
Statistical Science
2011, Vol. 26, No. 1, 21–46
DOI: 10.1214/10-STS345
© Institute of Mathematical Statistics, 2011

Feature Matching in Time Series Modeling
Yingcun Xia and Howell Tong

Abstract. Using a time series model to mimic an observed time series has
a long history. However, with regard to this objective, conventional estima-
tion methods for discrete-time dynamical models are frequently found to be
wanting. In fact, they are characteristically misguided in at least two respects:
(i) assuming that there is a true model; (ii) evaluating the efficacy of the es-
timation as if the postulated model is true. There are numerous examples of
models, when fitted by conventional methods, that fail to capture some of the
most basic global features of the data, such as cycles with good matching
periods, singularities of spectral density functions (especially at the origin)
and others. We argue that the shortcomings need not always be due to the
model formulation but the inadequacy of the conventional fitting methods.
After all, all models are wrong, but some are useful if they are fitted properly.
The practical issue becomes one of how to best fit the model to data.

Thus, in the absence of a true model, we prefer an alternative approach
to conventional model fitting that typically involves one-step-ahead predic-
tion errors. Our primary aim is to match the joint probability distribution of
the observable time series, including long-term features of the dynamics that
underpin the data, such as cycles, long memory and others, rather than short-
term prediction. For want of a better name, we call this specific aim feature
matching.

The challenges of model misspecification, measurement errors and the
scarcity of data are forever present in real time series modeling. In this pa-
per, by synthesizing earlier attempts into an extended-likelihood, we develop
a systematic approach to empirical time series analysis to address these chal-
lenges and to aim at achieving better feature matching. Rigorous proofs are
included but relegated to the Appendix. Numerical results, based on both
simulations and real data, suggest that the proposed catch-all approach has
several advantages over the conventional methods, especially when the time
series is short or with strong cyclical fluctuations. We conclude with listing
directions that require further development.
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1. INTRODUCTION

Dynamical models, either in continuous time or in
discrete time, have been widely used to describe the
changing world. Interestingly, salient features of many
seemingly complex observations can sometimes be
captured by simple dynamical models, as demonstrated
most eloquently by Sir Isaac Newton in the seventeenth
century when he used his model, Newton’s law of
universal gravitation, to explain Kepler’s observations
concerning planetary motion. In statistics, dynamical
models are the raison d’être of time series analysis.
For a time series, the dynamics transmits information
about its future from observations made in the past and
the present. Of particular interest are the long-term fu-
ture, the periodicity and so on. To capture salient fea-
tures, there are essentially two approaches: substantive
and black-box. Examples of both approaches abound.
The former is often preferred if available in the con-
text in which we find ourselves. If not available, then a
black-box approach might be the only choice. We shall
include examples of both approaches. Let us first men-
tion two substantive examples as they are relevant to
our later discussion.

1.1 Two Substantive Models and Related Features

1. Animal populations. There are numerous ecolog-
ical models describing the time evolution of animal
populations. The single-species model of Oster and
Ipaktchi (1978) can be written as

dxt

dt
= b(xt−τ )xt−τ − μxt ,(1.1)

where xt is the number of adults at time t ; τ is the de-
layed regulation duration due to the time taken for the
young to develop into adults or discrete breeding sea-
sons; b(·) is the birth rate; and μ is the death rate. There
are different specifications for b(·). Gurney, Blythe and
Nisbet (1980) suggested b(u) = c exp(−u/N0), where
N0 is the reciprocal of the exponential decay rate and c

is a parameter related to the reproductive rate of adults.
Ellner, Seifu and Smith (2002) investigated the estima-
tion of model (1.1) by replacing b(xt−τ )xt−τ and μxt

with unknown functions B(xt−τ ) and D(xt ), respec-
tively, which they then used a nonparametric method to
estimate. Wood (2001) considered a similar approach.
There are several discrete-time versions of (1.1) in bi-
ology. See, for example, Varley, Gradwell and Hassell
(1973). If we approximate dxt/dt by xt − xt−1, then

we obtain a nonlinear time series model in discrete time

xt = b(xt−τ )xt−τ + νxt−1,(1.2)

where ν = 1 − μ.
In ecology, population cycles are often observed and

are an issue of paramount importance. For example,
the blowfly data show a cycle of 39 days and the Cana-
dian lynx shows a cycle of about 9.7 years. Some ecol-
ogists have even suggested chaotic patterns, although
we are skeptical about this possibility. Most ecologists
consider the dynamics underlying population cycles as
one of the major challenges in their discipline.

