynomial) utility is the only form of
mathematical utility function for which expected util-
ity reduces to a function of just the first two moments
of the payoff distribution. Specifically, for risk-averse
quadratic utility u(x) = 2ax — x?2, the expected util-
ity is E[u(x)] = 2apu — (u?> + o%). Similarly, see the
derivation by Liu (2004), page 233.

The presumption that MV necessarily implies qua-
dratic utility traces to Markowitz [(1959), page 288]
and also Mossin (1973), pages 26 and 27. Hanoch
and Levy [(1970), page 182] hold that “rejection of
quadratic utility implies the rejection of any analysis
based on the expected utility maxim”, which is indi-
rectly saying that the only unconditional way of hang-
ing onto EU while applying MV is to adopt quadratic
utility. Johnstone and Lindley (2011) have more re-
cently given an elementary proof revealing that, in
the absence of any further premise, MV necessitates
quadratic utility.

Having concluded that Borch’s proposed subjective
value function can arise from only a quadratic utility
function, Baron’s second step is to show that one of the
asset pairs in Borch’s counterexample, ([L],O’lz) and
(na, 022), must involve a potential payoff in the domain
where quadratic utility is decreasing with money. This
finding is easy to understand intuitively. The two Borch
assets are identical except that y; # y, and, hence, the
asset with the lower y (e.g., asset 1 if y; < y2) can only
be as good in someone’s mind as the asset with the
higher y if that higher y is in the domain where money
has negative marginal utility, thus allowing y; and y»
to have the same utility u(y;).

The net effect of Baron’s argument can be summa-
rized as follows:

(i) Borch’s paradox proves only that for any two
mean—variance pairs, (11, 012) and (uo, 022), a rational
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decision-maker cannot be indifferent between all pairs
of assets with the specified parameters. Indeed, pre-
cisely as Borch revealed, there are easily definable as-
sets with such characteristics which are obviously not
indifferent.

(ii) If the decision-maker has quadratic utility, EU
can be written as a function of mean and variance alone
and, hence, (o, u) indifference curves do exist. It is
necessary, however, to constrain the class of assets un-
der consideration so as to exclude any asset with one
(or more than one) potential payoff in the region where
utility decreases with money. Negative marginal util-
ity for some x is a well-known limitation of quadratic
utility, and is bound to produce irrational or incoherent
decisions even under EU if the admissible asset class is
not suitably restricted.

(iii) If assets with possible payoffs in the domain
where quadratic utility decreases with money (i.e.,
where the last increment of payoff brings a reduction
in utility) are excluded a priori from consideration, as
if they cannot exist, then the class of counterexam-
ples constructed by Borch (and illustrated numerically
above) no longer exists.

Another somewhat forgotten finding should be men-
tioned here. Taking MV as a representation of quadratic
utility, and constraining all possible payoffs into the
domain where quadratic utility is increasing, Levy and
Sarnat [(1972), pages 387 and 388] proved that one
MV asset pair (M,alz) has higher utility than an-
other (,uz,azz), with @y > uo, if and only if (u; —
uz)z — (01 — 02)?> > 0. This is a stronger condition
than the usual definition of dominance (i.e., u1 > 2
and o1 < 0y or 1 > uy and o1 < 07) and is therefore
more “efficient” in the sense that it reduces the class of
possible investments to a smaller number.

6. BURIDAN’S AXIOM AND MEAN-VARIANCE

We now summarize our own disproof of general-
ized mean—variance analysis, very much in spirit with
Borch, and then side with Baron by considering possi-
ble theoretical and practical restrictions on the admis-
sible asset class that allow a partial reconciliation be-
tween the two ways of decision-making.

Following a convention in finance dating to Mar-
kowitz’s original exposition of the mean—variance
framework, our analysis is set out in terms of the stan-
dard deviation o rather than variance 0. Adhering to
another well-entrenched custom in the finance litera-
ture, we work with o as abscissa and u as ordinate.

6.1 Decision Axioms in Terms of (o, i)

Suppose there exists a value function g(o, ) that
captures the merit or goodness of a (o, w)-asset such
that larger g implies greater value. Indifference be-
tween two assets (o1, (1) and (o2, 2) means that
g(o1, m1) = g(oa, o). It is not necessary to be explicit
about the form of g.

Continuity-monotonicity-finiteness (CMF) axiom.
The merit function g(o, 1) is continuous, strictly in-
creasing in p for every o, and strictly decreasing in
o for every . These properties hold throughout the
(o, ) half-plane, o > 0. Continuity implies that there
is no abrupt change in merit as either o or i changes
slightly. Strict monotonicity reflects the merit, either
positive or negative, of any change in u or o, however
small. Finiteness requires that any finite increase in o
can be offset by a sufficiently large finite increase in .
The existence of such a merit function implies tran-
sitivity, meaning that if asset X is preferred to Y, and
Y to Z, then X is preferred to Z (and likewise when
preference is replaced by indifference).

Buridan’s axiom. If a decision-maker is indifferent
between two assets i = 1 and i = 2, then he must also
be indifferent between either asset and a probability-
mixture asset that yields (the same payoff as) i = 1
with probability « and (the same payoff as) i = 2 with
probability (1 — «), where « takes any value « € [0, 1].
Thus, according to the merit function g(o, 1), in-
difference g(o1, 1) = g(02, u2) implies g(oq, n1) =
g(o2, n2) = g(oy, e), Where oy and g represent the
mean and standard deviation of an «-mixture of the two
indifferent “pure” assets (for any probability «). Note
that Buridan’s axiom is a simple corollary of the inde-
pendence axiom in EU.

The question now is whether a decision analysis con-
structed solely in terms of (o, i) can coexist with these
two axioms. Consider an asset with o = 0, known in fi-
nance as a “risk-free” asset and approximated by gov-
ernment bonds. Let this asset return 1, as represented
by the point A in Figure 2 with coordinates (0, (o).
Now take any fixed o1 > 0 and points (o1, u) for
all u > 0. These represent risky assets, among which
asset B with coordinates (o, (g) is inferior to (has
lower “merit” than) asset A because it has u = g but
greater 0. As 1 increases from g, the assets on o = o
increase in merit, such that at some point C, with coor-
dinates (o1, t1), the higher return 1 = g is just suf-
ficient to compensate for the associated risk o1, leaving
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FIG. 2. Axiomatic decision analysis in terms of (o, |1).

the decision-maker indifferent between C and A. The
existence of w1 is guaranteed by the CMF axiom.

