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Discussion of “Feature Matching in Time
Series Modeling” by Y. Xia and H. Tong
Qiwei Yao

Many congratulations to Professors Xia and Tong for
another stimulating paper initiated from their own cre-
ative thinking. The base point of the proposed approach
is the fact that most, if not all, statistical models are
wrong. This not only applies to time series models, as
a statistical model is, hopefully, a simplified represen-
tation of the truth. At the best it catches some features
of the unknown underlying population. While the un-
derstanding of this nature is within the common wis-
dom, most statistical inference methods are confined
to the framework which assumes that the true model is
a member of the family of models concerned. The ap-
proach advocated in this paper acknowledges explicitly
that the assumed model is not the truth, and indeed it
is advantageous sometimes not to read too much into
the assumed model. For example, the authors have ar-
ticulated elegantly that if our interest lies in catching
the linear dynamical structure, we should not use the
(Gaussian) maximum likelihood estimation which ef-
fectively minimizes the one-step-ahead prediction er-
rors only, and in fact a better fitted autocovariance is
resulted from minimizing up to m-step-ahead predic-
tions for m > 1.

Following the lead of the authors, it seems to make
sense to take on board the concern for “wrong mod-
els” at the stage of the model selection, too, as hinted
at the end of the paper. In the way, this has been
actively researched in the context of model selec-
tion. However, a difference here is to use a different
measure for “goodness of fit” instead of likelihood
(or log-likelihood). Let us consider a simple case: fit
a linear AR(p) model to observations y1, . . . , yn from
a stationary time series with mean 0, where the or-
der p is to be determined by the data, too. Let yt,p =
(yt , yt−1, . . . , yt−p+1)

′. Based on an AR(p) model
(with independent innovations), the best predictor at
the time t for a future value yt+m should be a linear
combination of the p components of yt,p . In fact the
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best linear predictor based on yt,p is α′
m,pyt,p with

αm,p = �−1
p γ m,p

(1)
= arg min

γ
E{(yt+m − α′yt,p)2},

where �p is a p ×p matrix with γ (j − i) as its (i, j)th
element, γ m,p is a p×1 vector with γ (m+ i −1) as its
ith element, and γ (·) denotes the autocovariance func-
tion of yt . In fact (1) holds for any stationary process.
However, if we fit yt with an AR(p), its autocovariance
function γ (·) is then determined by θp—the parame-
ters in an AR(p) model. Put αm,p = αm,p(θp). Then
y′
t,pαm,p(θp) is the best predictor for yt+m based on

an AR(p) model. Using the “matching up-to-m-step-
ahead point predictions” approach of Section 2.1, we
estimate θp (for p given) by

θ̂p = arg min
θp

Qp(θp),

where

Qp(θp) = 1

m

m∑
k=1

1

n − k − p + 1

·
n−k∑
t=p

{yt+k − y′
t,pαk,p(θp)}2.

However, we cannot choose p by minimizing Qp(̂θp),
as Qp(̂θp) is likely to decrease as p increases.

To appreciate the difficulties involved, let us first
consider the “ideal world” where the (true) distribution
of {yt } is known. Then we should estimate θp by

θ̃p = arg min
θp

Q∗
p(θp),

where

Q∗
p(θp) = 1

m

m∑
k=1

E[{yt+k − y′
t,pαk,p(θp)}2].

Unfortunately Q∗
p(̃θp) still decreases as p increases.

The information (e.g., the variance) of the noise com-
ponent of yt is required in order to know when to stop.
This is the standard problem in model selection even
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for linear regression. One way to get away from this
requirement is to take the log-transformation. Namely,
we define

L∗(p) = log{Q∗
p(̃θp)}

= log

{
1

m

m∑
k=1

E[{yt+k − y′
t,pαk,p(̃θp)}2]

}
.

When p is in the range on which Q∗
p(̃θp) varies slowly

(with respect to p), it holds that

L∗(p) − L∗(p + 1) ≈ Q∗
p(̃θp) − Q∗

p+1(̃θp+1)

Q∗
p+1(̃θp+1)

.

Intuitively we would like to choose the smallest p such
that the decrease L∗(p)−L∗(p + 1) is smaller than an
appropriate but unknown constant. In practice, we may
use L(p) ≡ log{Qp(̂θp)} to replace L∗(p), and choose
p to minimize

L(p) + E{L∗(p) − L(p)}.
This is in the same spirit of AIC in the sense that the
bias E{L∗(p) − L(p)} serves as the penalty for the

model complexity. When the true model of yt is not
AR, this bias does not admit a simple asymptotic ex-
pression such as AIC even when m = 1; see, for ex-
ample, Konishi and Kitagawa (1996). One may also
consider to develop some resampling estimates for this
bias.

The above line of thinking is provoked from reading
this interesting paper which will serve as an inspiration
for further research in tackling the issues related to the
lack of a true model. Then one may quibble over the
use of the phrase “catch-all approach.” If a model could
catch all the features, it should be the true model, or at
least pragmatically so. One message from the paper is
that one should fit (and perhaps also choose) a model
according to a specified purpose in hand, and a good
statistical modeling is to catch the features of interest
for a particular purpose.
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