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Abstract.

We review the class of species sampling models (SSM). In par-

ticular, we investigate the relation between the exchangeable partition prob-
ability function (EPPF) and the predictive probability function (PPF). It is
straightforward to define a PPF from an EPPF, but the converse is not neces-
sarily true. In this paper we introduce the notion of putative PPFs and show
novel conditions for a putative PPF to define an EPPF. We show that all pos-
sible PPFs in a certain class have to define (unnormalized) probabilities for
cluster membership that are linear in cluster size. We give a new necessary
and sufficient condition for arbitrary putative PPFs to define an EPPF. Fi-
nally, we show posterior inference for a large class of SSMs with a PPF that
is not linear in cluster size and discuss a numerical method to derive its PPF.
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1. INTRODUCTION

The status of the Dirichlet process (Ferguson, 1973)
(DP) among nonparametric priors is comparable to that
of the normal distribution among finite-dimensional
distributions. This is in part due to the marginaliza-
tion property: a random sequence sampled from a ran-
dom probability measure with a Dirichlet process prior
forms marginally a Polya urn sequence (Blackwell and
MacQueen, 1973). Markov chain Monte Carlo simula-
tion based on the marginalization property has been the
central computational tool for the DP and facilitated a
wide variety of applications. See MacEachern (1994),
Escobar and West (1995) and MacEachern and Miiller
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(1998), to name just a few. In Pitman (1995, 1996), the
species sampling model (SSM) is proposed as a gen-
eralization of the DP. SSMs can be used as flexible al-
ternatives to the popular DP model in nonparametric
Bayesian inference. The SSM is defined as the direct-
ing random probability measure of an exchangeable
species sampling sequence which is defined as a gen-
eralization of the Polya urn sequence. The SSM has a
marginalization property similar to the DP. It therefore
enjoys the same computational advantage as the DP
while it defines a much wider class of random proba-
bility measures. For its theoretical properties and appli-
cations, we refer to Ishwaran and James (2003), Lijoi,
Mena and Priinster (2005), Lijoi, Priinster and Walker
(2005), James (2008), Navarrete, Quintana and Miiller
(2008), James, Lijoi and Priinster (2009) and Jang, Lee
and Lee (2010).

Suppose (X1, X3, ...) is a sequence of random vari-
ables. In a traditional application the sequence arises
as a random sample from a large population of units,
and X; records the species of the ith individual in the
sample. This explains the name SSM. Let X j be the
Jth distinct species to appear. Let 7, be the number
of times the jth species X j appears in (X1, ..., X,),
j=1,2,...,and

nn=(njnaj:17---,kn),
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where k, = k,(n,) = max{;j:n;, > 0} is the number
of different species to appear in (X1, ..., X,,). The sets
i<n:X;=X j} define clusters that partition the in-
dex set {1, ..., n}. When n is understood from the con-
text we just write 7, n and k or k(n).

We now give three alternative characterizations of
species sampling sequences: (i) by the predictive prob-
ability function, (ii) by the driving measure of the ex-
changeable sequence, and (iii) by the underlying ex-
changeable partition probability function.

PPF

Let v be a diffuse (or nonatomic) probability mea-
sure on a complete separable metric space X equipped
with Borel o-field. An exchangeable sequence (X1,
X7, ...) is called a species sampling sequence (SSS)
if X1 ~v and

Xnt1 | X1,..., Xy
1
(1) .
~ D Pi)dg + piy a1 (),
j=1

where §, is the degenerate probability measure at x.
Examples of SSS include the Pdlya urn sequence
(X1, X2,...) whose distribution is the same as the
marginal distribution of independent observations from
a Dirichlet random distribution F, that is, X1, X2, ... |

F % F with F ~ DP(av), where a > 0. The condi-
tional distribution of the Pélya urn sequence is

kn

n;j o
X Xi,..., Xn~ 5. + V.
nrt | X1 " jger—a Xi ' n4a

This marginalization property has been a central tool
for posterior simulation in DP mixture models, which
benefit from the fact that one can integrate out F' us-
ing the marginalization property. The posterior distri-
bution becomes then free of the infinite-dimensional
object F'. Thus, Markov chain Monte Carlo algorithms
for DP mixtures do not pose bigger difficulties than the
usual parametric Bayesian models (MacEachern, 1994;
MacEachern and Miiller, 1998). Similarly, alternative
discrete random distributions have been considered in
the literature and proved computationally attractive due
to analogous marginalization properties; see, for exam-
ple, Lijoi, Mena and Priinster (2005, 2007).