Assuming that the decision-maker is indifferent be-
tween asset A at (o9 =0, wo) and asset C at (o1, 1),
Buridan’s axiom dictates that this indifference extends
to a randomized mixture of A and C, where A is se-
lected with chance «. The payoff x from such an «-
mixture asset of any pair (oo, o) and (op, 1) has ex-
pectations

&) n=Ex)=apno+ A —oa)u
and
E(x?) =a(ud+ o) + (1 —a)(u? + o)
=aug+ (1 —a)(ui+of) (00=0).

Since var(x) = E(x?) — E(x)?, simple algebra gives
o2 = var(x)
© =aog + (1 —a)of +a(l —a)(ur — po)’
= —wof +a(l —a)(u — 1) (o0 =0)

in the same way as found by Baron (1977), page 1685.
Note that equations (5) and (6) hold generally for fixed
« and do not require op = 0 or independent payoffs.
Equation (5) says that the mean of the mixture asset
is a weighted average of pg and 1. Equation (6) says
that the variance does not have this property; its value is
not simply ozoro2 +1- 01)012, but is inflated by an extra

term, (1 —a) (01 — eo)?, determined by the difference
between the two underlying means.

To satisfy Buridan, the decision-maker must be in-
different between the two original assets, A and C,
and a set of o-mixture assets with parameters (o, (Ly)
given by (5) and (6), with « taking values between 0
and 1. These assets lie on a curve connecting A and C.
The equation of this curve (which is the indifference
curve implied by the Buridan axiom) is found by solv-
ing (5) and (6) so as to eliminate «, giving

) o + [ — (po + o) = pi.

where po = 307 /(11 — o) + (1 — o).

Note that the Buridan-based indifference curve (7)
has the form of a circle in the (o, i) plane, with centre
at (0, o + po) and radius pg (hence the notation). To
be sensible, no two indifference circles can intersect.

Although (7) represents a full circle, further consid-
erations reveal that only part of this circle constitutes a
sensible indifference curve. The part of (7) with o < 0
may be ignored because negative o does not exist. The
quarter circle DE can also be ignored, because any
point on (7) between D and E is better than D. It has
smaller o and larger © and hence must be preferred
under the continuity axiom. This leaves as a plausible
indifference curve only the quarter circle AD, of which
only the part between A and C is justified so far, having
been derived from the Buridan axiom.

It remains, therefore, to examine the arc between
C and D, for which o] < o < pg. Let o* fall in this
interval, and consider all assets (o*, i) on the verti-
cal line through o = o *. Just as for o, the CMF ax-
iom requires that there is an asset F on this line with
sufficiently high p to make the decision-maker indif-
ferent between F and the risk-free asset A. When ap-
plied to o*, the logic relating to o, which led to an
indifference circle through A and C, produces an in-
difference circle through A and F, intersecting the line
through BC. This is possible only when F lies on the
original circle through AC. Otherwise there are two
indifference points, both with o = o7 yet with differ-
ent means u. Repeating this argument for all possible
o™* in the interval o1 < o™ < pg, the indifference circle
through AC is found to extend to D, thus completing
the quarter circle AD.

Consider next any asset with o > pg. The decision-
maker cannot be indifferent between a point in this
region and A. Buridan’s axiom would have any such
point on the same indifference circle as A and, in re-
peat of the argument above, there would be contradic-
tions where that curve intersected any line of constant
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0 < po, such as the line through B and C. More specit-
ically, it follows that all points in the region o > pg
must be worse than A. To see this, consider point L
which has the same mean as A yet is worse than A
because of its higher standard deviation. Now imagine
that there is some point like G that has a mean so large
that it is better than A, despite having the same standard
deviation as L. Then by continuity there must be a point
between L and G that is indifferent to A. But again this
is impossible because of the contradictions it would
cause with the existing indifference curve. Hence, all
points like L with ¢ > pg must be inferior to A, and
thus lie on a lower (larger radius) indifference curve
than AD.

Finally, consider assets about the northeast quadrant
with respect to D, for which u > ug + pg and o > pg.
More particularly, consider three assets labelled H and
K and M that define a rectangle with corners HKMD.
Of these, H is preferred to D, since it has higher mean
u' > o + po and the same standard deviation o > py.
Likewise, D is preferred to M because it has the same
mean and lower o. Thus, letting > symbolize “is pre-
ferred to”, H > D > M. Similarly, H > K > M, by the
same reasoning. Unfortunately, however, these prefer-
ences do not complete the rectangle, since they do not
imply any ordering between D and K.

To see the problem here, suppose to begin with
D > K. Then H = D > K, so D is intermediate between
K and H. However, K and H are on a line of constant
mean, so there must be an asset N on this line between
H and K that is indifferent to D, and thus also indiffer-
ent to A, thus contradicting the indifference circle AD
already in place. By an identical argument, this time
assuming K > D (forgetting for a moment that this or-
dering has already been shown impossible), there must
be some further point P on the line of constant o be-
tween M and K that is indifferent to D and A, again
contradicting the existing indifference curve AD.

It is impossible, therefore, to resolve all preference
relationships within the rectangle HKMD in a way con-
sistent with Buridan and the CMF axiom. The only way
to avoid this inconsistency is to exclude all assets such
as K with 4 > ug + po and o > pg from the class of
assets under consideration. In effect, this rules out all
points i > o+ po above line RD in Figure 1, since as-
set D lies on an indifference circle centred at g + oo
and of arbitrary radius. The implication, therefore, is
that it is not possible to rank the class of all possible
assets on a MV basis in a way that is consistent with
axioms that would seem essential to any coherent MV

decision framework. This reaffirms the counterexam-
ple of Borch (1969), but is reached by a more general
line of reasoning.

