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Discussion of “Estimating Random Effects
via Adjustment for Density Maximization”
by C. Morris and R. Tang

P. Lahiri and Santanu Pramanik

We thoroughly enjoyed reading this excellent author-
itative paper full of interesting ideas, which should be
useful in both Bayesian and non-Bayesian inferences.
We first discuss the accuracy of the ADM approxima-
tion to a Bayesian solution in a real-life application and
then discuss how some of the ideas presented in the pa-
per could be useful in a non-Bayesian setting.

HOW DOES THE ADM WORK IN A REAL
APPLICATION?

Although the main objective of this paper is to make
inferences on the high-dimensional parameters or the
random effects 0;, the authors note that the success
of the Bayesian method lies on the accurate estima-
tion of the shrinkage parameters B; since they appear
linearly in the expressions for the posterior mean and
posterior variance of §; when the hyperparameters are
known. Thus, we assess the accuracy of the ADM ap-
proximation, given in Section 2.8, relative to the stan-
dard first-order Laplace approximation, in approximat-
ing the posterior distribution of the shrinkage factors
for the hierarchical model (1)—(2). This model, com-
monly referred to as the Fay—Herriot model in the small
area literature, was used by Fay and Herriot (1979) in
order to combine survey data and different administra-
tive records in producing empirical Bayes estimates of
per-capita income of small places. Since then the Fay—
Herriot model and its variants have been used in vari-
ous federal programs such as the Small Area Income
and Poverty Estimates (SAIPE) and the Small Area
Health Insurance estimates (SAHIE) programs of the
U.S. Census Bureau.
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For purposes of evaluation, we consider the problem
of estimating the proportion of 5- to 17-year-old (re-
lated) children in poverty for the fifty states and the
District of Columbia using the same data set consid-
ered by Bell (1999). We choose two years (1993 and
1997) of state-level data from the SAIPE program. In
1993, the REML estimate of A is positive while in year
1997 it is zero. The choice of these two years will thus
give us an opportunity to assess the accuracy of the
ADM approximations in two different scenarios.

We assume the standard SAIPE state-level model
in which survey-weighted estimates of the propor-
tions follow the two-level model given by (1)—(2). The
survey-weighted proportions are obtained using the
Current Population Survey (CPS) data with their vari-
ances V; estimated by a Generalized Variance Function
(GVF) method, following Otto and Bell (1995), but as-
sumed to be known throughout the estimation proce-
dure. We use the same state-level auxiliary variables x;
(avector of length 5, i.e., » = 5), obtained from Internal
Revenue Service (IRS) data, food stamp data and Cen-
sus data that the SAIPE program used for the problem.
We assume the uniform prior on 8 and superharmonic
(uniform) prior on A, as used in the Morris—Tang pa-
per.

For the presentation of our results, we consider a se-
lection of four states—California (CA), North Carolina
(NC), Indiana (IN) and Mississippi (MS)—considered
by Bell (1999). This selection represents both small
(i.e., large V;) and large (i.e., small V;) states and thus
should give us a fairly general idea of the degree of ac-
curacy of the Laplace and ADM approximations with
varying V; when compared to the exact posterior dis-
tributions of the shrinkage factors obtained by one-
dimensional numerical integration.

First, consider the year 1993 when the REML esti-
mate of A is positive (1.7). The exact posterior distri-
butions of the shrinkage factors, ADM approximations
and the first-order Laplace approximations (Kass and
Steftey, 1989) are plotted in Figure 1. The solid curves
in Figures 1 and 2 are the exact posterior distributions
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plot are taken from Bell (1999).

of B;, which are obtained from the posterior of A, un-
der the prior, after multiplying by the Jacobian and nor-
malizing through numerical one-dimensional integra-
tion. The dotted lines are first-order Laplace approxi-
mations to the posterior distributions of B;, which are
simply normal distributions with means identical to B;
with A replaced by its posterior mode and variance ex-
pressions given in Kass and Steffy (1989). Thus, the
posterior means and variances of B; are essentially ap-
proximated by the first-order Laplace method. From

CA:V = 2.3 ,SampSize = 4465

—_——

EXACT
ADM
Laplace

1.5

Density
1.0

0.5
i

< |
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
B
IN: V= 8.7 ,SampSize = 684
0
——  Exact
<4 ADM
- Laplace
2 o
c
8 o+
o4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

F1G. 2.
states in the plot are taken from Bell (1999).

P. LAHIRI AND S. PRAMANIK

NC : V = 4.5 ,SampSize = 2278

<
N
> A
2
[ <
8 <
S |
o
B
MS : V = 13.4 ,SampSize = 747
- EXACT
™4 ADM
> Laplace
2 o
[
a
A T T

Plot of exact posterior density of B; along with approximate densities using SAIPE 1993 state-level data. The four states in the

the plot it is clear that the ADM approximation is far
better than the first-order Laplace approximation when
we compare them with the exact posterior distribution
of B,’.