The sequence of functions (pi, p2,...) in (1) is
called a sequence of predictive probability functions
(PPF). These are defined on N* = [ ;2 N, where N

is the set of natural numbers, and satisfy the conditions

kn+1
pjm>0 and > pjm)=1
j=1

)

for all n € N*.,

Motivated by these properties of PPFs, we define a se-
quence of putative PPFs as a sequence of functions
(pj,j=1,2,...) defined on N* which satisfies (2).
Note that not all putative PPFs are PPFs, because (2)
does not guarantee exchangeability of (X1, X»,...)
in (1). Note that the weights p;(-) depend on the data
only indirectly through the cluster sizes n,,. The widely
used DP is a special case of a species sampling model,
with p;(n,) ocn; and pry1(m,) o« for a DP with to-
tal mass parameter . The use of p; in (1) implies

pim) =PXpt1=X; | X1,..., Xn),

Ji=1,... kn,
Plot1 @) =P(Xys1 & (X1, .., X} | X1soeny Xa).

In words, p; is the probability of the next observation
being the jth species (falling into the jth cluster) and
Dk,+1 1s the probability of a new species (starting a new
cluster).

An important point in the above definition is that a
sequence X; can be a SSS only if it is exchangeable.

SSM

Alternatively, a SSS can be characterized by the fol-
lowing defining property. An exchangeable sequence
of random variables (X1, X3, ...) is a species sampling
sequence if and only if Xy, X»,...| G is a random
sample from G where

o0
(3) G=)_ Ppdm,+Rv
h=1

for some sequence of positive random variables (Pj)
and R such that 1 — R =);° | P, < 1 with probabil-
ity 1, (my,) is a sequence of independent variables with
distribution v, and (P;) and (mj,) are independent. See
Pitman (1996). The result is an extension of de Finetti’s
theorem and characterizes the directing random proba-
bility measure of the species sample sequence. We call
the directing random probability measure G in equa-
tion (3) the SSM of the SSS (X;).
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EPPF

A third alternative definition of a SSS and corre-
sponding SSM is in terms of the implied probability
model on a sequence of random partitions.

Suppose a SSS (X1, X»,...) is given. Since the de
Finetti measure (3) is partly discrete, there are ties
among X;’s. The ties among (X1, X»,..., X,) for a
given n induce an equivalence relation in the set [n] =
{1,2,...,n}, that is, i ~ j if and only if X; = X ;.
This equivalence relation on [#], in turn, induces the
partition I, of [n]. Due to the exchangeability of
(X1, X2, ...), it can be easily seen that the random par-
tition I, is an exchangeable random partition on [n],
that is, for any partition {Ay, Ag, ..., Ag} of [n], the
probability P(I1,, = {A1, Aa, ..., A}) is invariant un-
der any permutation on [n] and can be expressed as a
function of n = (ny, no, ..., ny), where n; is the car-
dinality of A; fori =1, 2, ..., k. Extending the above
argument to the entire SSS, we can get an exchange-
able random partition on the natural numbers N from
the SSS. Kingman (1978, 1982) showed a remarkable
result, called Kingman’s representation theorem, that
in fact every exchangeable random partition can be ob-
tained by a SSS.

For any partition {A{, A, ..., Ax} of [n], we can
represent P(I1, = {A1, Az,..., Ax}) = p(n) for a
symmetric function p : N* — [0, 1] satisfying

p(H=1,
k(m)+1 '
p(n) = Z p(n’™) for all n € N*,
j=1

“

where n/7 is the same as n except that the jth element
is increased by 1. This function is called an exchange-
able partition probability function (EPPF) and charac-
terizes the distribution of an exchangeable random par-
tition on N.

We are now ready to pose the problem for the present
paper. It is straightforward to verify that any EPPF de-
fines a PPF by

Jj+
& pw=P" 1
p(m)
The converse is not true. Not every putative p;(n) de-
fines an EPPF and thus a SSM and a SSS. For example,
it is easy to show that p;(n) ocn? +1,j=1,..., k(n),
does not. In Bayesian data analysis it is often conve-
nient, or at least instructive, to elicit features of the
PPF rather than the joint EPPFE. Since the PPF is cru-
cial for posterior computation, applied Bayesians tend

Jk+1.

to focus on it to specify the species sampling prior for
a specific problem. For example, the PPF defined by a
DP prior implies that the probability of joining an ex-
isting cluster is proportional to the cluster size. This
is not always desirable. Can the user define an alter-
native PPF that allocates new observations to clusters
with probabilities proportional to alternative functions
f(n;) and still define a SSS? In general, the simple an-
swer is no. We already mentioned that a PPF implies a
SSS if and only if it arises as in (5) from an EPPF. But
this result is only a characterization. It is of little use for
data analysis and modeling since it is difficult to verify
whether or not a given PPF arises from an EPPF. In
this paper we develop some conditions to address this
gap. We consider methods to define PPFs in two differ-
ent directions. First we give an easily verifiable neces-
sary condition for a putative PPF to arise from an EPPF
(Lemma 1) and a necessary and sufficient condition for
a putative PPF to arise from an EPPF. A consequence
of this result is an elementary proof of the characteri-
zation of all possible PPFs with form p;(m) o< f(n;).
This result has been proved earlier by Gnedin and Pit-
man (2006). Although the result in Section 2 gives nec-
essary and sufficient conditions for a putative PPF to be
a PPF, the characterization is not constructive. It does
not give any guidance in how to create a new PPF for
a specific application. In Section 3 we propose an al-
ternative approach to define a SSM based on directly
defining a joint probability model for the P, in (3).
We develop a numerical algorithm to derive the cor-
responding PPF. This facilitates the use of such mod-
els for nonparametric Bayesian data analysis. This ap-
proach can naturally create PPFs with very different
features than the well-known PPF under the DP.