7. RECONCILING MV AND EU FRAMEWORKS

Contrary to Borch’s paradox, it is possible to man-
ufacture sensible (o, n) indifference curves by either
constraining the asset class (in the way as described
above) or by placing other restrictions on the decision
model that limit its theoretical generality and possi-
ble practical relevance. We now discuss the most com-
mon ways of forming workable indifference curves,
by which we mean an MV decision framework that
yields the same investment choices (identical rankings
of a given set of distributions) as those based explicitly
on EU.

7.1 Quadratic Utility

Mean-variance analysis can be put to work on the
generally implausible assumption of quadratic utility,
provided that the returns on the available assets are
constrained to suit this particular utility function. Since
any utility function has arbitrary location and scale,
there is only one parameter free to select and we may
write any risk averse quadratic utility as u(x) = 2ax —
x2, for some a > 0, implying #(0) = 0 and a maximum
of a” at x = a. Expected utility is then

EU =2ap — (0% + 1?)
®) 2 2,2
=—0"—(u—a) +a",
and the indifference curves are circles with centres
at (0, a) and various radii depending on the common
fixed EU. Since these circles have been obtained using
expected utility, they automatically satisfy Buridan.

Quadratic utility (QU) exhibits negative marginal
utility beyond a point of personal satiation. A coher-
ent EU decision framework might nonetheless assume
QU provided that none of the class of assets (distribu-
tions) under consideration offers possible wealth x in
the domain where u(x) is decreasing in x. The point
of maximum possible quadratic utility, x = a, is repre-
sented by R = (0, a) in Figure 2, where in that instance
a equals o + po.

The condition that no possible payoff x exceeds a,
where x is either a certain or uncertain outcome, im-
plies of course that 4 < a. Thus, by applying this con-
dition concerning possible payoffs x to all admissible
assets, the analysis admits only assets with u < a, and
thus only assets sitting below asset R (line RD) in Fig-
ure 2. This is the region of the (o, i) half-plane that we
found admissible in our axiomatic critique of MV.



MEAN-VARIANCE AND EXPECTED UTILITY 231
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FI1G. 3. Necessary constraint of possible payoffs x| and x,.

It is important to note, however, that it is not suf-
ficient to exclude any asset with u > a [for which
d(EU)/du = 2(a — n) < 0] because this condition
is not strong enough to exclude all assets with one
or more possible wealth payoffs x in excess of a. To
avoid any possible incoherence, the stronger condition
of x < a for all x must be applied before the analysis
can be conducted in terms of mean and variance.

To see why it is insufficient to exclude assets with
W > a, contrary to conventional shorthand (e.g., Leng-
wiler, 2004, page 96), consider a two-point distribution
yielding wealth of either x = x| or x = xp with equal
probability p = 0.5. The expected quadratic utility is
then [(2ax; — x?) + (2ax — x3)]/2 and, hence, the
equi-utility (xg, xp) indifference-contours are concen-
tric circles centred at (a, a), as shown in Figure 3. Fur-
ther, with p = 0.5, the constraint that 4 < a requires
that we consider only (x, x2) pairs to the left of the
solid diagonal line (x; + x2)/2 = a. The problem is
that this constraint does not remove the (x1, x3) pairs
highlighted by the two solid thick sections on one of
the indifference contours. Clearly, however, the assets
so indicated are not indifferent. In both the dark high-
lighted parts of the indifference curve, the rightmost
(x1, xp) pairs are preferred by any rational decision-
maker, because in both cases a shift to the right means
that x; and x both increase. To avoid this source of
incoherence, it is essential to limit the analysis to asset
pairs in the lower-left quadrant, where neither x; nor
X7 is greater than a.

It is at first disconcerting that this constraint on x
did not arise in our “first principles” derivation in Sec-
tion 6. The reason for this is that the axioms on which
this analysis is based are too minimal (they concern u
and o but say nothing directly about x) and are insuffi-
cient to reveal the difference between the asset (x1, x2)

pairs highlighted in Figure 3. The example depicted
in Figure 3 reveals clearly, however, that it is essen-
tial to exclude all such assets before taking on the con-
venience of working in terms of distribution moments
(o, ).

This example should be seen as an alternative ver-
sion of Borch’s paradox. Borch relied on his rather
opaque counterexample to condemn MV analysis gen-
erally, but the more reasonable conclusion, recognized
by Baron, is that MV analysis can mimic a coherent
application of EU under quadratic utility provided that
the asset class is suitably restricted before the distri-
butional properties of those assets are reduced to their
parameters (o, ). This is the same restriction as is
necessary for coherence under EU when assuming QU,
and reflects a long-known defect of the quadratic util-
ity function rather than any flaw in the mathematical
restatement of expected quadratic utility in terms of
mean and variance.

It can be argued that the need to exclude assets
with potentially “high” payoffs from any analysis un-
der quadratic utility (whether via MV or EU meth-
ods) is particularly bothersome, since that is when the
decision-maker may feel most interest in the analysis.
This is a problem for QU rather than for just the MV
expression of QU.

7.2 Normally Distributed Payoffs

If the class of returns distributions is restricted to
a scale-location family with density f[(x — k)/b]/b,
given fixed f but variable & and b, the decision-
maker’s expected utility will depend only on k and b,
and typically on o and p. This will lead to indif-
ference curves in the (o, p)-plane. A popular special
case is to consider only assets belonging to the class
of normal distributions, f[(x — w)/o]/o. If, for ex-
ample, we specialize further by considering the class
of utility functions of constant absolute risk aversion,
u(x) =1 — exp[—«x], for some « > 0, the expected
utility is easily evaluated to be

9 1 —exp[—«u +«%02/2].

It follows immediately that EU indifference curves
in the (0%, u)-plane are straight lines, u — ko%/2 =
constant (where the higher the constant, the higher the
EU). In the (o, n) plane, these same curves appear as
parabolas, all with axes 0 =0 and increasing in p as
o increases. These contain none of the inherent contra-
dictions revealed in the case of the circular indifference
curves derived from either Buridan or the assumption
of quadratic utility.
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It is important to understand how we have arrived
at a case of parabolic indifference curves in appar-
ent contradiction with the circles based on Buridan.
These different families of indifference curves em-
anate from different starting points. To get the Buridan
(circular) curves, we presume what is implicit under
quadratic utility—specifically, that all available assets
(“mixed” or “pure”) are represented sufficiently by just
(o, ). Similarly, to arrive at the normal-constant-risk-
aversion (parabolic) indifference curves, we make a
contrary and more restrictive assumption, namely, that
all possible assets have normal distributions.

