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Variable Selection for Nonparametric
Gaussian Process Priors: Models and
Computational Strategies

Terrance Savitsky, Marina Vannucci and Naijun Sha

Abstract.  This paper presents a unified treatment of Gaussian process mod-
els that extends to data from the exponential dispersion family and to survival
data. Our specific interest is in the analysis of data sets with predictors that
have an a priori unknown form of possibly nonlinear associations to the re-
sponse. The modeling approach we describe incorporates Gaussian processes
in a generalized linear model framework to obtain a class of nonparametric
regression models where the covariance matrix depends on the predictors.
We consider, in particular, continuous, categorical and count responses. We
also look into models that account for survival outcomes. We explore alterna-
tive covariance formulations for the Gaussian process prior and demonstrate
the flexibility of the construction. Next, we focus on the important problem
of selecting variables from the set of possible predictors and describe a gen-
eral framework that employs mixture priors. We compare alternative MCMC
strategies for posterior inference and achieve a computationally efficient and
practical approach. We demonstrate performances on simulated and bench-
mark data sets.
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1. INTRODUCTION

In this paper we present a unified modeling ap-
proach to Gaussian processes (GP) that extends to data
from the exponential dispersion family and to survival
data. With the advent of kernel-based methods, models
utilizing Gaussian processes have become very com-
mon in machine learning approaches to regression and
classification problems; see Rasmussen and Williams
(2006). In the statistical literature GP regression mod-
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els have been used as a nonparametric approach to
model the nonlinear relationship between a response
variable and a set of predictors; see, for example,
O’Hagan (1978). Sacks, Schiller and Welch (1989) em-
ployed a stationary GP function of spatial locations in
a regression model to account for residual spatial vari-
ation. Diggle, Tawn and Moyeed (1998) extended this
construction to model the link function of the gener-
alized linear model (GLM) construction of McCullagh
and Nelder (1989). Neal (1999) considered linear re-
gression and logit models.

We follow up on the literature cited above and in-
troduce Gaussian process models as a class that broad-
ens the generalized linear construction by incorporat-
ing fairly complex continuous response surfaces. The
key idea of the construction is to introduce latent vari-
ables on which a Gaussian process prior is imposed. In
the general case the GP construction replaces the lin-
ear relationship in the link function of a GLM. This re-
sults in a class of nonparametric regression models that
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can accommodate linear and nonlinear terms, as well
as noise terms that account for unexplained sources of
variation in the data. The approach extends to latent
regression models used for continuous, categorical and
count data. Here we also consider a class of models that
account for survival outcomes. We explore alternative
covariance formulations for the GP prior and demon-
strate the flexibility of the construction. In addition, we
address practical computational issues that arise in the
application of Gaussian processes due to numerical in-
stability in the calculation of the covariance matrix.

Next, we look at the important problem of select-
ing variables from a set of possible predictors and de-
scribe a general framework that employs mixture pri-
ors. Bayesian variable selection has been a topic of
much attention among researchers over the last few
years. When a large number of predictors is available
the inclusion of noninformative variables in the analy-
sis may degrade the prediction results. Bayesian vari-
able selection methods that use mixture priors were in-
vestigated for the linear regression model by George
and McCulloch (1993, 1997), with contributions by
various other authors on special features of the selec-
tion priors and on computational aspects of the method;
see Chipman, George and McCulloch (2001) for a nice
review. Extensions to linear regression models with
multivariate responses were put forward by Brown,
Vannucci and Fearn (1998b) and to multinomial pro-
bit by Sha et al. (2004). Early approaches to Bayesian
variable selection for generalized linear models can be
found in Chen, Ibrahim and Yiannoutsos (1999) and
Raftery, Madigan and Volinsky (1996). Survival mod-
els were considered by Volinsky et al. (1997) and, more
recently, by Lee and Mallick (2004) and Sha, Tadesse
and Vannucci (2006). As for Gaussian process models,
Linkletter et al. (2006) investigated Bayesian variable
selection methods in the linear regression framework
by employing mixture priors with a spike at zero on
the parameters of the covariance matrix of the Guas-
sian process prior.

Our unified treatment of Gaussian process models
extends the line of work of Linkletter et al. (2006) to
more complex data structures and models. We trans-
form the covariance parameters and explore designs
and MCMC strategies that aim at producing a mini-
mally correlated parameter space and efficiently con-
vergent sampling schemes. In particular, we find that
Metropolis-within-Gibbs schemes achieve a substan-
tial improvement in computational efficiency. Our re-
sults on simulated data and benchmark data sets show

that GP models can lead to improved predictions with-
out the requirement of pre-specifying higher order
and nonlinear additive functions of the predictors. We
show, in particular, that a Gaussian process covariance
matrix with a single exponential term is able to map a
mixture of linear and nonlinear associations with ex-
cellent prediction performance.

GP models can be considered part of the broad class
of nonparametric regression models of the type y =
f(x) + error, with y an observed (or latent) response,
f an unknown function and x a p-dimensional vector
of covariates, and where the objective is to estimate the
function f for prediction of future responses. Among
possible alternative choices to GP models, one famous
class is that of kernel regression models, where the es-
timate of f is selected from the set of functions con-
tained in the reproducing kernel Hilbert space (RKHS)
induced by a chosen kernel. Kernel models have a
long and successful history in statistics and machine
learning [see Parzen (1963), Wahba (1990) and Shawe-
Taylor and Cristianini (2004)] and include many of the
most widely used statistical methods for nonparametric
estimation, including spline models and methods that
use regularized techniques. Gaussian processes can be
constructed with kernel convolutions and, therefore,
GP models can be seen as contained in the class of
nonparametric kernel regression with exponential fam-
ily observations. Rasmussen and Williams (2006), in
particular, note that the GP construction is equivalent
to a linear basis regression employing an infinite set
of Gaussian basis functions and results in a response
surface that lies within the space of all mathemati-
cally smooth, that is, infinitely mean square differen-
tiable, functions spanning the RKHS. Constructions of
Bayesian kernel methods in the context of GP mod-
els can be found in Bishop (2006) and Rasmussen and
Williams (2006).

Another popular class of nonparametric spline re-
gression models is the generalized additive models
(GAM) of Ruppert, Wand and Carroll (2003), that
employ linear projections of the unknown function f
onto a set of basis functions, typically cubic splines
or B-splines, and related extensions, such as the struc-
tured additive regression (STAR) models of Fahrmeir,
Kneib and Lang (2004) that, in addition, include in-
teraction surfaces, spatial effects and random effects.
Generally speaking, these regression models impose
additional structure on the predictors and are therefore
better suited for the purpose of interpretability, while
Gaussian process models are better suited for predic-
tion. Extensions of STAR models also enable variable
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selection based on spike and slab type priors; see, for
example, Panagiotelis and Smith (2008).

Ensamble learning models, such as bagging, boost-
ing and random forest models, utilize decision trees as
basis functions; see Hastie, Tibshirani and Friedman
(2001). Trees readily model interactions and nonlinear-
ity subject to a maximum tree depth constraint to pre-
vent overfitting. Generalized boosting models (GBMs),
as an example, such as the AdaBoost of Freund and
Schapire (1997), represent a nonlinear function of the
covariates by simpler basis functions typically esti-
mated in a stage-wise, iterative fashion that succes-
sively adds the basis functions to fit generalized or
pseudo residuals obtained by minimizing a chosen loss
function. GBMs accommodate dichotomous, contin-
uous, event time and count responses. These models
would be expected to produce similar prediction results
to GP regression and classification models. We explore
their behavior on one of the benchmark data sets in the
application section of this paper. Notice that GBMs do
not incorporate an explicit variable selection mecha-
nism that allows to exclude nuisance covariates, as we
do with GP models, although they do provide a rela-
tive measure of variable importance, averaged over all
trees.