The literature reports some PPFs with closed-form
analytic expressions other than the PPF under the DP
prior. There are a few directions which have been ex-
plored for constructing extensions of the DP prior and
deriving PPFs. The normalization of complete ran-
dom measures (CRM) has been proposed in Kingman
(1975). A CRM such as the generalized gamma pro-
cess (Brix, 1999), after normalization, defines a dis-
crete random distribution and, under mild assump-
tions, a SSM. Developments and theoretical results
on this approach have been discussed in a series of
papers; see, for example, Perman, Pitman and Yor
(1992), Pitman (2003) and Regazzini, Lijoi and Priin-
ster (2003). Normalized CRM models have also been
studied and applied in Lijoi, Mena and Priinster (2005),
Nieto-Barajas, Priinster and Walker (2004) and more
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recently in James, Lijoi and Priinster (2009). A sec-
ond related line of research considered the so-called
Gibbs models. In these models the analytic expressions
of the PPFs share similarities with the DP model. An
important example is the Pitman—Yor process. Con-
tributions include Gnedin and Pitman (2005), Lijoi,
Mena and Priinster (2007), Lijoi, Priinster and Walker
(2008a, 2008b) and Gnedin, Haulk and Pitman (2010).
Lijoi and Priinster (2010) provide a recent overview on
major results from the literature on normalized CRM
and Gibbs-type partitions.

2. WHEN DOES A PPF IMPLY AN EPPF?

Suppose we are given a putative PPF (p;). Using
equation (5), one can attempt to define a function
p:N* — [0, 1] inductively by the following mapping:

p()=1,

(6) p(n/*) = p;m)pm)
forallmeNand j=1,2,...,k(n) + 1.

In general, equation (6) does not lead to a unique
definition of p(m) for each n € N*. For example, let
n = (2,1). Then, p(2,1) could be computed in two
different ways as p>(1)p1(1, 1) and p1(1) p2(2) which
correspond to partitions {{1, 3}, {2}} and {{1, 2}, {3}},
respectively. If p2(1)pi(1,1) # p1(1)p2(2), equation
(6) does not define a function p:N* — [0, 1]. The
following lemma shows a condition for a PPF for
which equation (6) leads to a valid unique definition
of p:N* — [0, 1].

Suppose IT = {A1, As, ..., Ag} is a partition of [n]
with clusters indexed in the order of appearance. For
1 <m <n, let I1,, be the restriction of IT on [m]. Let
n(I1) = (n1, ..., ng), where n; is the cardinality of A;,
and let IT(7) be the class index of element i in partition
IT and IT([n]) = (TI(1), ..., [T(n)).

LEMMA 1.
isfies

If and only if a putative PPF (p;) sat-

pim)p; (') = p;m)p;(n’*)
forallme N* i, j=1,2,...,k(n)+1,
then p defined by (6) is a function from N* to [0, 1],
that is, p in (6) is uniquely defined.

PROOF. Let n = (ny,...,n;) with Z{'(:l nj=n
and IT and Q be two partitions of [n] with n(IT) =
n(Q) =n. Let p"(m) = [1"Z{ png41)(n(T1;) and
pem) =17/ paa+1) (). We need to show that

pl(m) = pQ(n). Without loss of generality, we can as-
sume II([n]) = ({A,...,1,2,...,2,...,k,..., k),
where i is repeated n; times for i =1, ..., k. Note that
Q([n]) is just a certain permutation of I1([n]) and by
a finite times of swapping two consecutive elements in
Q([n]), one can change 2 ([n]) to I1([n]). Thus, it suf-
fices to show when Q2 ([n]) is different from IT([n]) in
only two consecutive positions. But, this is guaranteed
by condition (7).

The opposite is easy to show. Assume p; defines
a unique p(n). Consider (7) and multiply on both
sides with p(n). By assumption, we get on either side
pmitiT). This completes the proof. [

Note that the conclusion of Lemma 1 is not (yet) that
p is an EPPFE. The missing property is exchangeability,
that is, invariance of p with respect to permutations
of the group indices j =1, ..., k(n). When the func-
tion p, recursively defined by expression (6), satisfies
the balance imposed by equation (7) it is called the
partially exchangeable probability function (Pitman,
1995, 2006) and the resulting random partition of N
is termed partially exchangeable. In Pitman (1995), it
is proved that a p : N* — [0, 1] is a partially exchange-
able probability function if and only if it exists as a se-
quence of nonnegative random variables P;,i =1, ...,
with }~; P; <1 such that

k k—1 i
(8) pOn““,m)=E[rIH“4IT(I—}:E)}
i=1 j=1

i=1

where the expectation is with respect to the distribution
of the sequence (F;). We refer to Pitman (1995) for
an extensive study of partially exchangeable random
partitions.