Derivation of indifference curves on the assump-
tion of strictly normal distributions does not sit well
with Buridan’s axiom. This class of distributions is
not closed under probability mixing, since probabil-
ity mixtures of normals are typically not normal. It is
self-defeating, therefore, to arbitrarily limit the admis-
sible asset class to just normal distributions, since mix-
ture assets can always be constructed by randomization
whether or not they arise naturally.

From a utility theory standpoint, this issue can be
summed up as follows. If normal assets with parame-
ters (o1, n1) and (o3, o) have expected utilities | =
V (o1, n1) and up = V (o2, n2), then any probability
mixture thereof, defined by «, has expected utility
Uy = auy + (1 — a)uy. Such calculations are elemen-
tary to expected utility theory, yet cannot be captured
or exhibited in any way using a set of indifference
curves applicable to only normal distributions. The pa-
rameters of a nonnormal probability mixture, (o4, Ly ),
are known but meaningless, since they cannot be sub-
stituted into (9) or any other measure of the expected
utility of a normal distribution. They can, of course, be
substituted into (8), but that would presume quadratic
utility rather than normality.

7.2.1 Chipman—Baron defence of normality. Hav-
ing first revealed that Borch’s paradox exploits a de-
fect in QU rather than one in MV per se, Baron (1977)
went on to rationalize the use of MV indifference
curves under the common presumption of only nor-
mal distributions. This further contribution, elaborating
upon Chipman [(1973), pages 179-181] rests primar-
ily on the assumption that assets are all highly divisi-
ble, thereby allowing investors to hold them in conven-
tional linearly weighted portfolios with arbitrary posi-
tive weights (e.g., the investor can buy $3.121 worth of
asset A and $6.879 worth of asset B in a $10 portfolio).

Linearly weighted portfolios have two helpful prop-
erties. First, as is well known, the class of jointly

normal distributions is closed under linear combina-
tion. Second, and essential to the Chipman—Baron ar-
gument, it follows from Jensen’s inequality that for
any increasing and strictly concave (risk averse) utility
function u(x), the expected utility of an o-mixture of
any two assets A and B is less than the expected utility
of the corresponding «-weighted portfolio of the same
two assets, « € (0, 1). Thus, even for risk averse utility
functions that cannot be represented in terms of solely
(o, ), there is always a conventional weighted portfo-
lio of A and B that dominates any probability mixture
of A and B. Probability mixtures can thus be ignored
by any rational risk averse expected utility maximizer,
provided of course that it is possible to combine the
available pure assets into arbitrarily weighted portfo-
lios.

By excluding all probability mixture assets, Chip-
man and Baron got around the problem that mixtures
of normals are not normal, and thus made it feasible
to work on the assumption that the asset class worthy
of consideration includes only jointly normal distribu-
tions. This leaves the problem, of course, of how to
choose between such normally distributed assets (both
the pure assets and their weighted portfolios).

On this issue, Baron emphasized two points. First,
the assumption that all assets are normal allows deci-
sion-makers with essentially any increasing utility
function to draw (o, ) indifference curves. For in-
stance, a decision-maker with exponential utility has
parabolic (o, 1) indifference curves. Second, it is
wrong to draw an arbitrary set of convex (o, u) indif-
ference curves and presume that they derive from some
sensible risk averse utility function. To the contrary, as
occurs in Borch’s paradox, a set of apparently quite
plausible looking indifference curves drawn on the ba-
sis of intuition, rather than being derived from an un-
derlying utility function u(x), will generally embody
preferences between at least some definable assets that
are obviously irrational.

This second point, due initially to Chipman [(1973),
pages 168 and 169] is not widely known. It is common-
place, especially in classroom and textbook contexts, to
draw up any “sensible looking” usually convex (o, 1)
indifference curves, as if the investor has free reign to
take on any curves she likes. This fundamental miscon-
ception underlines why time can be well spent revis-
iting the analytical literature on MV versus EU from
the Borch era. The depth of this literature is exhib-
ited in the way that Chipman [(1973), page 169] was
able to characterize the MV indifference curves from
which an expected utility function can be recovered.
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Specifically, Chipman proved that when the choice is
between only normal distributions, the utility function
u(x) must be bounded over —oco < x < 0o by the con-
dition that |u(x)| < a exp(bxz), a,b > 0so as to ensure
that the expected utility integral converges. Given this
growth constraint on u(x), there exists an indifference
function V (o, ) = E[u(x)] under the necessary and
sufficient condition that V (o, i) satisfies the differen-
tial equation

1oV 3%V
odo  u?’

7.2.2 Mixture assets in practice. Baron [(1977), pa-
ge 1692] and Liu [(2004), page 233] discuss how prob-
ability mixtures of different assets occur, explicitly or
implicitly. For instance, the cash flows from a firm
might have different probability distributions depend-
ing on a random event such as the outcome of a law
suit, the reaction of competitors or a regulatory or po-
litical shift.

There is no stock market for explicit mixtures of dif-
ferent individual stocks. Indeed, Baron’s argument sug-
gests that there could be little if any rational demand
for these. As an interesting aside, however, in some bet-
ting markets there is a commercially successful product
called a “mystery bet”, where the buyer agrees to be al-
located a random bet of agreed amount (e.g., a $10 bet
on a random horse in a random race).

A fully subjectivist view of real world stock market
investment would suggest that much “rational invest-
ment” is tantamount to making “mystery bets”, in that
there are so many random factors outside the control or
observation of the investor that determine how the pay-
offs from her chosen investments are distributed. On
this view, every discrete asset (company stock) in the
stockmarket is in fact a mixture of distributions, and
the investor has a subjective assessment of that stock’s
payoffs which amounts to a subjective mixture distri-
bution of latent “underlying stocks”.