Regression trees partition the predictor space and
fit independent models in different parts of the input
space, therefore facilitating nonstationarity and leading
to smaller local covariance matrices. “Treed GP” mod-
els are constructed by Gramacy and Lee (2008) and ex-
tend the constant and linear construction of Chipman,
George and McCulloch (2002). A prior is specified
over the tree process, and posterior inference is per-
formed on the joint tree and leaf models. The effect
of this formulation is to allow the correlation struc-
ture to vary over the input space. Since each tree re-
gion is composed of a portion of the observations, there
is a computational savings to generate the GP covari-
ance matrix from m, < n observations for region r.
The authors note that treed GP models are best suited
“...towards problems with a smaller number of distinct
partitions. ...” So, while it is theoretically possible to
perform variable selection in a forward selection man-
ner, in applications these models are often used with
single covariates.

The rest of the paper is organized as follows: In Sec-
tion 2 we formally introduce the class of GP models
by broadening the generalized linear construction. We
also extend this class to include models for survival
data. Possible constructions of the GP covariance ma-
trix are enumerated in Section 3. Prior distributions for

variable selection are discussed in Section 4 and pos-
terior inference, including MCMC algorithms and pre-
diction strategies, in Section 5. We include simulated
data illustrations for continuous, count and survival
data regression in Section 6, followed by benchmark
applications in Section 7. Concluding remarks and sug-
gestions for future research are in Section 8. Some de-
tails on computational issues and related pseudo-code
are given in the Appendix.

2. GAUSSIAN PROCESS MODELS

We introduce Gaussian process models via a unified
modeling approach that extends to data from the expo-
nential dispersion family and to survival data.

2.1 Generalized Models

In a generalized linear model the monotone link
function g(-) relates the linear predictors to the canon-
ical parameter as g(n;) = X; 8, with »; the canonical
parameter for the ith observation, x; = (x, ...,xp)’
a p x 1 column vector of predictors for the ith sub-
ject and B the coefficient vector B = (Bi,...,8)".
A broader class of models that incorporate fairly com-
plex continuous response surfaces is obtained by in-
troducing latent variables on which a Gaussian process
prior is imposed. More specifically, the latent variables
z(x;) define the values of the link function as

(1) gmi) = z(x;),

and a Gaussian process (GP) prior on the n x 1 latent
vector is specified as

2 zX)=(z(x1),...

with the n x n covariance matrix C a fairly complex
function of the predictors. This class of models can be
cast within the model-based geostatistics framework of
Diggle, Tawn and Moyeed (1998), with the dimension
of the space being equal to the number of covariates.

The class of models introduced above extends to la-
tent regression models used for continuous, categori-
cal and count data. We provide some details on mod-
els for continuous and binary responses and for count
data, since we will be using these cases in our simu-
lation studies presented below. GP regression models
are obtained by choosing the link function in (1) as the
identity function, that is,

3) y=12(X) +e,

i=1,...,n,

’ Z(Xn))/ ~ N(O’ C)’

with y the n x 1 observed response vector, z(X) an
n-dimensional realization from a GP as in (2), and
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e ~N(0, %]In) with r a precision parameter. A Gamma
prior can be imposed on r, that is, r ~ G(a, b;). Lin-
ear models of type (3) were studied by Neal (1999) and
Linkletter et al. (2006). One notices that, by integrating
z(X) out, the marginalized likelihood is

4) y|C,r~N(0, [%HH—FC]),

that is, a regression model with the covariance matrix
of the response depending on the predictors. Nonlin-
ear response surfaces can be generated as a function of
those covariates for suitable choices of the covariance
matrix. We discuss some of the most popular in Sec-
tion 3.

In the case of a binary response, class labels ¢; €
{0,1} for i =1,...,n are observed. We assume t; ~
Binomial(1; p;) and define p; = P(t; = 1|z(x;)) with
z(X) as in (2). For logit models, for example, we have
pi = F(z(x;)) = 1/[1 + exp(—z(x;))]. Similarly, for
binary probit we can directly define the inverse link
function as p; = ®(z(x;)), with ®(-) the cdf of stan-
dard normal distribution. However, a more common
approach to inference in probit models uses data aug-
mentation; see Albert and Chib (1993). This approach
defines latent values y; which are related to the re-
sponse via a regression model, that is, in our latent GP
framework, y; = z(x;) + &;, with &; ~ N(0, 1), and as-
sociated to the observed classes, ¢;, viatherule t; = 1 if
yi > 0and t; =0 if y; < 0. Notice that the latent vari-
able approach results in a GP on y with a covariance
function obtained by adding a “jitter” of variance one
to C, with a similar effect of the noise component in the
regression models (3) and (4). Neal (1999) argues that
an effect close to a probit model can be produced by a
logit model by introducing a large amount of jitter in
its covariance matrix. Extensions to multivariate mod-
els for continuous and categorical responses are quite
straightforward.

As another example, count data models can be
obtained by choosing the canonical link function
for the Poisson distribution as log(A) = z(X) with
z(X) as in (2). Over-dispersion, possibly caused from
lack of inclusion of all possible predictors, is taken
into account by modeling the extra variability via
random effects, u;, that is, A; = exp(z(X;) + u;) =
exp(z(x;)) exp(u;) = X;8;. For identifiability, one can
impose E(8;) = 1 and marginalize over §; using a con-
jugate prior, §; ~ G(t, T), to achieve the negative bino-
mial likelihood as in Long (1997),

T (silAi, T)
&)
['(si+1)

_ T T )x,' Si
_F(si+1>r(r)(r+x,-) (rm-) ’

for s; € N U {0}, with the same mean as the Poisson
regression model, that is, E(s;) = A;, and Var(s;) =
A+ Al.z /T, with the added parameter t capturing the
variance inflation associated with over-dispersion.

2.2 Survival Data

The modeling approach via Gaussian processes ex-
ploited above extends to other classes of models, for
example, those for survival data. In survival studies
the task is typically to measure the effect of a set
of variables on the survival time, that is, the time
to a particular event or “failure” of interest, such as
death or occurrence of a disease. The Cox propor-
tional hazard model of Cox (1972) is an extremely
popular choice. The model is defined through the haz-
ard rate function h(r|x;) = ho(t) exp(x; 8), where ho(-)
is the baseline hazard function, ¢ is the failure time
and B the p-dimensional regression coefficient vec-
tor. The cumulative baseline hazard function is de-
noted as Hy(t) = fé ho(u) du and the survivor func-
tion becomes S(¢|x;) = So(£)XPXiB)  where So(t) =
exp{— Ho(t)} is the baseline survivor function.

Let us indicate the data as (¢1,X1,d1), ..., (t:, X,,
dp) with censoring index d; = 0 if the observation is
right censored and d; = 1 if the failure time ¢ is ob-
served. A GP model for survival data is defined as

(0)  h(tilz(xi)) = ho(;) exp(z(X;)),

with z(X) as in (2). In this general setting, defining a
probability model for Bayesian analysis requires the
identification of a prior formulation for the cumulative
baseline hazard function. One strategy often adopted
in the literature on survival models is to utilize the par-
tial likelihood of Cox (1972) that avoids prior specifi-
cation and estimation of the baseline hazard, achiev-
ing a parsimonious representation of the model. Al-
ternatively, Kalbfleisch (1978) employs a nonparamet-
ric gamma process prior on Hy(t;) and then calculates
a marginalized likelihood. This “full” likelihood for-
mulation tends to behave similarly to the partial like-
lihood one when the concentration parameter of the
gamma process prior tends to 0, placing no confi-
dence in the initial parametric guess. Sinha, Ibrahim
and Chen (2003) extend this theoretical justification to
time-dependent covariates and time-varying regression
parameters, as well as to grouped survival data.

i=1,2,...,n,

3. CHOICE OF THE GP COVARIANCE MATRIX

We explore alternative covariance formulations for
the Gaussian process prior (2) and demonstrate the
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flexibility of the construction. In general, any plausible
relationship between the covariates and the response
can be represented through the choice of C, as long
as the condition of positive definiteness of the matrix
is satisfied; see Thrun, Saul and Scholkopf (2004). In
the Appendix we further address practical computa-
tional issues that arise in the application of Gaussian
processes due to numerical instability in the construc-
tion of the covariance matrix and the calculation of its
inverse.