Table 1 displays the exact posterior means and
variances as well as their approximations for these
states. In general, the ADM approximation appears
to be fairly accurate with an indication of under-
approximation of the posterior mean, especially for
states with small V; (CA, NC). On the other hand,
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TABLE 1
Comparison of posterior moments based on SAIPE state-level data

Posterior mean Posterior variance

State Exact ADM Laplace®* Exact ADM Laplace*

Results based on 1993 data
CA 0.47 0.37 0.56 0.038 0.023 0.093
NC 0.62 0.55 0.72 0.030 0.025 0.061
IN 0.80 0.77 0.87 0.014 0.014 0.019
MS 0.81 0.79 0.89 0.012 0.012 0.015

Results based on 1997 data
CA 0.68 0.60 1.00 0.037 0.041 0.987
NC 0.84 0.81 1.00 0.014 0.018 0.120
IN 0.87 0.85 1.00 0.010 0.013 0.071
MS 0.92 0.91 1.00 0.005 0.005 0.021

*Laplace first-order approximation; see Kass and Steffey (1989)
for details.

the first-order Laplace approximation generally over-
estimates the exact posterior means, sometimes by a
large margin, and approximates shrinkage factors for
all the states in the year 1997 by 1. Turning to the pos-
terior variances, we observe that the first-order Laplace
method generally over-approximates the exact poste-
rior variances, sometimes by a large margin, especially
for the year 1997. The poor performance of the Laplace
method, for the SAIPE 1997 data, can be attributed to
the fact that the use of uniform prior on A yields a
posterior mode that lies on the boundary. The ADM
approximation appears to perform well for both the
years, especially for 1997 when the Laplace method
breaks down. For the year 1993, the ADM method ap-
pears to slightly under-approximate the exact posterior
variances, especially for the states with small V;. Over-
all, it appears that the accuracy of the ADM approxi-
mation depends somewhat on the states—the larger the
V; the better the approximation accuracy.

We expect the accuracy of the Laplace approxima-
tion to depend on the specific prior used for A. In
addition, the quality of both first- and second-order
Laplace approximations seems to depend on k and the
Vi/A values. For our SAIPE data analyses, we also
tried second-order Laplace approximations for both the
years (not reported here). The second-order Laplace
approximation generally improves on the accuracy for
states with large V; when the posterior mode is strictly
positive. However, when the posterior mode is on the
boundary (e.g., for the year 1997), the Laplace second-
order approximation produces undesirable results, such
as B > 1, negative posterior variance, etc. So we

could not even produce the graphs. For asymptotic ex-
pansions of posterior expectations when the posterior
mode is on the boundary, one might need to consider
approaches outlined in Erkanli (1994); this can be tried
in the future. But even then we believe that for small &
the Laplace method may not perform well in presence
of extreme skewness.

One important step in approximating the posterior
distributions used by Morris and Tang involves find-
ing the ALM (Adjustment for Likelihood Maximiza-
tion) estimator of A by maximizing the product of the
REML likelihood L(A) and a universal adjustment fac-
tor A applicable to all the states primarily to avoid
a zero estimate of A. Given the above data analyses,
is there any need to find different adjustment factors,
possibly depending on the V;, when approximating the
posterior of B;?

HOW MAY THE ADM METHOD BE USEFUL IN A
NON-BAYESIAN PARADIGM?

While the method proposed in the paper under dis-
cussion is essentially Bayesian with an innovative sim-
ple way to approximate the exact Bayesian solution,
one could use some of the ideas presented in the pa-
per in non-Bayesian approaches like the empirical best
linear unbiased prediction (EBLUP) widely used in
small area estimation. To elaborate on this point, first
note that the two-level model, given by (1)—(2), can be
viewed as the following simple linear mixed model:

Yi =x{B+ui+ei,

where {u;}, area-specific random effects, and {e;},
sampling errors, are independently distributed with
uj ~N(@O,A)ande; ~ N, V;),i=1,... k.

The Bayes estimator of 6; = x/f + u;, as approxi-
mated by the ADM method, is identical to an EBLUP
of 6; when the ALM estimator of A is used in place
of REML, ML or other standard variance compo-
nent estimators. The results on the frequentist cover-
age (i.e., conditional on the hyperparameters S and
A) of the approximate Bayesian intervals of 6; pre-
sented in the Morris—Tang paper should be encourag-
ing to the non-Bayesians. However, from a frequentist
perspective, the interesting problem of establishing the
second-order accuracy of coverage along the lines of
Li and Lahiri (2010) remains open. Morris and Tang
suggested an approximation to the posterior variance
of 6; as a measure of uncertainty of their point esti-
mate. However, since their point estimate of 6; can be
viewed as an EBLUP, one may suggest the Morris—
Tang measure of uncertainty to estimate the traditional
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mean squared error (same as the integrated Bayes risk,
conditional on the hyperparameters) as described in
Jiang and Lahiri (2006). It is not, however, clear if
the usual second-order unbiasedness criterion, advo-
cated by the non-Bayesians, would be satisfied by the
approximate posterior variance formula given in (58)
of the Morris—Tang paper. We refer the readers to Rao
(2003) and Jiang and Lahiri (2006) for a review of the
non-Bayesian methods.