8. BORCH AND STOCHASTIC DOMINANCE

The axioms of EU do not insist that the decision-
maker should prefer more rather than less. To make this
basic presumption of human behavior, the utility func-
tion #(x) must be a monotonically increasing function
of the payoff x. Once this assumption is made of u(x),
it is possible to argue either on the grounds of utility
theory or mere common sense that some distributions
of payoffs strictly dominate others. To begin with, if
one distribution fi(x) is entirely to the right of another

f2(x), then any investor who prefers more to less will
favour fi(x). A little less obviously, the same order of
strict preference holds whenever the cumulative prob-
ability of any given outcome x > x* is higher under
f1(x) than under f>(x) for all x*. Specifically, fi is
weakly preferred to f» whenever Fp(x*) — F1(x*) >0
for all x*, where F(x) is the cumulative distribution
function corresponding to probability density f(x).

This condition is known following Hadar and Rus-
sell (1969) as first order stochastic dominance (FSD).
Its implication is that the expected utility of distribu-
tion fi(x) exceeds the expected utility of distribution
f2(x) for all strictly increasing u(x). Hadar and Rus-
sell (1969) also proved that if the class of decision-
makers is limited to only those with risk averse u(x),
f11s weakly preferred to f5 if and only if ffoo[Fz (x)—
Fi(x)]dx = 0 for all a > —oo (the potential payoffs
are —00 < x < 00). This is known as second order
stochastic dominance (SSD).

The conditions of stochastic dominance discovered
by Hadar and Russell (1969), and independently by
Hanoch and Levy (1969), proceed by constraining not
the class of asset distributions f (x), but rather the class
of decision-makers. Decision-makers are categorized
in effect by the Pratt—Arrow measure of absolute risk
aversion r(x) = —u" (x)/u’(x), which is constant un-
der positive linear transformations of u(x) and hence
characterizes decision-makers uniquely [i.e., such that
any two decision-makers with the same preferences
have the same r(x)]. FSD is an implicit dominance
criterion for any decision-maker with increasing twice
differentiable utility (—oo < r(x) < 00), whereas SSD
is implicit in the decision criteria of any risk averse
decision-maker (0 < r(x) < 00). Meyer (1977) pro-
vides a succinct overview and generalization of the
Hadar and Russell (1969) and Hanoch and Levy (1969)
proofs. See Levy (2006) for a comprehensive synthesis
of the theory of stochastic dominance as a framework
for decision-making under uncertainty. Levy [(2012),
Chapter 3] shows that with normal distributions, SSD
is equivalent to the MV criterion, and can be used as
the axiomatic basis on which to derive it.

Fishburn (1980) made significant strides towards a
general theory of ranking assets in order of stochas-
tic dominance using only their moments. He proved,
for example, that (i) first order stochastic dominance
of asset A over asset B implies that w4 > wp, and
(i1) second order stochastic dominance of asset A over
asset B implies that w4 > up and o4 < op. Similar
conditions involving higher moments follow necessar-
ily under higher orders of stochastic dominance. These
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proofs have not led to a theory of ranking all assets
via moments because the moment conditions are nec-
essary but not sufficient to prove stochastic dominance
at their respective levels. This has recently been em-
phasized by Liu [(2004), pages 231 and 232] who gave
a general proof that there is no specifiable set of mo-
ment conditions concerning the first » moments of A
and B that imply a first, second or third order dom-
inance relationship between those two assets. Essen-
tially, while certain moment conditions are suggestive
of certain orders of stochastic dominance, those condi-
tions can still arise when their corresponding order of
dominance does not obtain.

Levy and Sarnat (1969) employed the principle of
FSD to rebut Borch. They explained that the basic mis-
take in Borch’s logic is to treat the joint conditions that
i1 > o and o > o7 as if these alone are sufficient for
two assets (o1, (1) and (02, o) to be seen by someone
as indifferent and positioned on the same indifference
curve. Their counterargument is that while w; > o
and o1 > o0y are necessary under risk aversion for in-
difference, these conditions are not sufficient. So much
is proven by Borch’s own example, in which two spec-
ified assets meeting both conditions are obviously not
indifferent.

Levy and Sarnat (1969) go on to reveal that one of
the two assets in Borch’s example is FSD over the
other. Again, this is clear since one asset produces x
or y; with probability p and the other produces x or
y> with the same probability, implying that if y; > y,,
for instance, then the cumulative distribution of asset 1
is weakly to the right of asset 2. The Levy and Sar-
nat antidote to Borch is thus to adopt a modified ap-
plication of MV where in the first step the admissible
asset class is immediately and efficiently reduced by
removing all assets that are dominated under FSD (and
hence are not in the efficient set for any decision-maker
with increasing utility). This two-stage procedure was
first proposed in Hanoch and Levy (1969) and later by
Levy (1974) and Levy and Sarnat (1972), pages 315—
318. There can be no argument against FSD from any
angle. In the words of a referee, it is “normatively de-
sirable and descriptively accurate”.

9. THE CAPITAL ASSET PRICING MODEL

The restatement of a subset of EU in the language of
MV led immediately to formulation of the capital as-
set pricing model (CAPM) by Sharpe (1964), Lintner
(1965) and Mossin (1966). In this section we set out
a simple derivation of the CAPM and explain briefly

what it offers that might not have been discovered with-
out MV.

There are n risky assets in the market and the price
of asset jis P; (j=1,2,...,n). The investor spreads
her money between risky assets and risk-free bonds.
Her portfolio weights are therefore ws in the risk-free
asset and wjys = 1 — wys in the market. Her investment
in the market (risky assets) is spread evenly across all n
risky assets in proportion to their respective prices. She
earns return r¢ from the risk free asset and s from the
market portfolio of risky assets. By definition, the re-
turn on the market portfolio is ryy =>_; Pjrj/ 3 ; Pj,
where r; is the return on asset j.