3.1 1-term vs. 2-term Exponential Forms

We consider covariance functions that include a con-
stant term and a nonlinear, exponential term as

(M) C=CovaX) = -J, + - exp(~G),
Aa Az

with J,, an n x n matrix of 1’s and exp(G) a matrix with
elements exp(g;;), where g;; = (x; — xj)/P(xi - Xj)
and P = diag(—log(p1, ..., pp)), with p; € [0, 1] as-
sociated to xg, k =1, ..., p. In the literature on Gaus-
sian processes a noise component, called “jitter,” is
sometimes added to the covariance matrix C, in ad-
dition to the term (1/1)J, in order to make the matrix
computations better conditioned; see Neal (1999). This
is consistent with the belief that there may be unex-
plained sources of variation in the data, perhaps due
to explanatory variables that were not recorded in the
original study. The parametrization of G we adopt al-
lows simpler prior specifications (see below), and it is
also used by Linkletter et al. (2006) as a transformation
of the exponential term used by Neal (1999) and Sacks,
Schiller and Welch (1989) in their formulations. Neal
(1999) notices that introducing an intercept in model
(3), with precision parameter X,, placing a Gaussian
prior on it and then marginalizing over the intercept
produces the additive covariance structure (7). The pa-
rameter for the exponential term, A,, serves as a scaling
factor for this term. In our empirical investigations we
found that construction (7) is sensitive to scaling and
that best results can be obtained by normalizing X to
lie in the unit cube, [0, 1]7, though standardizing the
columns to mean 0 and variance 1 produces similar re-
sults.

The single-term exponential covariance provides a
parsimonious representation that enables a broad class
of linear and nonlinear response surfaces. Plots (a)-
(c) of Figure 1 show response curves produced by
utilizing a GP with the exponential covariance ma-
trix (7) and three different values of p. One readily

notes how higher order polynomial-type response sur-
faces can be generated by choosing relatively lower
values for p, whereas the assignment of higher values
provides lower order polynomial-type that can also in-
clude roughly linear response surfaces [plot (c)].

We also consider a two-term covariance obtained by

adding a second exponential term to (7), that is,
C = Cov(z(X))
(8)
1 1 1
=—Jn+ I exp(—G1) + [ exp(—G2),

Aa L,z 2,z

where G; and G, are parameterized as Py =
diag(—log(p1.1, - .-, p1,p)) and Py = diag(—log(p2,1,

.., P2,p)), respectively. As noted in Neal (2000),
adding multiple terms results in rougher, more com-
plex, surfaces while retaining the relative computa-
tional efficiency of the exponential formulation. For
example, plot (d) of Figure 1 shows examples of sur-
faces that can be generated by employing the 2-term
covariance formulation with (o1, p2) = (0.5, 0.05) and
()Ml,z =1, )\2,z = 8)-

3.2 The Matern Construction

An alternative choice to the exponential covariance
term is the Matern formulation. This introduces an ex-
plicit smoothing parameter, v, such that the resulting
Gaussian process is k times differentiable for k < v,

Clz(xi), z(x;))
9)

1 [ e o [ e o
:m[z vd(x,-,xj)] Kv[z l)d(Xl',Xj)],

with d(x;, x;) = (x; —X;)'P(x; —X;), K, (-) the Bessel
function and P parameterized as in (7). Banerjee et al.
(2008) employ such a construction with v fixed to 0.5
for modeling a spacial random effects process charac-
terized by roughness. One recovers the exponential co-
variance term from the Matern construction in the limit
as v — 00. However, Rasmussen and Williams (2006)
point out that two formulations are essentially the same
for v > % as confirmed by our own simulations.
4. PRIOR MODEL FOR BAYESIAN VARIABLE
SELECTION

The unified modeling approach we have described
allows us to put forward a general framework for vari-
able selection that employs Bayesian methods and mix-
ture priors for the selection of the predictors. In par-
ticular, variable selection can be achieved within the
GP modeling framework by imposing “spike-and-slab”
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(a) 1-term Covariance: Py = 0.5

(c) 1-term Covariance: P = 0.95

1.5

(b) 1-term Covariance: Py = 0.05

(d) 2-term Covariance: p,= 0.5, p,= 0.05

135

FIG. 1. Response curves drawn from a GP. Each plot shows two (solid and dashed) random realizations. Plots (a)—(c) were obtained with
the exponential covariance (7) and plot (d) with the 2-term formulation (8). Plots (e) and (f) show realizations from the matern construction.

All curves employ a one-dimensional covariate.
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mixture priors on the covariance parameters in (7), that
is,

(10) 7 (orlye) = vill0 = px = 1T+ (1 — y)d1 (k).

fork=1,..., p, with §{(-) a point mass distribution at
one. Clearly, pr = 1 causes the predictor x; to have
no effect on the computation for the GP covariance
matrix. This formulation is similar in spirit to the use
of selection priors for linear regression models and is
employed by Linkletter et al. (2006) in the univariate
GP regression framework (3). Further Bernoulli pri-
ors are imposed on the selection parameters, that is,
vx ~ Bernoulli(ox) and Gamma priors are specified on
the precision terms (Ag, A7).

Variable selection with a covariance matrix that em-
ploys two exponential terms as in (8) is more com-
plex. In particular, one can select covariates separately
for each exponential term by assigning a specific set
of variable selection parameters to each term, that is,
(¥1,¥2) associated to (p{, p,), and simply extending
the single term formulation via independent spike-and-
slab priors of the form

T(P1,klV1,6)
(11
= Y10 < prx < 1T+ (1 = y1,0)81(01,4)s
(02,1 V2,k)
(12)
=2l[0 < po i < 1T+ (1 — y2,1)81 (02,45
with k =1, ..., p. Assuming a priori independence

of the two model spaces, Bernoulli priors can be
imposed on the selection parameters, that is, y;x ~
Bernoulli(e; x), i = 1, 2. This variable selection frame-
work identifies the association of each covariate, xy,
to one or both terms. Final selection can then be ac-
complished by choosing the covariates in the union of
those selected by either of the two terms. An alternative
strategy for variable selection may employ a common
set of variable selection parameters, y = (y1, ..., ¥p)
for both p; and p,, in a joint spike-and-slab (product)
prior formulation,

T (P1,k> P2,k Vi)
(13) = pl[0 < p1x < 1[0 < po ik < 1]
+ (1 = v)81(p1,6)81 (02,1

where we assume a priori independence of the param-
eter spaces, p; and p,. This prior choice focuses more
on overall covariate selection, rather than simultane-
ous selection and assignment to each term in (8). While
we lose the ability to align the p; x to each covariance

function term, we expect to improve computational ef-
ficiency by jointly sampling (y, p;, p5) at each itera-
tion of the MCMC scheme as compared to a separate
joint sampling on (y 1, p1) and (y,, p,). Some investi-
gation is done in Savitsky (2010).

5. POSTERIOR INFERENCE

The methods for posterior inference we are going
to describe apply to all GP formulations, even though
we focus our simulation work on the continuous and
count data models. We therefore express the posterior
formulation employing a generalized notation. First,
we collect all parameters of the GP covariance matrix
in @ and write C = C(@®). For example, for covari-
ance matrix of type (7) we have @ = (p, A4, 1;). Next,
we extend our notation to include the selection pa-
rameter y by using ®, = (p,,, Aq, A7) to indicate that
px =1 when y, =0, fork=1,..., p. For covariance
of type (8) we write @), = {©,, |, ©y,,A,}, where y =
(¥1,72)" and ©y, = (p;),., hiz), i € {1,2} for prior
Of type (11)_(12) and ®y = (ply? pZy’ )‘a» )"I,Z’ )"Q,Z)
for prior of type (13), and similarly for the Matern
construction. Next, we define D; € {y;, {s;, z(x;)}} and
D :={D,..., D,} to capture the observed data aug-
mented by the unobserved GP variate, z(X), for the
latent response models [such as model (5) for count
data]. Finally, we set h := {r, t} to group unique pa-
rameters ¢ ©, and we collect hyperparameters in
m := {a, b}, with a = {a,, a;,,a,,a;} and similarly
for b, where a and b include the shape and rate hy-
perparameters of the Gamma priors on the associated
parameters. With this notation we can finally outline
a generalized expression for the full conditional of

(r.py) as
(Y. py1Oy\p,.D, h,m)
(14) yery
x LYy, py1©y\p,, D, h,m)m (y),

with L? the augmented likelihood. Notice that the term
n(pyly) does not appear in (14) since 7 (ox|yx) = 1,
fork=1,...,p.