It is easily checked whether or not a given PPF sat-
isfies the condition of Lemma 1. Corollary 1 describes
all possible PPFs that have the probability of cluster
memberships depend on a function of the cluster size
only. This result is part of a theorem in Gnedin and Pit-
man (2006), but we give here a more straightforward
proof.

COROLLARY 1.
isfies (7) and

Suppose a putative PPF (p;) sat-

fny), j=1,...k
0, j=k+1,

where f (k) is a function from N to (0, 00) and 6 > 0.
Then, f (k) = ak for all k € N for some a > 0.

©) mWWWMa{
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PROOF. Note that foranyn= (ny,...,n¢) andi =
Lk+1,
S (ni) _ ‘
Yt f) +6 U
pi(ny,...,ng) = 0
=k+1.

le,i:] f(nu) + 0 ’
Equation (7) with 1 <i # j < k implies

f(ni) fn))
Yt F) +6 X fu) + fni+1) +6
fnj) f(ni)

T f) O f) + fn D+

which in turn implies

fmi)+ fnj+1)=fn;)+ fni+1)
or

fj+1)—= f(nj)=fn; +1)— f(n;).
Since this holds for all n; and n ;, we have for all k € N
(10) f(m)=am+b

for some a, b € R.
Now consider i =k + 1 and 1 < j <k. Then,

0 f(nj)
YR fu) +0 Xk f) + f(D) 46
_ fn)) 0
St F) +6 X fu) + fnj+1)+6
which implies f(n;) + f(1) = f(n; + 1) for all n;.

This together with (10) implies b = 0. Thus, we have
f (k) =ak for some a > 0. [

For any a > 0, the putative PPF

(n 1) an;, i=1,...,k,
pl | ERERR) k 9’ l:k+1,
defines a function p:N — [0, 1],

k—1 _n—k

p(ny, ... .ng) = (ni — DY,
[0+1 In—1; a ll:[ l

where [0]k.q =0(0 +a)--- (6 + (k — 1)a). Since this
function is symmetric in its arguments, it is an EPPF.
This is the EPPF for a DP with total mass 6 /a. Thus,
Corollary 1 implies that the EPPF under the DP is the

only EPPF that satisfies (9). The corollary shows that
it is not an entirely trivial matter to come up with a
putative PPF that leads to a valid EPPF. A version of
Corollary 1 is also well known as Johnson’s Sufficient-
ness postulate (Good, 1965). See also the discussion in
Zabell (1982).

We now give a necessary and sufficient condition
for the function p defined by (5) to be an EPPF,
without any constraint on the form of p; (as were
present in the earlier results). Suppose o is a permu-
tation of [k] and n = (ny, ..., n;) € N*. Define 0 (n) =
O‘(nl, ey nk) = (ng(l), Ng2)s -+ ng(k)). In WOI‘dS, o
is a permutation of group labels and o (n) is the corre-
sponding permutation of the group sizes n.

THEOREM 1. Suppose a putative PPF (pj) sat-
isfies (7) as well as the following condition: for all

n= (ny,...,n;) € N* and permutations o on [k] and
i=1,...,k,

pi(ny, ..., nk)
(11)

= Po-13) Mo (1)s Mo (2)s - - - » Mo (k))-

Then, p defined by (6) is an EPPF. The condition is
also necessary; if p is an EPPF, then (11) holds.

PROOF. Fixn=(ny,...,n;) € N* and a permuta-
tion on [k], 0. We wish to show that for the function p
defined by (6)

(12)  pny,...

Let IT be the partition of [n] with n(IT) = (ny, ..., ng)
such that

i) = p(a(1), N 2)s -+ > R (k) -

()= (1,2, ...,k 1. 1,2, 2,k k),

where after the first k elements 1, 2, ..., k, i is repeated

n; — 1 times foralli =1,..., k. Then,
n—1
p(n) = 1‘[p,(1<l D) X H pri+n (1)),
i=2 =k

where 1(;) is the vector of length j whose elements are
all 1’s.