Suppose that ryf is less than both expected returns
w(ry) and w(r;), as must be the case to attract risk
averse investors. To increase the expected return of
her investment portfolio, the first possibility is that
the investor buys some more of asset j using some
of the money she has invested in the risk-free as-
set. Her new portfolio weights are then wy, in the
market portfolio, § in security j and w; — § in the
risk-free asset. The expected return of this portfolio
is wyp(ry) + du(rj) + (wie — 8)ref and its vari-
ance 1is wﬁ/laz(rM) + 6202(rj) + 2wy dcov(rj, ray).
The marginal increase in expected return is there-
fore Su(r;) — dry. Similarly, the marginal increase
in portfolio variance is 8202(rj) +2wpdcov(rj, ry),
which approaches 2wy 8 cov(rj, rpy) for small §. The
marginal rate of substitution, or price in terms of added
risk (variance) for each extra unit of expected return
(mean), is thus

:Uv(rj) — Inf

(10) .
2wy cov(rj, ry)

The second way for the investor to increase expected
return is to sell weight § of the risk-free asset and add
weight § to her investment in the market portfolio. By
an identical argument to that above, the marginal rate
of substitution is then

w(rp) — ref
2wyo(ry)’

(11)

Setting (10) = (11), on the basis that there cannot be
two different unit prices to achieve the same result in
a rational market (the “law of no arbitrage”), leads to
the equation commonly known as the mean—variance
CAPM

COV(I’j, I’M)

(12)  wu(rj)=rg+ o20ran)

[ (rm) — ree]-



MEAN-VARIANCE AND EXPECTED UTILITY 235

To rewrite this equation in terms of asset prices
rather than returns, let the return on asset j be de-
fined in terms of its initial price P; and its period-
end price or value V; by r; = V;/P; — 1. Hence,
by definition, w(r;) = u(V;)/P; — 1, cov(ri,ry) =
COV(VJ', VM)/Pj Py and o (ryr) = 0 (Vay)/ Ppr. Substi-
tuting in (12) and rearranging reveals the CAPM as an
explicit pricing model

_ #Vp) = Biln(V) = Py +rip)]

P
/ 147

(r-31)

where B; = cov(V}, VM)/GZ(VM).

The CAPM asset prices P; can be understood as ei-
ther (i) coherent prices in the mind of a given investor
with quadratic utility, or (ii) market equilibrium prices
in a market where all investors have quadratic utility
and the same probability beliefs regarding the uncer-
tain future asset values V;. The wider possibility draw-
ing on the Chipman—Baron argument is that only nor-
mally distributed assets need be considered, in which
case the investor(s) need not have quadratic utility.

The appeal of the CAPM equation is that rather than
looking at assets one by one, each risky asset is val-
ued with respect to what it contributes to an optimally
weighted portfolio. Upon taking this unified rather than
piecemeal approach, the CAPM reveals the factors,
most interestingly f;, that make each asset more or less
valuable to decision-makers seeking an optimal mix of
investments. Particularly revealing is that the risk of in-
vesting in a given asset is measured not by its variance,
but by its covariance with all other risky assets. An as-
set can therefore be highly risky of itself and yet still be
highly attractive. Furthermore, even an asset with neg-
ative expected return might have a high price P; if its
returns have negative correlation with the market.

Borch (1979) was of course well aware of the
CAPM, which he described as having in finance some-
thing like the status of E = mc?. He was critical of the
CAPM for the fact that it stands on MV foundations
and is therefore open to the same kind of “nonsense
results” as generalized MV decision-making. Antici-
pating what has more recently become very widely ac-
cepted, Borch (1979) noted that the CAPM did not per-
form well when fitted to actual market price data. Levy
(2012) has recently reviewed the history and status of
the CAPM, with emphasis on how it has survived as a
highly important tool in financial practice while at the

same time having its empirical or descriptive validity
widely disparaged.

A more sympathetic view of the CAPM (Meyer,
1987, page 426) is that by effectively restating ex-
pected quadratic utility in terms of moments (o, w), fi-
nance theorists uncovered a coherence relationship be-
tween asset prices that had not been evident from the
higher plane of EU theory. Reassuringly, much of the
“new finance” inspired by MV and the CAPM hinges
on the rule of no arbitrage or “no Dutch book”. This
idea appeared much earlier in the writings of de Finetti.
Indeed, it would come as no great surprise to find that
de Finetti envisaged a “subjectivist CAPM”. In princi-
ple, a de Finetti style CAPM would connect the util-
ity functions and subjective probability distributions of
all investors to a theoretical (and possibly observable)
set of equilibrium asset prices, and would do much to
unify finance and decision analysis at a philosophical
level.

10. CONCLUSION

Mean—variance is the most influential theory in the
practice of investment analysis and business decision-
making. This is remarkable given that Markowitz’s
model is effectively a diminished form of expected util-
ity theory. Of itself, in the elegant structures set out by
Von Neumann and Morgenstern (1953), Savage (1954)
and other decision theorists, utility theory is hardly
known to financial practitioners. This is despite its in-
tellectual traditions and theoretical acceptance in many
fields, including somewhat paradoxically economics.

From the 1950s when Markowitz introduced what he
saw as a new theory of decision-making under subjec-
tive probability, there has been a concerted intellectual
undertaking in financial economics towards under-
standing how mean—variance methods might be recon-
ciled with expected utility. The literature on this topic
is extremely wide and the task of surveying its current
state and its links to modern financial practice is well
beyond what we have attempted in this paper. An his-
torically thorough and helpful survey of the literature
exists in Liu (2004).

We focus on the historical debate concerning mean—
variance and expected utility, particularly on the once
prominent reductio absurdum of mean—variance known
as Borch’s paradox. This logical counter-argument di-
rected by Borch at mean—variance has been rebutted,
most explicitly by Baron (1977). Despite its hidden
weak spots, Borch’s paper, and the literature that it
initiated, holds timeless philosophical interest. Opin-
ions are widely divided on whether expected utility
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is “too normative” to be practical or mean—variance
is too “practical” to be respectable. The pragmatists’
perspective is summed up by economics Nobel Lau-
reate James Tobin [(1969), page 14] who suggested
that a business practitioner will not be amused by the
instruction that “he should consult his utility and his
subjective probabilities and then maximize”. Yet con-
trary of Tobin’s mockery, there is intensive theoretical
and empirical study in current finance research devoted
precisely to practical investment portfolio selection by
optimization of certain expected utility functions, both
directly and by their expression through higher mo-
ments (e.g., MacLean, Ziemba and Li, 2005; Cremers,
Kritzman and Page, 2005; Sharpe, 2007; Adler and
Kritzman, 2007; Hagstromer et al., 2008).