5.1 Markov Chain Monte Carlo—Scheme 1

We first describe a Metropolis—Hastings scheme
within Gibbs sampling to jointly sample (y,p,),
which is an adaptation of the MCMC model compar-
ison (MC?) algorithm originally outlined in Madigan
and York (1995) and extensively used in the variable
selection literature. As we are unable to marginalize
over the parameter space, we need to modify the algo-
rithm in a hierarchical fashion, using the move types
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outlined below. Additionally, we need to sample all the
other nuisance parameters.

A generic iteration of this MCMC procedure com-
prises the following steps:

(1) Update (y, py): Randomly choose among three
between-models transition moves:

(i) Add: set y; =1 and sample p; from a 2/(0, 1)
proposal. Position k is randomly chosen from the set of
k’s where y; = 0 at the previous iteration.

(ii) Delete: set (y; =0, p; = 1). This results in co-
variate x; being excluded in the current iteration. Posi-
tion k is randomly chosen from among those included
in the model at the previous iteration.

(iii)) Swap: perform both an Add and Delete move.
This move type helps to more quickly traverse a large
covariate space.

The proposed value (y’, p’y,) is accepted with proba-
bility,

Ty, p;,/IGy/\p’y,, D,h,m)q(y|y") }

azmin{l, ;
(Y, pylO®y\p,, D, h,m)q(y’ly)

where the ratio of the proposals g(p,) /q(p;,,) drops
out of the computation since we employ a ¢/ (0, 1) pro-
posal.

(2) Execute a Gibbs-type move, Keep, by sampling
from a 2/(0, 1) all p;’s such that y; = 1. This move is
not required for ergodicity, but it allows to perform a
refinement of the parameter space within the existing
model, for faster convergence.

(3) Update {A4, X.;}: These are updated using Metro-
polis—Hastings moves with Gamma proposals centered
on the previously sampled values.

(4) Update h: Individual model parameters in h are
updated using Metropolis—Hastings moves with pro-
posals centered on the previously sampled values.

(5) Update z: Jointly sample z for latent response
models using the approach enumerated in Neal (1999)
with proposal z’ = (1 — ¢2)!/?z + ¢Lu, where u is a
vector of i.i.d. standard Gaussian values and L is the
Cholesky decomposition of the GP covariance matrix.
For faster convergence R consecutive updates are per-
formed at each iteration.

Green (1995) introduced a Markov chain Monte
Carlo method for Bayesian model determination for
the situation where the dimensionality of the parameter
vector varies iteration by iteration. Recently, Gottardo
and Raftery (2008) have shown that the reversible jump

can be formulated in terms of a mixture of singular dis-
tributions. Following the results given in their exam-
ples, it is possible to show that the acceptance proba-
bility of the reversible jump formulation is the same as
in the Metropolis—Hastings algorithm described above,
and therefore that the two algorithms are equivalent;
see Savitsky (2010).

For inference, estimates of the marginal posterior
probabilities of y =1, for k =1..., p, can be com-
puted based on the MCMC output. A simple strategy
is to compute Monte Carlo estimates by counting the
number of appearances of each covariate across the
visited models. Alternatively, Rao—Blackwellized es-
timates can be calculated by averaging the full condi-
tional probabilities of y; = 1. Although computation-
ally more expensive, the latter strategy may result in
estimates with better precision, as noted by Guan and
Stephens (2011). In all simulations and examples re-
ported below we obtained satisfactory results by esti-
mating the marginal posterior probabilities by counts
restricted to between-models moves, to avoid over-
estimation.

5.2 Markov Chain Monte Carlo—Scheme 2

Next we enumerate a Markov chain Monte Carlo al-
gorithm to directly sample (y, p,,) with a Gibbs scan
that employs a Metropolis acceptance step. We formu-
late a proposal distribution of a similar mixture form as
the joint posterior by extending a result from Gottardo
and Raftery (2008) to produce a move to (yx =0, px =
1),aswellasto (v = 1, px =[O0, 1)).

A generic iteration of this MCMC procedure com-
prises the following steps:

(1) For k =1,..., p perform a joint update for
(¥k, px) with two moves, conducted in succession:

(i) Between-models: Jointly propose a new model
such that if y; = 1, propose y; = 0 and set p; = 1; oth-
erwise, propose y; = 1 and draw p; ~ (0, 1). Accept
the proposal for (y;, p;) with probability,

n(yk,’ p[ib’/(k), ®y/(k) ] Dv hv m) }

o= min{ 1,
7 (Vi Ok|¥ () @y, - D, b, m)

where now y{;) == (¥{, .., Vi1, V+1s -, ¥p) and
similarly for p/(k) € G)”Ek)' The joint proposal ratio for
(¥k, px), reduces to 1 since we employ a ¢/(0, 1) pro-
posal for px € [0, 1] and a symmetric Dirac measure
proposal for yx.

(i) Within model: This move is performed only if
we sample y{ = 1 from the between-models move, in
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which case we propose y;’ =1 and, as before, draw
p; ~U(0, 1). Similar to the between-models move, ac-
cept the joint proposal for (y,, p;') with probability,

77()/1:/» p],(/|y,(k)9 G)yék)’ Da ha m) }

a:min{l, AN Dh
n(ykvpkly(k)’ ) ’ ’m)

Y
which further reduces to just the ratio of posteriors
since we propose a move within the current model and
utilize a ¢ (0, 1) proposal for py.

(2) Sample the parameters {1, A;, h} and latent re-
sponses z as outlined in scheme 1.

In simulations we also investigate performances of
an adaptive scheme that employs a proposal with tun-
ing parameters adapted based on “learning” from the
data. In particular, we employ the method of Haario,
Saksman and Tamminen (2001) for our Bernoulli pro-
posal for y |« to successively update the mean parame-
ter,ax, k=1, ..., p, based on prior sampled values for
vk. The construction does not require additional likeli-
hood computations and it is expected to achieve more
rapid convergence in the model space than the non-
adaptive scheme. Roberts and Rosenthal (2007) and
Ji and Schmidler (2009) note conditions under which
adaptive schemes achieve convergence to the target
posterior distribution.

Schemes 1 and 2 we enumerated above may be easily
modified when employing the 2-term covariance for-
mulation (8); see Savitsky (2010).

5.3 Prediction

Let zy = z(Xy) be an ny x 1 latent vector of fu-
ture cases. We use the regression model (3) to demon-
strate prediction under the GP framework. The joint
distribution over training and test sets is defined to be
Z, =7, z/f]/ ~ N0, Cy+n ) with covariance,

Cx.x) C(XX))
C =< (’ A f R
T Cxyx) Cixpxp)

where Cix x) := Cx,x)(®). The conditional joint
predictive distribution over the test cases, zr|z, is
also multivariate normal distribution with expectation
Elzf|z] = Cx f’,X)C(_)({X)Z' Estimation is based on the
posterior MCMC samples. Here we take a computa-
tionally simple approach by first estimating Z as the
mean of all sampled values of z, defining

(15) D(@®) := Cx, x)C x)2
and then estimating the response value as

lK
16 yr=1272=—) DO),
(16) Yr=1yrlz X (©)

t=1

with K the number of MCMC iterations and where
calculations of the covariance matrices in (15) are re-
stricted to the variables selected based on the marginal
posterior probabilities of yx = 1. A more coherent es-
timation procedure, that may return more precise es-
timates but that is also computationally more expen-
sive, would compute Rao-Blackwellized estimates by
averaging the predictive probabilities over all visited
models; see Guan and Stephens (2011). In the simu-
lations and examples reported below we have calcu-
lated (16) using every 10th MCMC sampled value, to
provide a relatively less correlated sample and save
on computational time. In addition, when computing
the variance product term in (15), we have employed
the Cholesky decomposition C = LL/, following Neal
(1999), to avoid direct computation of the inverse of
C(X,X)-

For categorical data models, we may predict the new
class labels, ty, via the rule of largest probability in
the case of a binary logit model, with estimated latent
realizations Z ¢, and via data augmentation based on the
values of § 7 in the case of a binary probit model.