The standard variance component estimation meth-
ods such as the REML and ML, despite their good
asymptotic properties, frequently yield zero estimates
of the unknown variance component A. This is a lin-
gering problem in the classical variance component lit-
erature. For the model (1)—(2), the simulation results
given in Li and Lahiri (2010) suggest that the percent-
age of zero estimates by the REML method depends
on several factors, including the variation of the ra-
tios V; /A across the small areas and the value of k. Li
and Lahiri (2010) obtained an adjusted maximum like-
lihood (AML) by multiplying the profile likelihood, as
given by Lp(A) in Section 2 of Li and Lahiri (2010),
by an adjustment factor A. This translates to the fol-
lowing adjustment factor:

—1 1/2
h(A) = A|IX'D; L x|

for the corresponding residual likelihood, given in
Section 2 of Li and Lahiri (2010). Note that h(A)
differs from the adjustment factor A suggested in
the paper under discussion by an additional factor
X' Dy L 4 X2,

In the context of estimating the shrinkage factors
B;, simulation results of Li and Lahiri (2010) indi-
cate lower biases of the shrinkage estimators when the

Li—Lahiri adjustment factor is used, where the bias is
defined with respect to the marginal distribution of y,
given the hyperparameters 8 and A. In the context of
a general linear mixed model, Lahiri and Li (2009)
proposed a generalized maximum likelihood (GML)
method, which includes ML, REML, ALM and AML
methods as special cases. For the model (1)—(2), the
GML essentially maximizes h(A) x L(A) with respect
to A, where h(A) is a general adjustment factor. This
raises an interesting question: how should one choose
an adjustment factor 4 (A) in the GML method?

To fix ideas, we restrict ourselves to the class of ad-
justment factors of the form h(A) = A4. Since V(B;) is
not affected by ¢, up to the order o(k~!) (Lahiri and Li,
2009), it makes sense to choose ¢ that provides good
properties in terms of the bias of the estimator. To this
end, using Lahiri and Li (2009), we have

Bias(B;) _ 1 (1 q )
V(B)) B 1-B;)

Obviously, ¢ = 1 — B; is the ideal choice—one that
makes the bias/variance ratio nearly zero. While we
cannot use this choice since A is unknown, it sug-
gests the range [0, 1] for ¢g. Interestingly, the REML
corresponds to the choice ¢ = 0 while the Morris—
Tang ALM corresponds to the other extreme g = 1.
A compromise choice is ¢ = 0.5, which corresponds to
B; =0.5. In the Bayesian language, this choice would
then correspond to the prior 7 (A) = 1/+/A, a prior also
mentioned in the paper, since the Morris—Tang ADM
recommends the adjustment factor A for any prior on
A. Figure 3 displays the simulated biases of different
estimators of the shrinkage factor for the balanced ver-
sion of model (1)—(2). In terms of the bias, the multi-
plier v/A usually works better than A.
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F1G. 3. Plot of simulated biases of different GML estimators of B;: the balanced case.
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Let us now explain how the ALM or AML method
may help a non-Bayesian method like the paramet-
ric bootstrap (Chatterjee, Lahiri and Li, 2008; Li and
Lahiri, 2010) in constructing intervals for the random
effects 6;, which requires repeated generation of a piv-
otal quantity from several bootstrap samples. A strictly
positive estimate of A is absolutely needed for this
method since the pivotal quantity is undefined when
A estimate is zero. A crude fix is to take a small posi-
tive number whenever the estimate of A is zero. But, in
a simulation study, Li and Lahiri (2010) observed that
the coverage errors and also the length of the paramet-
ric bootstrap method could be sensitive to the choice
of this positive truncation point. The ALM or AML of-
fers a sensible solution to this problem of the paramet-
ric bootstrap method. Li and Lahiri (2010) showed that
the use of ALM or AML estimator of A improves on
coverage as well as the length of the parametric boot-
strap interval estimate.

In the paper under discussion, Morris and Tang dis-
cuss the case of a single variance parameter A. Pra-
manik (2008) extended the ADM method to the nested
error regression model with two unknown variance
components by noting that one of the variance compo-
nents that corresponds to the within small area varia-
tion can be integrated out. However, it is not clear how
the ADM method, as proposed by Morris and Tang,
would extend to a general linear mixed model with
more than two variance components, a situation where
a simple method such as the ADM method would be
most welcome.

We congratulate the authors for preparing an insight-
ful and informative paper on the ADM method. This
will surely inspire others to contribute to this impor-
tant area of research.
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