A conciliatory note among the seminal contributors
to the MV versus EU literature was struck by Meyer
(1987), page 426. He saw that MV offered a way of
rewriting a subclass of expected utility that not only
simplified the notions of risk and return, but which
also revealed previously unrecognized relationships
between the risks and returns of individual assets and
their combinations in weighted portfolios. This gave
rise to the new language of the “efficient frontier” and
ultimately the “capital asset pricing model”. More fun-
damentally, it revealed very interesting and sometimes
counterintuitive financial principles. In many instances
these results can be transported back into EU theory
and generalized to suit different possible utility func-
tions. See, for example, the log utility CAPM applied
in Johnstone (2012). This asset pricing equation is ob-
tainable from first principles for any E[log(x)] maxi-
mizing portfolio optimizer. Such equations might have
been discovered without being triggered by Markowitz
and the invention of the mean—variance CAPM, but
more realistically the academic field of asset pricing
was inspired by Markowitz and the theory that arose in
the era of Borch and the swinging 60s.

11. POSTSCRIPT

After completing this survey of Borch’s paradox, the
authors learnt more of the status that Borch retains
in actuarial science from a fascinating biography by
Aase (2004). The following passage from this biogra-
phy confirms much of the impression we gained from
the literature regarding Borch and his intellectual influ-
ence over the mean—variance debate:

There is a story about Borch’s stand on
“mean—variance” analysis. This story is

known to economists, but probably un-
known to actuaries: He published a paper,
“A note on Uncertainty and Indifference
Curves” in Review of Economic Studies
(1969), and Martin Feldstein, a friend of
Borch, published another paper in the same
issue on the limitations of the mean—vari-
ance analysis for portfolio choice (Feld-
stein, 1969). In the same issue a comment
from James Tobin appeared, “Comment on
Borch and Feldstein” (Tobin, 1969). To-
day Borch’s and Feldstein’s criticism seems
well in place, but at the time this was shock-
ing news. In particular, Professor James To-
bin at Yale, later a Nobel laureate in eco-
nomics, entertained at the time great plans
for incorporating mean—variance analysis
in macroeconomic modelling. There was
even financing in place for an institute on
a national level. However, after Borch’s and
Feldstein’s papers were published, Tobin’s
project seemed to have been abandoned. Af-
ter this episode, involving two of the lead-
ing American economists, Borch was well
noticed by the economist community, and
got a reputation, perhaps an unjust one, as a
feared opponent.

ACKNOWLEDGEMENT

The authors thank Jay Kadane and anonymous refer-
ees for helpful comments.

REFERENCES

AASE, K. K. (2004). The life and career of Karl H. Borch. In Ency-
clopedia of Actuarial Science. Vol. 1 (J. L. Teugels and B. Sundt,
eds.) 191-195. Wiley, New York.

ADLER, T. and KRITZMAN, M. (2007). Mean—variance versus
full-scale optimization: In and out of sample. Journal of Asset
Management 7 302-311.

BARON, D. P. (1977). On the utility theoretic foundations of mean—
variance analysis. J. Finance 32 1683-1697.

BARONE, L. (2008). Bruno de Finetti and the case of the criti-
cal line’s last segment. Insurance Math. Econom. 42 359-377.
MR2392094

BARuccl, E. (2003). Financial Markets Theory: Equilibrium, Ef-
ficiency and Information. Springer, London. MR1958149

BERNARDO, J.-M. and SMITH, A. F. M. (1994). Bayesian The-
ory. Wiley, Chichester. MR1274699

BORCH, K. (1969). A note on uncertainty and indifference curves.
Rev. Econom. Stud. 36 1-4.

BoORCH, K. (1973). Expected utility expressed in terms of mo-
ments. Omega: The International Journal of Management Sci-
ence 1331-343.


http://www.ams.org/mathscinet-getitem?mr=2392094
http://www.ams.org/mathscinet-getitem?mr=1958149
http://www.ams.org/mathscinet-getitem?mr=1274699

MEAN-VARIANCE AND EXPECTED UTILITY 237

BORCH, K. (1974). The rationale of the mean—standard deviation
analysis: Comment. American Economic Review 64 428-430.

BoORCH, K. (1978). Portfolio theory is for risk lovers. Journal of
Banking and Finance 2 179-181.

BORCH, K. (1979). Equilibrium in capital markets. Econom. Lett.
2 175-179. MR0539182

CHIPMAN, J. S. (1973). The ordering of portfolios in terms of
mean and variance. Rev. Econom. Stud. 40 167-190.

COCHRANE, J. (2001). Asset Pricing. Princeton Univ. Press,
Princeton.

CREMERS, J. H., KRITZMAN, M. and PAGE, S. (2005). Opti-
mal hedge fund allocations. Journal of Portfolio Management
31 70-81.

DE FINETTI, B. (1940). Il problema dei “Pieni.” Giorn. Ist. Ital.
Attuari 11 1-88. English Transaltion by Luca Barone in Journal
of Investment Management 4 (2006) 19-43.

DEGROOT, M. H. (1970). Optimal Statistical Decisions. McGraw-
Hill, New York. MR0356303

EECKHOUDT, L., GOLLIER, C. and SCHLESINGER, H. (2005).
Economic and Financial Decisions Under Risk. Princeton Univ.
Press, Princeton.

FELDSTEIN, M. S. (1969). Mean—variance analysis in the theory of
liquidity preference and portfolio selection. Rev. Econom. Stud.
36 5-12.

FISHBURN, P. C. (1980). Stochastic dominance and moments of
distributions. Math. Oper. Res. 5 94—100. MR0561157

HADAR, J. and RUSSELL, W. R. (1969). Rules for ordering uncer-
tain prospects. American Economic Review 59 25-34.

HAGSTROMER, B., ANDERSON, R. G., BINNER, J. M., EL-
GER, T. and NILSSON, B. (2008). Mean—variance versus full-
scale optimization: Broad evidence for the UK. The Manchester
School 76 (Supplement) 134—156.

HANOCH, G. and LEVY, H. (1969). The efficiency analysis of
choices involving risk. Rev. Econom. Stud. 36 335-346.