5.3.1 Survival Function Estimation. For survival
data it is of interest to estimate the survivor function
for a new subject with unknown event time, 7;, and
associated z 7,; :=z,;(Xs,;). This is defined as

P(T; > t|zfi,z) = Si(tlz i, 2)
(17)
= So(t]z)™ P,

When using the partial likelihood formulation an em-
pirical Bayes estimate of the baseline survivor func-
tion, So(¢|z), must be calculated, since the model does
not specifically enumerate the baseline hazard. Weng
and Wong (2007), for example, propose a method that
discretizes the likelihood to produce an estimator with
the useful property that it cannot take negative values.
Accuracy of this estimate may be potentially improved
by Rao—Blackwellizing the computation by averaging
over the MCMC runs.

6. SIMULATION STUDY
6.1 Parameter Settings

In all simulations and applications reported in this
paper we set both priors on A, and X, as G(1,1). We
did not observe any strong sensitivity to this choice.
In particular, we considered different choices of the
two parameters of these Gammma priors in the range
(0.01, 1), keeping the prior mean at 1 but with pro-
gressively larger variances, and observed very little
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change in the range of posterior sampled values. We
also experimented with prior mean values of 10 and
100, which produced only a small impact on the poste-
rior. For model (3) we set r ~ G(a,, b,) with (a,, b,) =
(2,0.1) to reflect our a priori expected residual vari-
ance. For the count model (5), we set T ~ G(1,1).
For survival data, when using the full likelihood from
Kalbfleisch (1978) we specified a G(1, 1) prior for both
the parameter of the exponential base distribution and
the concentration parameter of the Gamma process
prior on the baseline.

Some sensitivity on the Bernoulli priors on the y%’s
is, of course, to be expected, since these priors drive
the sparsity of the model. Generally speaking, parsi-
monious models can be selected by specifying yx ~
Bernoulli(etg) with o = o and o a small percentage
of the total number of variables. In our simulations we
set o to 0.025. We observed little sensitivity in the re-
sults for small changes around this value, in the range
of 0.01-0.05, though we would expect to see signifi-
cant sensitivity for much higher values of «. We also
investigated sensitivity to a Beta hyperprior on «; see
below.

When running the MCMC algorithms independent
chain samplers with 2/ (0, 1) proposals for the p;’s have
worked well in all applications reported in this paper,
where we have always approximately achieved the tar-
get acceptance rate of 40-60% indicating efficient pos-
terior sampling.

6.2 Use of Variable Selection Parameters

We first demonstrate the advantage of introducing
selection parameters in the model. Figure 2 shows re-
sults with and without the inclusion of the variable

(a) Posterior Samples of P

selection parameter vector y on a simulated scenario
with a kernel that incorporates both linear and nonlin-
ear associations. The observed continuous response, y,
is constructed from a mix of linear and nonliner rela-
tionships to 4 variables, each generated from a 2/(0, 1),

y =Xx1 4+ x2 4+ sin(3x3) + sin(5x4) + ¢,

with &€ ~ N(0, 02) and o = 0.05. Additional variables
are randomly generated, again from 2/(0, 1). In this
simulation we used (n, p) = (80, 20). We ran 70,000
MCMC iterations, of which 10,000 were discarded as
burn-in.

Plot (a) of Figure 2 displays box plots of the MCMC
samples for the p,/cs, k=1,...,20, for the case of no
variable selection, that is, by using a simple “slab”
prior on the p;’s. As both Linkletter et al. (2006) and
Neal (2000) note, the single covariates demonstrate an
association to the response whose strength may be as-
sessed utilizing the distance of the posterior samples
of the pi’s from 1. One notes that, according to this
criterion, the true covariates are all selected. It is con-
ceivable, however, for some of the unrelated covariates
to be selected using the same criterion, since the pi’s
all sample below 1, and that this problem would be
compounded as p grows. Plot (b) of Figure 2, instead,
captures results from employing the variable selection
parameters y and shows how the inclusion of these pa-
rameters results in the sampled values of the p’s for
variables unrelated to the response being all pushed up
against 1.

This simple simulated scenario also helps us to il-
lustrate a couple of other features. First, a single ex-
ponential term in (7) is able to capture a wide variety

(b) Posterior Samples of P
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Use of variable selection parameters: Simulated data (n = 80, p = 20). Box plots of posterior samples for py € [0, 1]. Plots (a)

and (b) demonstrate selection without and with, respectively, the inclusion of the selection parameter y .
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of continuous response surfaces, allowing a great flex-
ibility in the shape of the response surface, with the
linear fit being a subset of one of many types of sur-
faces that can be generated. Second, the effect of co-
variates with higher-order polynomial-like association
to the response is captured by having estimates of the
corresponding pi’s further away from 1; see, for ex-
ample, covariate x4 in Figure 2 which expresses the
highest order association to the response.

6.3 Large p

Next we show simulation results on continuous,
count and survival data models, for (n, p) = (100,
1,000). We employ an additive term as the kernel for
all models,

Yy =aix| + axxz +azxz + asxs
(18)
+ as sin(aexs) + a7 sin(agxg) + €.

The functional form for the simulation kernel is de-
signed so that the first four covariates express a linear
relationship to the response while the next two express
nonlinear associations. Model-specific coefficient val-
ues are displayed in Table 1. Methods employed to ran-
domly generate the observed count and event time data
from the latent response kernel are also outlined in the
table. For example, the kernel captures the log-mean
of the Poisson distribution used to generate count data,
and it is used to generate the survivor function that is

inverted to provide event time data for the Cox model.
As in the previous simulation, all covariates are gener-
ated from ¢/ (0, 1).

We set the hyperparameters as described in Sec-
tion 6.1. We used MCMC scheme 1 and increased the
number of total iterations, with respect to the simpler
simulation with only p = 20, to 800,000 iterations, dis-
carding half of them for burn-in.

Results are reported in Table 1. While the continu-
ous and count data GP models readily assigned high
marginal posterior probabilities to the correct covari-
ates (figures not shown), the Cox GP model correctly
identified only 5 of 6 predictors; see Figure 3 for the
posterior distributions of y; = 1 and the box plots for
the posterior samples of p; for this model (for readabil-
ity, only the first 20 covariates are displayed). The pre-
dictive power for the continuous and count data mod-
els was assessed by normalizing the mean squared pre-
diction error (MSPE) with the variance of the test set.
Excellent results were achieved in our simulations. For
the Cox GP model, the averaged survivor function es-
timated on the test set is shown in Figure 4, where we
observe a tight fit between the estimated curve and the
Kaplan—Meier empirical estimate constructed from the
same test data.