Now consider a partition  of [n] with n(2) =
(no'(l), R (2)s s no'(k)) such that

Q(n]) = (1,2,....k,a7'(D),...,a 71 (D),

o '@),....07'2),...,
o k), ...,o7 (K)),
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where after the first k elements 1,2, ..., k, o~ ! (i) is
repeated n; — 1 times for alli =1, ..., k. Then,
P(Ne(1), Mo 2)s -+ Mo (k)
k n—1
=[1pii-1) x [] pain @)
i=2 i=k

n—1

k
= l_[ pi(Li-1)) X 1_[ Po-1(@(i+1) (0 (n(£2)))

i=2 i=k
k n—1
=[1pi@i-1) x [ prg+n @)
i=2 i=k
=p(ni, ..., ng),

where the second equality follows from (11). This
completes the proof of the sufficient direction.

Finally, we show that every EPPF p satisfies (6) and
(11). By Lemma 1, every EPPF satisfies (6). Condi-
tion (12) is true by the definition of an EPPF, which
includes the condition of symmetry in its arguments.
And (12) implies (11). O

Fortini, Ladelli and Regazzini (2000) prove results
related to Theorem 1. They provide sufficient condi-
tions for a system of predictive distributions p(X, |
Xt,...,Xn—1), n=1,..., of a sequence of random
variables (X;) that imply exchangeability. The relation
between these conditions and Theorem 1 becomes ap-
parent by constructing a sequence (X;) that induces a
p-distributed random partition of N. Here, it is implic-
itly assumed the mapping of (X;) to the only partition
such that i, j € N belongs to the same subset if and
only if X,‘ = Xj.

A second more general example, which extends the
predictive structure considered in Corollary 1, includes
the so-called Gibbs random partitions. Within this class
of models

k
(13) p(ni,na,....n) = Vai [ | Wai
i=1

where (V, x) and (W,,) are sequences of positive real
numbers. In this case the predictive probability of a
novel species is a function of the sample size n and
of the number of observed species k. See Lijoi, Mena
and Priinster (2007) for related distributional results
on Gibbs type models. Gnedin and Pitman (2006) ob-
tained sufficient conditions for the sequences (V, k)
and (W,,,), which imply that p is an EPPF.

3. SSMS BEYOND THE DP
3.1 The SSM(p, v)

We know that an SSM with a nonlinear PPF, that
is, p; different from the PPF of a DP, cannot be de-
scribed as a function p; o f(n;) of n; only. It must
be a more complicated function f(m). Alternatively,
one could try to define an EPPF and deduce the im-
plied PPE. But directly specifying a symmetric func-
tion p(m) such that it complies with (4) is difficult. As
a third alternative we propose to consider the weights
P={P,,h=1,2,...} in (3). Figure 1(a) illustrates
p(P) for a DP model. The sharp decline is typical.
A few large weights account for most of the probability
mass. The stick breaking construction for a DP prior
with total mass 6 implies E(Pp) = o1 + 9)~h.
Such geometrically decreasing mean weights are inap-
propriate to describe prior information in many appli-
cations. The weights can be interpreted as asymptotic
relative cluster sizes. A typical application of the DP
prior is, for example, a partition of patients in a clini-
cal study into clusters. However, if clusters correspond
to disease subtypes defined by variations of some bio-
logical process, then one would rather expect a num-
ber of clusters with a priori comparable size. Many
small clusters with very few patients are implausible
and would also be of little clinical use. This leads us to
propose the use of alternative SSMs.

Figure 1(b) shows an alternative probability mo-
del p(P). There are many ways to define p(P); we con-
sider, forh=1,2,...,

Up
Y2 ui
where uj;, are independent and nonnegative random
variables with

Py, oxu, or P,=

o

(14) Y ui<oo as.
i=1

A sufficient condition for (14) is

o0
(15) Y E(uj) < o0

i=1
by the monotone convergence theorem. Note that when
the unnormalized random variables u; are defined as
the sorted atoms of a nonhomogeneous Poisson pro-
cess on the positive real line, under mild assump-
tions, the above (Pj) construction coincides with the
Poisson—Kingman models. Ferguson and Klass (1972)
provide a detailed discussion on the outlined mapping
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(a) DP(M =1,v)
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(b) SSM(p,v) (note the shorter y-scale).

FI1G. 1. The lines in each panel show 10 draws P ~ p(P) for the DP (left) and for the SSM defined in (16) below (right). The Py, are
defined for integers h only. We connect them to a line for presentation only. Also, for better presentation we plot the sorted weights. The thick
line shows the prior mean. For comparison, a dashed thick line plots the prior mean of the unsorted weights. Under the DP the sorted and

unsorted prior means are almost indistinguishable.

of a Poisson process into a sequence of unnormalized
positive weights. In this particular case the mean of the
Poisson process has to satisfy minimal requirements
(see, e.g., Pitman, 2003) to ensure that the sequence
(P;) is well defined.

As an illustrative example in the following discus-
sion, we define, forh =1,2, ...,

Pp x eXn
(16)
with Xj, ~ N (log(1 — {1+ eP=*}7"), 02),

where a, b, 0% are positive constants. The existence of
such random probabilities is guaranteed by (15), which
is easy to check.