HANOCH, G. and LEVY, H. (1970). Efficient portfolio selection
with quadratic and cubic utility. The Journal of Business 43
181-189.

HuaNG, C.-F. and LITZENBERGER, R. H. (1988). Founda-
tions for Financial Economics. North-Holland, New York.
MR0996240

INGERSOLL, J. E. (1987). Theory of Financial Decision Making.
Roman and Littlefield Publishers Inc., Savage, MD.

JOHNSTONE, D. J. (2012). Log-optimal economic evaluation of
probability forecasts. J. Roy. Statist. Soc. Ser. A 175 661-689.
MR2948369

JOHNSTONE, D. J. and LINDLEY, D. V. (2011). Elementary proof
that mean—variance implies quadratic utility. Theory and Deci-
sion 70 149-155. MR2753395

LENGWILER, Y. (2004). Microfoundations of Financial Eco-
nomics: An Introduction to General Equilibrium Asset Pricing.
Princeton Univ. Press, Princeton.

LEVY, H. (1974). The rationale of the mean—standard deviation
analysis: Comment. American Economic Review 64 434-442.

LEVY, H. (2006). Stochastic Dominance: Investment Decision
Making Under Uncertainty, 2nd ed. Studies in Risk and Un-
certainty 12. Springer, New York. MR2239375

LEVY, H. (2012). The Capital Asset Pricing Model in the 21st Cen-
tury: Analytical, Empirical, and Behavioral Perspectives. Cam-
bridge Univ. Press, Cambridge.

LEVY, H. and SARNAT, M. (1969). A note on indifference curves
and uncertainty. The Swedish Journal of Economics 71 206—
208.

LEVY, H. and SARNAT, M. (1972). Investment and Portfolio Anal-
ysis. Wiley, New York.

LINTNER, J. (1965). The valuation of risk assets and the selection
of risky investments in stock portfolios and capital budgets. Rev.
Econom. Statist. 47 13-37.

Liu, L. (2004). A new foundation for the mean—variance analysis.
European J. Oper. Res. 158 229-242. MR2063614

MACLEAN, L. C., ZIEMBA, W. T. and L1, Y. (2005). Time to
wealth goals in capital accumulation. Quant. Finance 5 343—
355. MR2239384

MARKOWITZ, H. M. (1952). Portfolio selection. J. Finance 7 77—
91.

MARKOWITZ, H. M. (1959). Portfolio Selection: Efficient Diversi-
fication of Investments. Cowles Foundation for Research in Eco-
nomics at Yale University, Monograph 16. Wiley, New York.
MRO0103768

MARKOWITZ, H. M. (1991). Foundations of portfolio theory. J. Fi-
nance 46 469-477.

MARKOWITZ, H. M. (2006). de Finetti scoops Markowitz. Journal
of Investment Management 4 5-18.

MEYER, J. (1977). Choice among distributions. J. Econom. Theory
14 326-336. MR0469189

MEYER, J. (1987). Two-moment decision models and expected
utility. American Economic Review 77 421-430.

MOSSIN, J. (1966). Equilibrium in a capital asset market. Econo-
metrica 34 768-783.

MOSSIN, J. (1973). Theory of Financial Markets. Prentice Hall,
Englewood Cliffs, NJ.

PENNACCHI, G. (2008). Theory of Asset Pricing. Pearson, Boston.

PRATT, J. W., RAIFFA, H. and SCHLAIFER, R. (1995). Introduc-
tion to Statistical Decision Theory, 2nd ed. MIT Press, Cam-
bridge, MA.

PRESsAcCO, F. and SERAFINI, P. (2007). The origins of the
mean—variance approach in finance: Revisiting de Finetti 65
years later. Decis. Econ. Finance 30 19-49. MR2323257

RUBINSTEIN, M. (2006a). Bruno de Finetti and mean—variance
portfolio selection. Journal of Investment Management 4 3—4.

RUBINSTEIN, M. (2006b). A History of the Theory of Investments:
My Annotated Bibliography. Wiley, Hoboken, NJ.

SARNAT, M. (1974). A note on the implications of quadratic util-
ity for portfolio theory. Journal of Financial and Quantitative
Analysis 9 687-689.

SAVAGE, L. J. (1954). The Foundations of Statistics. Wiley, New
York. MR0063582

SHARPE, W. F. (1964). Capital asset prices: A theory of market
equilibrium under conditions of risk. J. Finance 19 425-442.

SHARPE, W. F. (2007). Expected utility asset allocation. Financial
Analysts Journal 63 18-30.

TOBIN, J. (1969). Comment on Borch and Feldstein. Rev. Econom.
Stud. 36 13-14.

VON NEUMANN, J. and MORGENSTERN, O. (1953). The The-
ory of Games and Economic Behavior, 3rd ed. Princeton Univ.
Press, Princeton.


http://www.ams.org/mathscinet-getitem?mr=0539182
http://www.ams.org/mathscinet-getitem?mr=0356303
http://www.ams.org/mathscinet-getitem?mr=0561157
http://www.ams.org/mathscinet-getitem?mr=0996240
http://www.ams.org/mathscinet-getitem?mr=2948369
http://www.ams.org/mathscinet-getitem?mr=2753395
http://www.ams.org/mathscinet-getitem?mr=2239375
http://www.ams.org/mathscinet-getitem?mr=2063614
http://www.ams.org/mathscinet-getitem?mr=2239384
http://www.ams.org/mathscinet-getitem?mr=0103768
http://www.ams.org/mathscinet-getitem?mr=0469189
http://www.ams.org/mathscinet-getitem?mr=2323257
http://www.ams.org/mathscinet-getitem?mr=0063582

	Introduction
	Expected Utility Theory
	Mean-Variance Theory
	Borch's Paradox
	Our Interpretation of Borch
	Numerical Illustration

	Baron's Rebuttal of Borch
	Buridan's Axiom and Mean-Variance
	Decision Axioms in Terms of (sigma,µ)

	Reconciling MV and EU Frameworks
	Quadratic Utility
	Normally Distributed Payoffs
	Chipman-Baron defence of normality
	Mixture assets in practice


	Borch and Stochastic Dominance
	The Capital Asset Pricing Model
	Conclusion
	Postscript
	Acknowledgement
	References