Though for the Cox model we only report results ob-
tained using the partial likelihood formulation, we con-
ducted the same simulation study with the model based

TABLE 1
Large p: Simulations for continuous, count and survival data models with (n, p) = (100, 1,000)

Continuous data Count data Cox model
Coefficients:
aj 1.0 1.6 3.0
ap 1.0 1.6 -2.5
as 1.0 1.6 3.5
ag 1.0 1.6 -3.0
as 1.0 1.0 1.0
ag 3.0 3.0 3.0
a7 1.0 1.0 —1.0
ag 5.0 5.0 5.0
Model Identity link log(A) =y S(t|y) = exp[—Hp(t) exp(y)]
t ~ Pois()) Hy(t) =rt,2=0.2
t =M/ exp(y)), M ~ Exp(l)
5% uniform randomly censored,
fcens = U (0, fevent)
Train/test 100/20 100/20 100/60
Correctly selected 6 out of 6 6 out of 6 5 outof 6
False positives 0 0 0
MSPE (normalized) 0.0067 0.045 see Figure 4
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on the full likelihood of Kalbfleisch (1978). The par-
tial likelihood model formulation produced more con-
sistent results across multiple chains, with the same
data, and was able to detect much weaker signals. The
Kalbfleisch (1978) model did, however, produce lower
posterior values near O for nonselected covariates, un-
like the partial likelihood formulation, which shows
values typically from 10—40%, pointing to a potential
bias toward false positives.

Additional simulations, including larger sample sizes
cases, are reported in Savitsky (2010).

6.4 Comparison of MCMC Methods

We compare the 2 MCMC schemes previously de-
scribed for posterior inference on (y, p) on the basis
of sampling and computational efficiency. We use the
univariate regression simulation kernel

y =x1 + 0.8x2 + 1.3x3 + sin(x4) + sin(3xs)
+ sin(5x¢) + (1.5x7)(1.5x8) + &,

with ¢ ~ N(0, o) and o = 0.05. We utilize 1,000 co-
variates with all but the first 8 defined as nuisance. We
use a training and a validation set of 100 observations
each.

The two schemes differ in the way they update
(y, p). While scheme 1 samples either one or two po-
sitions in the model space on each iteration, scheme 2
samples (yx, pr) for each of the p covariates. Because
of this a good “rule-of-thumb” should employ a num-
ber of iterations for scheme 1 which is roughly p times
the number of iterations employed for scheme 2. The
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Cox GP model with large p: Simulated data (n = 100, p = 1,000). Posterior distributions for y; = 1 and box plots of posterior

use of the Keep move in scheme 1, however, reduces
the need of scaling the number of iterations by exactly
p, since all p;’s are sampled at each iteration. In our
simulations we found stable convergence under moder-
ate correlation among covariates for scheme 2 in 5,000
iterations and for scheme 1 in 500,000 iterations. For
both schemes, we discarded half of the iterations as
burn-in. The CPU run times we report in Table 2 are
based on utilization of Matlab with a 2.4 GHz Quad
Core (Q6600) PC with 4 GB of RAM running 64-bit
Windows XP.
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FIG. 4. Cox GP model with large p: Simulated data
(n =100, p = 1,000). Average survivor function curve on the val-
idation set (dashed line) compared to the Kaplan—Meier empirical
estimate (solid line).
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TABLE 2
Efficiency comparison of GP MCMC methods

MCMC scheme 2 MCMC scheme 1

Adaptive Nonadaptive
Iterations (computation) 5,000 5,000 500,000
Autocorrelation time
06 310 82 441
08 59 35 121
Computation
CPU-time (sec) 980 4,956 10,224

We compared sampling efficiency looking at auto-
correlation for selected pg. The autocorrelation time is
defined as one plus twice the sum of the autocorrela-
tions at all lags and serves as a measure of the relative
dependence for MCMC samples. We used the number
of MCMC iterations divided by this factor as an “ef-
fective sample size.” We followed a procedure outlined
by Neal (2000) and ran first scheme 2 for 1,000 it-
erations, to obtain a state near the posterior distribu-
tion. We then employed this state to initiate a chain
for each of the two schemes. We ran scheme 2 for an
additional 2,000 iterations and scheme 1 for 200,000
(using the last 2,000 draws for each of the target pi
for final comparison). For scheme 2 we used both the
adaptive and nonadaptive versions. Table 2 reports re-
sults for pg, aligned to a covariate expressing a lin-
ear interaction, and for pg, for a highly nonlinear in-
teraction. We observe that both versions of scheme 2
express notable improvements in computational effi-
ciency as compared to scheme 1. We note, however,
that the adaptive scheme method produces draws of
higher autocorrelation than the nonadaptive method.

6.5 Sensitivity Analysis

We begin with a sensitivity analysis on the prior for
x|y = 1. Table 3 shows results under a full factorial
combination for hyperparameters (a, b) of a Beta prior
construction, where we recall Beta(1,1) = 4/(0, 1).
Results were obtained with the univariate regression
simulation kernel

y =x1 + x2 + sin(1.5x3) sin(1.5x4) + sin(3xs)
+ sin(3x¢) + (1.5x7)(1.5x8) + &,

with & ~ A(0,0%) and where we employed a higher
error variance of o = 0.28. As before, we employ
1,000 covariates with all but the first 8 defined as
nuisance. A training sample of 110 was simulated,

along with a test set of 100 observations. We employed
the adaptive scheme 2, with 5,000 iterations, half dis-
carded as burn-in.

Figure 5 shows box plots of posterior samples for px
for two symmetric alternatives, 1:(a,b) = (0.5,0.5)
(U-shaped) and 2: (a, b) = (2.0, 2.0) (symmetric uni-
modal). For scenario 2 we observe a reduction in pos-
terior jitter on nuisance covariates and a stabilization of
posterior sampling for associated covariates, but also a
greater tendency to exclude x3, x4. One would expect
the differences in posterior sampling behavior across
prior hyperparameter values to decline as the sample
size increases. Table 3 displays the number of nonse-
lected true variables (false negatives), out of 8, along
with the normalized MSPEs for all scenarios. There
were no false positives to report across all hyperpa-
rameter settings. Overall, results are similar across the
chosen settings for (a, b), with slightly better perfor-
mances for a < 1 and b > 1, corresponding to strictly
decreasing shapes that aid selection by pushing more
mass away from 1, increasing the prior probability of
the good variables to be selected, especially in the pres-
ence of a large number of noisy variables.

Next we imposed a Beta distribution on the hyper-
parameter « of the priors y; ~ Bernoulli(«) for covari-
ate inclusion. We follow Brown, Vannucci and Fearn
(1998a) to specify a vague prior by setting the mean of

TABLE 3
Prior sensitivity for pr|yr =1 ~ Beta(a, b). Results are reported
as (number of false negatives) /(normalized MSPE)

b\a 0.5 1.0 2.0
0.5 2/0.18 2/0.15 2/0.18
1.0 1/0.14 1/0.16 2/0.18
2.0 1/0.15 2/0.16 2/0.17
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the Beta prior to 0.025, reflecting a prior expectation
for model sparsity, and the sum of the two parameters
of the distribution to 2. We ran the same univariate re-
gression simulation kernel as above with the hyperpa-
rameter settings for the Beta prior on p; equal to (1, 1)
and obtained the same selection results as in the case of
o fixed and a slightly lower normalized MSPE of 0.14.

Last, we explored performances with respect to cor-
relation among the predictors. We utilized the same
kernel as above with 8 true predictors from which to
construct the response. We then induced a 70% corre-
lation among 20 randomly chosen nuisance covariates
and the true predictor xg. We found 2 false negatives
and 1 false positive, which demonstrates a relative se-
lection robustness under correlation. We did observe a
significant decline in normalized MSPE, however, to
0.33, as compared to previous runs.

7. BENCHMARK DATA APPLICATIONS

We now present results on two data sets often used
in the literature as benchmarks. For both analyses we
performed inference by using the MCMC—scheme 2,
with 5,000 iterations and half discarded as burn-in.

7.1 Ozone data

We start by revisiting the ozone data, first analyzed
for variable selection by Breiman and Friedman (1985)
and more recently by Liang et al. (2008). This data
set supplies integer counts for the maximum number
of ozone particles per one million particles of air near
Los Angeles for n = 330 days and includes an asso-
ciated set of 8 meteorological predictors. We held out

1234567891011121314151617 181920
Predictor

Prior Sensitivity for prlyr = 1 ~ Beta(a, b): Box plots of posterior samples for py for (a,b) = (0.5,0.5)—plot (a)—and

a randomly chosen set of 165 observations for valida-
tion.