The S-shaped nature of the random distribution (16),
when plotted against £, distinguishes it from the DP
model. The first few weights are a priori of equal size
(before sorting). This is in contrast to the stochastic or-
dering of the DP and the Pitman—Yor process in gen-
eral. In panel (a) of Figure 1 the prior mean of the
sorted and unsorted weights is almost indistinguish-
able, because the prior already implies strong stochas-
tic ordering of the weights.

The prior in Figure 1(b) reflects prior information
of an investigator who believes that there should be
around 5 to 10 clusters of comparable size in the popu-
lation. This is in sharp contrast to the (often implausi-
ble) assumption of one large dominant cluster and geo-
metrically smaller clusters that is reflected in panel (a).

Prior elicitation can exploit such readily interpretable
implications of the prior choice to propose models
like (16).

We use SSM(p, v) to denote a SSM defined by p(P)

for the weights P, and my, i v. The attraction of
defining the SSM through P is that by (3) any joint
probability model p(P) such that P(}_, P, = 1) de-
fines a proper SSM. There are no additional constraints
as for the PPF p;(n) or the EPPF p(n). However, we
still need the implied PPF to implement posterior in-
ference and also to understand the implications of the
defined process. Thus, a practical use of this second ap-
proach requires an algorithm to derive the PPF starting
from an arbitrarily defined p(P).

3.2 An Algorithm to Determine the PPF

Recall definition (3) for an SSM random probability
measure. Assuming a proper SSM, we have

oo
(17) G=>_ Pidm,.
h=1

Let P = (P, h € N) denote the sequence of weights.
Recall the notation X j for the jth unique value in the
SSS {X;,i =1, ..., n}. The algorithm requires indica-
tors that match the X j with the my, that is, that match
the clusters in the partition with the point masses of
the SSM. Let m; =hif Xj =my, j=1,..., k. In the
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following discussion it is important that the latent indi-
cators 7r; are only introduced up to j = k. Conditional
onmp, h € Nand f(j, J € N, the indicators 7; are de-
terministic. After marginalizing with respect to the my,
or with respect to the X j» the indicators become latent
variables. Also, we use cluster membership indicators
si=j for X; =X ;j to simplify notation. We use the
convention of labeling clusters in the order of appear-
ance, thatis, sy =1 and s;+1 € {1, ..., ki, ki + 1}.

In words, the algorithm proceeds as follows. We
write the desired PPF p;(m) as an expectation of
the conditional probabilities p(X,+1 = )~(_,- | n, T, P).
The expectation is with respect to p(P,m | n). Next
we approximate the integral with respect to p(P, 7 |
n) by a weighted Monte Carlo average over sam-
ples PO, 7Oy ~ p(P(e))p(Jr(@ | P©) from the prior.
Note 7 and P together define the size-biased permuta-
tion of (P;),

Pi=P, j=12,....

The size-biased permutation (f’j) of (P;) is a resam-
pled version of (P;) where sampling is done with prob-
ability proportional to P; and without replacement.
Once the sequence (P;) is simulated, it is computa-
tionally straightforward to get (i’j). Note also that the
properties of the random partition can be characterized
by the distribution on P only. The point masses mj, are
not required.

Using the cluster membership indicators s; and the
size-biased probabilities ﬁj, we write the desired PPF
as

pi(m) = p(sp41=j|m)

= [ plsrs1 =i InByp(® myab
(18) ) ) o
[ plowri =71 nBypon | B)p(P) dP

1 ~ -
~T > plsns1=j In,PO)pn|PY),

The Monte Carlo sample PO or, equivalently, (P,
7®), is obtained by first generating P®) ~ p(P) and
then p(z{” =h | PO 7" 7)o P hg

j—1
1(4),...,71](@1}. In actual implementation the ele-

ments of P®) and 7© are only generated as and when
needed.

The terms in the last line of (18) are easily evaluated.
The first factor is given as predictive cluster member-

{mr

ship probabilities

p(sus1 =Jj |, P)
(19)

P; j=1,...ky,
= kn ~
(1 — ZP]), J=kn+1.
j=1
The second factor is evaluated as

k k—1 J
poi®=T17 7 TI(1- 3 7).
j=1 j=1 i=1
Note that the second factor coincides with the previ-
ously mentioned [cf. expression (8)] Pitman’s repre-
sentation result for partially exchangeable partitions.
Figure 2 shows an example. The figure plots
p(si+1 = j | s) against cluster size n;. In contrast, the
DP Polya urn would imply a straight line. The plot-
ted probabilities are averaged with respect to all other
features of s, in particular, the multiplicity of cluster
sizes, etc. The figure also shows probabilities (19) for
specific simulations.

3.3 A Simulation Example

Many data analysis applications of the DP prior are
based on DP mixtures of normals as models for a ran-
dom probability measure F. Applications include den-
sity estimation, random effects distributions, general-
izations of a probit link, etc. We consider a stylized ex-
ample that is chosen to mimic typical features of such
models.