Liang et al. (2008) use a linear regression model in-
cluding all linear and quadratic terms for a total of
p = 44 covariates. They achieve variable selection by
imposing a mixture prior on the vector 8 of regres-
sion coefficients and specifying a g-prior of the type
By ld ~ N, %(X}TX,,)_I). Their results are reported
in Table 4 with various formulations for g. In particu-
lar, the local empirical Bayes method offers a model-
dependent maximizer of the marginal likelihood on g,
while the hyper-g formulation with @ = 4 is one mem-
ber of a continuous set of hyper-prior distributions on
the shrinkage factor, g/(1 4+ g) ~ Beta(1,a/2 — 1).
Since the design matrix expresses a high condition
number, a situation that can at times induce poor re-
sults with g-priors, we additionally applied the method
of Brown, Vannucci and Fearn (2002) who used a mix-
ture prior of the type B, ~ N (0, cI). Results shown
in Table 4 were obtained from the Matlab code made
available by the authors.

Though previous variable selection work on the
ozone data all choose a Gaussian likelihood, a more
precise approach employs a discrete Poisson or nega-
tive binomial formulation on data with low count val-
ues, or a log-normal approximation where counts are
high. With a maximum value of 38 and a mean of 11
we chose to model the data with the negative-binomial
count data model (5). We used the same hyperparam-
eter settings as in our simulation study. Results are
shown in Figure 6. By selecting, for example, the best 3
variables, we achieve a notable decrease in the root-
MSPE as compared to the linear models. Also, by al-
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TABLE 4

Ozone data: Results

Prior on g M,y py RMSPE
Local empirical Bayes X5, Xg, X7, X%, X%, X3X5 6 4.5
Hyper-g (a = 4) Xs, X6, X7, X2, X2, X3 X5 6 45
Fixed (BIC) Xs. X¢, X7, X2, X2, X3 X5 6 45
Brown, Vannucci and Fearn (2002) X1X6,X1X7,X6X7,X12,X§,X% 6 4.5
GP model X3, X6, X7 3 3.7

lowing an a priori unspecified functional form for how
covariates relate to the response, we end up selecting a
much more parsimonious model, although, of course,
we lose in interpretability of the selected terms, with
respect to linear formulations that specifically include
linear, quadratic and interactions terms in the model.

7.2 Boston Housing data

Next we utilize the Boston Housing data set, also an-
alyzed by Breiman and Friedman (1985), who used an
additive model and employed an algorithm to empir-
ically determine the functional relationship for each
predictor. This data set relates p = 13 predictors to
the median value of owner-occupied homes in each of
n = 506 census tracts in the Boston metropolitan area.
As with the previous data set, we held out a random set
of 250 observations to assess prediction.

We employed the continuous data model (3) with
the same hyperparameter settings as in our simulations.
The four predictors chosen by Breiman and Friedman
(1985), (x6, x10, X11,X13), had all marginal posterior

Selected Predictors, Yy

Variable Selection Parameters: Y-V

F1G. 6.

probability of inclusion greater than 0.9 in our model.
Other variables with high marginal posterior probabil-
ity were (xs, x7, X3, x12). The adaptability of the GP re-
sponse surface is illustrated with closer examination of
covariate x5, which measures the level of nitrogen ox-
ide (NOX), a pollutant emitted by cars and factories. At
low levels, indicating proximity to jobs, x5 presents a
positive association to the response, and at high levels,
indicating overly industrialized areas, a negative asso-
ciation. This inverted parabolic association over the co-
variate range probably drove its exclusion in the model
of Breiman and Friedman (1985). The GP formulation
is, however, able to capture this strong nonlinear rela-
tionship as is noted in Figure 7. By using only the sub-
set of the best eight predictors, we achieved a normal-
ized MSE of 0.1 and a prediction R? of 0.9, very close
to the value of 0.89 reported by Breiman and Friedman
(1985) on the training data.
We also employed the Matern covariance construc-
tion (9), which we recall employs an explicit smooth-
ing parameter, v € [0, co). While selection results were
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roughly similar, the prediction results for the Matern
model were significantly worse than the exponential
model, with a normalized MSPE of 0.16, probably due
to overfitting. It is worth noticing that the more com-
plex form for the Bessel function increases the CPU
computation time by a factor of 5-10 under the Matern
covariance as compared to the exponential construc-
tion.

For comparison, we looked at GBMs. We used ver-
sion 3.1 of the gbm package for the R software envi-
ronment. We utilized the same training and validation
data as above. After experimentation and use of 10-
fold cross-validation, we chose a small value for the
input regularization parameter, v = 0.0005, to provide
a smoother fit that prevents overfitting. Larger values
of v resulted in higher prediction errors. The GBM was
run for 50,000 iterations to achieve minimum fit error.
The result provided a normalized MSPE of 0.13 on the
test set, similar to, though slightly higher than, the GP
result. The left-hand chart of Figure 8 displays the rela-
tive covariate importance. Higher values correspond to
(x13, X6, X8), and agree with our GP results. A number
of other covariates show similar importance values to
one another, though lower than these top 3, making it
unclear as to whether they are truly related or nuisance
covariates. Similar conclusions are reported by other
authors. For example, Tokdar, Zhu and Ghosh (2010)
analyze a subset of the same data set with a Bayesian

density regression model based on logistic Gaussian
processes and subspace projections and found (x13, x¢)
as the most influential predictors, with a number of
others having a mild influence as well. The right-hand

plot supplies a partial dependence plot obtained by the
GBM for variable x|3 by averaging over the associa-
tions for the other covariates. We note that the non-
linear association is not constrained to be smooth un-

der GBM.

8. DISCUSSION

In this paper we have presented a unified modeling
approach via Gaussian processes that extends to data
from the exponential dispersion family and to survival
data. Such model formulation allows for nonlinear as-
sociations of the predictors to the response. We have
considered, in particular, continuous, categorical and
count responses and survival data. Next we have ad-
dressed the important problem of selecting variables
from a set of possible predictors and have put forward a
general framework that employs Bayesian variable se-
lection methods and mixture priors for the selection of
the predictors. We have investigated strategies for pos-
terior inference and have demonstrated performances
on simulated and benchmark data. GP models provide
a parsimonious approach to model formulation with a
great degree of freedom for the data to define the fit.
Our results, in particular, have shown that GP mod-
els can achieve good prediction performances without
the requirement of prespecifying higher order and non-
linear additive functions of the predictors. The bench-
mark data applications have shown that a GP formu-
lation may be appropriate in cases of heterogeneous
covariates, where the inability to employ an obvious
transformation would require higher order polynomial
terms in an additive linear fashion, or even in the case
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of a homogeneous covariate space where the transfor-
mation overly reduces structure in the data. Our simu-
lation results have further highlighted the ability of the
GP formulation to manage data sets with p > n.

A challenge in the use of variable selection methods
in the GP framework is to manage the numerical insta-
bility in the construction of the GP covariance matrix.
In the Appendix we describe a projection method to
reduce the effective dimension of this matrix. Another
practical limitation of the models we have described is
the difficulty to use them with qualitative predictors.
Qian, Wu and Wu (2008) provide a modification of the
GP covariance kernel that allows for nominal qualita-
tive predictors consisting of any number of levels. In
particular, the authors model the covariance structure
under a mixture of qualitative and quantitative predic-
tors by employing a multiplicative factor against the
usual GP kernel for each qualitative predictor to cap-
ture the by-level categorical effects.

Some generalization of the methods we have pre-
sented are possible. For example, as with GLM models,
we may employ an additional set of variance inflation
parameters in a similar construction to Neal (1999) and
others to allow for heavier tailed distributions while
maintaining the conjugate framework.

APPENDIX: COMPUTATIONAL ASPECTS

We focus on the exponential form (7) and introduce
an efficient computational algorithm to generate C. We

f(x13)
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also review a method of Banerjee et al. (2008) to ap-
proximate the inverse matrix that employs a random
subset of observations and provide a pseudo-code.

A.1 Generating the Covariance Matrix C

Let us begin with the quadratic expression, G =
{gi,j} in (7). We rewrite g; ; = A;yl-[—log(p)] with
A;,j constructed as a p x 1 vector of term-by-term
squared differences, (xjx — Xjk)z,k =1,...,p. We
may directly employ the p x 1 vector, p, as P is di-
agonal. As a first step, we may then directly compute
G =A[—log(p)], where A isn x n x p. We are, how-
ever, able to reduce the more complex structure of A to
a two dimensional matrix form by simply stacking each
{i, j} row of dimension 1 x p under each other such
that our revised structure, A*, is of dimension n” x p
and the computation, G = A*[—log(p)], reduces to a
series of inner products. Next, we note that log(px) =0
for pr = 1. So we may reduce the dimension for each
of the n? inner products by reducing the dimension of
p to the p, < p nontrivial covariates. We may further
improve efficiency by recognizing that since our resul-
tant covariance matrix, C, is symmetric positive def-
inite, we need only compute the inner products for a
reduced set of unique terms (by removing redundant
rows from A*) and then “re-inflate” the result to a vec-
tor of the correct length. Finally, we exponentiate this
vector, multiply the nonlinear weight (1/X;), add the
affine intercept term, (1/X,), and then reshape this vec-
tor into the resulting n x n matrix, C. The resulting im-
provement in computational efficiency at n = 100 from
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the naive approach that employs double loops of inner
products is on the order of 500 times.

Our MCMC scheme 2 proposes a change to px € p,
one-at-a-time, conditionally on p_; and the other sam-
pled parameters. Changing a single px requires updat-
ing only one column of the inner product computation
of A* and [—log(p)]. Rather than conducting an entire
recomputation for C, we multiply the kth column of
A* (with number of rows reduced to only unique terms
in C) by log(’Z‘kprl"p) where “prop” means the proposed
value for pg. This result is next exponentiated (to a co-
variance kernel), re-inflated and shaped into an n x n
matrix, A. We then take the current value less the affine
term, Colq — » L J,, and multiply by A, term-by-term,
and add back the affine term to achieve the new co-
variance matrix associated to the proposed value for
Pk- So we may devise an algorithm to update an ex-
isting covariance matrix, C, rather than conducting an
entire recomputation. At p = 1,000 with 6 nontrivial
covariates and n = 100, this algorithm further reduces
the computation time over recomputing the full covari-
ance by a factor of 2. This efficiency grows nonlinearly
with the number of nontrivial covariates.

A.2 Projection Method for Large n

In order to ease the computations, we have also
adapted a dimension reduction method proposed by
Banerjee et al. (2008) for spatial data. The method
achieves a reduced-dimension computation of the in-
verse of the full (n x n) covariance matrix. It can
also help with the accuracy and stability of the pos-
terior computations when working with possibly ill-
conditioned GP covariance matrices, particularly for
large n. To begin, randomly choose m < n points
(knots), sampled within fixed intervals on a grid to
ensure relatively uniform coverage, and label these m
points z*. Then define z,,_,, as the orthogonal projec-
tion of z onto the lower dimensional space spanned by
z*, computed as the conditional expectation

Zynn =E(z|2") = (z* )C(_z* z*)

We use the univariate regression framework in (3) to il-
lustrate the dimension reduction from constructing the
projection model using z,,_,, in place of z(x). Recast
the model from (3) to

y = Zm—n + &= (Z* Z)C(Z* Z*)Z + €,
where & ~ N(0, %). Then derive A, = Cov(y) =
1]1 + C(z* Z)C(_Zlyz*)C(Z*,z). Finally, employ the Wood-

bury matrix identity to transform the inverse com-
putation, A;l =rl — I’ZC/(Z* z)[C(z*,z*) + rCp gy -

/(z*,z)]_l C(z+,2), where the quantity inside the square
brackets, now being inverted, is m x m, supplying the
dimension reduction for inverse computation we seek.
We note that, in the absence of the projection method, a
large jitter term would be required to invert the GP co-
variance matrix, trading accuracy for stability. Though
the projection method approximates a higher dimen-
sional covariance matrix in a lower dimensional projec-
tion, we yet improve performance and avoid the accu-
racy/stability trade-off. We do, however, expect to use
more iterations for MCMC convergence when employ-
ing a relatively lower projection ratio.

All results shown in this paper were obtained with
m/n = 0.35, for simulated data, and with m/n = 0.25,
for the benchmark applications, where we enhanced
computation stability in the presence of the high con-
dition number for the design matrix. We have also em-
ployed the Cholesky decomposition, in a similar fash-
ion as in Neal (1999), in lieu of directly computing the
resulting m x m inverse.

A.3 Pseudo-code

Procedure to Compute, C = i‘]" + % exp(—G):
Input: data matrices; -

(X1, X7) of dimension (n,n) X p
Output: function, [A*, Ity ] = difference(X, X3)
% A* is matrix of squared L; distances

for 2 data matrices of p columns
% A* size, £ X p, £ <niny: only unique entries
% Ity re-inflates A* with duplicate entries
% Key point: Compute A*, once,
and re-use in GP posterior computations
% Set counter to stack all (i, j) obs
from X1, X» in vectorized construction
count = 1;
% Compute squared distances
FOR i =1ton
FOR j=1ton,
Afy(count,:) = (xq,; — xz,j)z;
count = count + 1;
END
END
% Reduce A to A*
[A*, Ifu]]] = unique (A}, by row);
END FUNCTION

Input: Data = (A*, Ity1), © = (p, Ag, Az)
Output: function, [C] = C(A*, Iy, O)
% An ny x ny GP covariance matrix
% Only compute inner product

for column k£ where p; < 1
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selp = {pr < 1);
p= p(selp)
A* = A*(:, sely);

% Compute vector of unique values for C
—Gec = A*[log(p)];
Cyec = i + )3_2 exp(—Gec);

% Re-inflate Cye to include duplicate values
Cyec = Cyec(Itun);

% Snap Cyec into matrix form, C
C =reshape(Cyec, n2,n1)’;

END FUNCTION

Input: Previous covariance = Cyq;
Data = (A*, Ity); Position changed = k,
Parameters = (0 new. Pk,o0ld), Intercept = A,
Output:[cnew] = Cpanial(colda A*a Iran, k, )‘a)
% Compose new covariance matrix, Cpew,
from old, Cyq
% Compute inner products only for row k of A*
% Produce matrix of multiplicative differences
from old to new
—AGyec = A" (2, k) x log(Ze2=):;
% Re-inflate exp(—AGyec) Y
eXp(—AGyec) = exp(—AGyec) (Truil);
% Re-shape — A Gy to matrix, A
A = reshape(exp[—AGyec], n2,n1)’;
9% Compute Chew
Cnew = iJn + (Cold - iJn) @ A;
END FUNCTION
Procedure to Compute Inverse of A, = %]In + C:
Input: Number of sub-sample = m, Data =X,
Error precision =r
Covariance parameters = @ = (p, Ay, A7)
Output: A
% Randomly select m < n observations
on which to project n x 1, z(x)
ind = random.permutations.latin.hypercube(n);
% space-filling
X, =X(@(ind(1:m),?);
% Compute squared distances, A, A*
[AY, Ly fun] = difference(X,y,, X;n); %o m X n
[A*, Is] = difference(X,,,, X); % n X n
% Compose associated covariance matrices
Cin,m) = C(A},, L full, ©);
Con,ny = C(A*, Itun, ©);
9% Compute Ay
An= %]I” + Cém,n)c(_ml,m)c(m»n);
% Compute A, ! employing
term-by-term multiplication
AL =7, —r2Cl, o [Conm)

+ ComnyClop iy 1™ Clmmy
END
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