In this section we show posterior inference condi-
tional on the data set (y, y2,..., y9) = (—4, =3, =2,
..., 4). The use of these data highlights the differences
in posterior inference between the SSM and DP priors.

ii.d. . . . .
Assume y; ~ F, with a semi-parametric mixture of
normal prior on F,

fid. .
yi <~ F  with F(yi)=/N(yi;u,02)dG(M,02).

Here N(x;m,s%) denotes a normal distribution with
moments (m, s2) for the random variable x. We esti-

mate F under two alternative priors,
G ~SSM(p,v) or G~DPM,v).

The distribution p of the weights for the SSM(p, -)
prior is defined as in (16). The total mass parameter M
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FIG. 2. Panel (a) shows the PPF (19) for a random probability measure G ~ SSM(p, v), with Py as in (16). The thick line plots
P(Sp+1 = J | 8) against n j, averaging over multiple simulations. In each simulation we used the same simulation truth to generate s and stop
simulation at n = 100. The 10 thin lines show pj(m) for 10 simulations with different n. In contrast, under the DP Polya urn the curve is a

straight line and there is no variation across simulations [panel (b)].

in the DP prior is fixed to match the prior mean number
of clusters, E (k,), implied by (16). We find M = 2.83.
Let Ga(x; a, b) indicate that the random variable x has
a Gamma distribution with shape parameter a and in-
verse scale parameter b. For both prior models we use

v(u, 1/0%) = N(x; o, co?) Ga(l/0?; a/2,b/2).

o AAAM ML

0.0 0.2 0.4 0.6 0.8 1.0

(a) G ~ SSM(p,v)

We fix o =0, c = 10 and a = b = 4. The model can
alternatively be written as y; ~ N(u;, oiz) and X; =
(i, 1/07) ~ G.

Figures 3 and 4 show some inference summaries.
Inference is based on Markov chain Monte Carlo
(MCMC) posterior simulation with 1000 iterations.
Posterior simulation is for (si,...,s,) only. The

o AAAM M4

0.0 0.2 0.4 0.6 0.8 1.0

(b) G ~ DP(M, )

FIG. 3. Posterior estimated sampling model F = E(F | data) = P(Yn+1 | data) under the SSM(p, v) prior and a comparable DP prior.

The triangles along the x-axis show the data.
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(a) G ~ SSM(p, )
cluster-specific parameters (/i , &]2), j=1,... ky,are

analytically marginalized. One of the transition proba-
bilities (Gibbs sampler) in the MCMC requires the PPF
under SSM(p, v). It is evaluated using (18).

Figure 3 shows the posterior estimated sampling dis-
tributions F. The figure highlights a limitation of the
DP prior. The single total mass parameter M controls
both, the number of clusters and the prior precision.
A small value for M favors a small number of clus-
ters and implies low prior uncertainty. Large M implies
the opposite. Also, we already illustrated in Figure 1
that the DP prior implies stochastically ordered cluster
sizes, whereas the chosen SSM prior allows for many
approximately equal size clusters. The equally spaced
grid data (y1, ..., y,) implies a likelihood that favors
a moderate number of approximately equal size clus-
ters. The posterior distribution on the random partition
is shown in Figure 4. Under the SSM prior the posterior
supports a moderate number of similar size clusters. In
contrast, the DP prior shrinks the posterior toward a
few dominant clusters. Let n(j) = max;—
note the leading cluster size. Related evidence can be
seen in the marginal posterior distribution (not shown)
of k, and n(1). We find E(k, | data) = 6.4 under the
SSM model versus E(k, | data) = 5.1 under the DP
prior. The marginal posterior modes are k, = 6 un-
der the SSM prior and &, = 5 under the DP prior. The
marginal posterior modes for n(yy is n(1) = 2 under the
SSM prior and n(1y = 3 under the DP prior.

3.4 Analysis of Sarcoma Data

We analyze data from of a small phase II clinical
trial for sarcoma patients that was carried out in the
M. D. Anderson Cancer Center. The study was de-
signed to assess efficacy of a treatment for sarcoma pa-
tients across different subtypes. We consider the data
accrued for 8 disease subtypes that were classified as
having overall intermediate prognosis, as presented in
Table 1. Each table entry indicates the total number of
patients for each sarcoma subtype and the number of
patients who reported a treatment success. See further
discussion in Leén-Novelo et al. (2012).

One limitation of these data is the small sample size,
which prevents separate analysis for each disease sub-
type. On the other hand, it is not clear that we should
simply treat the subtypes as exchangeable. We deal
with these issues by modeling each table entry as a bi-
nomial response and adopt a hierarchical framework
for the success probabilities. The hierarchical model
includes a random partition of the subtypes. Condi-

TABLE 1
Sarcoma data. For each disease subtype (top row) we report the
total number of patients and the number of treatment successes.
See Leon-Novelo et al. (2012) for a discussion of disease subtypes

Sarcoma LEI LIP MFH OST Syn Ang MPNST Fib

6/28 7/29 3/29 5/26 3/20 2/15 1/5 1/12
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tional on a given partition, data across all subtypes in
the same cluster are pooled, thus allowing more pre-
cise inference on the common success probabilities for
all subtypes in this cluster. We consider two alternative
models for the random partition, based on a DP(M, v)
prior versus a SSM(p, v) prior. Specifically, we con-
sider the following models:

yilmi ~ Bin(n;, 7;),
|G ~ G,

G ~DP(M,v) or SSM(p,v),

where v is a diffuse probability measure on [0, 1] and
p is again defined as in (16).

The hierarchical structure of the data and the aim of
clustering subpopulations in order to achieve borrow-
ing of strength is in continuity with a number of applied
contributions. Several of these, for instance, are meta
analyses of medical studies (Berry and Christensen,
1979), with subpopulations defined by medical insti-
tutions or by clinical trials. In most cases the applica-
tion of the DP is chosen for computational advantages
and (in some cases) due to the easy implementation
of strategies for prior specification (Liu, 1996). With
a small number of studies, as in our example, ad hoc
construction of alternative SSM combines hierarchical
modeling with advantageous posterior clustering. The
main advantage is the possibility of avoiding the expo-
nential decrease typical of the ordered DP atom:s.
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FIG. 5.

In this particular analysis, we used M = 2.83 and
chose v to be the Beta(0.15, 0.85) distribution, which
was designed to match the prior mean of the observed
data and has prior equivalent sample size of 1. The
total mass M = 2.83 for the DP prior was selected
to achieve matching prior expected number of clus-
ters under the two models. The DP prior on G fa-
vors the formation of large clusters (with matched prior
mean number of clusters) which leads to less posterior
shrinkage of cluster-specific means. In contrast, under
the SSM prior the posterior puts more weight on sev-
eral smaller clusters.

Figure 5 shows the estimated posterior probabili-
ties of pairwise co-clustering for model (16) in the left
panel and for the DP case (right panel). Clearly, com-
pared to the DP model, the chosen SSM induces a pos-
terior distribution with more clusters, as reflected in the
lower posterior probabilities p(s; =s; | y) forall i, j.

Figure 6 shows the posterior distribution of the num-
ber of clusters under the SSM and DP mixture mod-
els. Under the DP (right panel) includes high probabil-
ity for a single cluster, k = 1, with n; = 8. The high
posterior probability for few large clusters also implies
high posterior probabilities p;; of co-clustering. Un-
der the SSM (left panel) the posterior distribution on
p retains substantial uncertainty. Finally, the same pat-
tern is confirmed in the posterior distribution of sizes
of the largest cluster, p(n; | y), shown in Figure 7. The
high posterior probability for a single large cluster of

MAX P=0.73

up
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Posterior probabilities of pairwise co-clustering, p;; = p(s; = s | y). The grey scales in the two panels are scaled as black for

pij = 0 to white for p;; = max,s prs. The maxima are indicated in the right top of the plots.
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all n = 8 sarcoma subtypes seems unreasonable for the
given data.

4. DISCUSSION

We have reviewed alternative definitions of SSMs.
We also reviewed the fact that all SSMs with a PPF of
the form p;(n) = f(n;) must necessarily be a linear
function of n ; and provided a new elementary proof. In
other words, the PPF p;(n) depends on the current data
only through the cluster sizes. The number of clusters
and any other aspect of the partition [T, do not change
the prediction. This is an excessively simplifying as-
sumption for most data analysis problems.

1000 1 SPO 20JOO

5(?0

0
L

S0 0
1 2 3 4 5 6 7 8

p(n1 | y) SSM

We provide an alternative class of models that al-
lows for more general PPFs. These models are obtained
by directly specifying the distribution of unnormalized
weights uj,. The proposed approach for defining SSMs
allows the incorporation of the desired qualitative prop-
erties concerning the decrease of the ordered clusters
cardinalities. This flexibility comes at the cost of ad-
ditional computation required to implement the algo-
rithm described in Section 3.2, compared to the stan-
dard approaches under DP-based models. Neverthe-
less, the benefits obtained in the case of data sets that
require more flexible models compensate the increase
in computational effort. A different strategy for con-
structing discrete random distributions has been dis-

4?0 6(?0 8?0 1 OPO 1 2}00

2?0

DP

F1G. 7. Posterior distribution on the size of the largest cluster.
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cussed in Trippa and Favaro (2012). In several appli-
cations, the scope for which SSMs are to be used sug-
gests these desired qualitative properties. Nonetheless,
we see the definition of a theoretical framework sup-
porting the selection of a SSM as an open problem.

R code for an implementation of posterior inference
under the proposed new model is available at http://
math.utexas.edu/users/pmueller/.
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