2. Transmission of infectious diseases. The conven-
tional compartmental SIR model partitions a commu-
nity with population N into three compartments St (for
susceptible), It (for infectious) and Rt (for recovered):
N = St + It + Rt at any time instant t . The SIR model
is simple but very useful in investigating many infec-
tious diseases including measles, mumps, rubella and
SARS. Each member of the population typically pro-
gresses from susceptible to infectious to recovered or
death.

Infectious diseases tend to occur in cycles of out-
breaks due to the variation in the number of susceptible
individuals over time. During an epidemic, the number
of susceptible individuals falls rapidly as more of them
are infected and thus enter the infectious and recovered
compartments. The disease cannot break out again un-
til the number of susceptible has built back up as a re-
sult of babies being born into the susceptible compart-
ment.

Consider a population characterized by a death
rate μ and a birth rate equal to the death rate, in
which an infectious disease is spreading. The differ-
ential equations of the SIR model are

dSt

dt
= μ(N − St ) − β

It

N
St ,

dIt

dt
= β

It

N
St − (ν + μ)It ,

dRt

dt
= νIt − μRt,

where β is the contact rate and ν is the recovery rate
of the disease. See, for example, Anderson and May
(1991) and Isham and Medley (2008) for details. This
model has been extensively investigated and very suc-
cessfully used in the control of infectious diseases.
Discrete-time versions of the model have been pro-
posed. An example is

It+1 = r0StIt/N, St+1 = St − It+1 + μN,
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where μ is the birth rate and r0 is the basic reproductive
rate of transmission. See, for example, Bartlett (1957,
1960), Anderson and May (1991) and the discussion in
Section 6.

Again, an important feature for the transmission
of infectious disease is the periodicity, to understand
which it is essential to understand the effect of such
factors as the birth rate, the seasonal force, the trans-
mission rate and the incubation time on the dynamics,
the phase difference that is related to the transmission
in different areas, and the interaction between differ-
ent diseases; see, for example, Earn et al. (2000) and
Rohani et al. (2003). The model can also be used to
guide the policy maker in controlling the spread of
the disease. See, for example, Bartlett (1957), Hethcote
(1976), Keeling and Grenfell (1997) and Dye and Gay
(2003).

1.2 The Objectives

Our primary concern is parametric time series mod-
eling with the objective of achieving good matching
of the joint probabilistic distribution of the observable
time series, including, in particular, salient features,
such as cycles and others. Short-term prediction is sec-
ondary in this paper. Accepting G. E. P. Box’s (1976)
dictum: All models are wrong, but some are useful, we
use parametric time series models only as means to an
end. We are typically less interested in the consistency
of estimators of unknown parameters in the conven-
tional sense, which is predicated on the assumed truth
of the postulated model. In fact, we are more interested
in improving the matching capability of the postulated
model.

Suppose we postulate the following model:

xt = gθ (xt−1, . . . , xt−p) + εt ,(1.3)

where εt is the innovation and the function gθ (·) is
known up to parameters θ . To indicate the depen-
dence of xt on θ , we also write it as xt (θ). Follow-
ing Tong (1990), we call (1.3) with Var(εt ) = 0 the
skeleton of the model. In postulating the above model,
we recognize that it is generally just an approxima-
tion of the true underlying dynamics no matter how
the function gθ (·) is specified. Of particular note is
the fact that conventional methods of estimation of θ

in the present setup are usually not different from
those used for a cross-sectional model: with observa-
tions {y1, y2, . . . , yT

} and postulated model gθ , typi-
cally a loss function is based on the errors and takes
the following form:

L(θ) = (T − p)−1
T∑

t=p+1

{yt − gθ (yt−1, . . . , yt−p)}2,

where, here and elsewhere, T denotes the sample size.
The errors above happen to coincide with the one-
step-ahead prediction errors. Under general conditions,
minimizing this loss function is known mathematically
to lead to efficient estimation if the postulated model is
true. However, the postulated model is, by the Box dic-
tum, almost invariably wrong, in which case the above
loss function is not necessarily fit for purpose. To illus-
trate, let observations {y1, y2, . . . , yT } be given and, of
the postulated model (1.3), let the function gθ be linear
and εt be Gaussian with zero mean and finite variance.
Let T = {C(j), j = 0,1,2, . . . , T − 1} denote a set
of sample autocovariances of the y-data. Then mini-
mizing L(θ) yields well-known estimates of θ that are
functions of S = {C(0),C(1), . . . ,C(p)}. If the postu-
lated model is “right,” then S is a minimal set of suf-
ficient statistics (ignoring boundary effects) and all is
well. However, if it is wrong, then it is unlikely that
S will remain so. Since the model is typically wrong,
then restricting to S is unfit for the purpose of estimat-
ing θ ; T may be preferable.

To reconcile with the Box spirit, diagnostic checks,
goodness-of-fit tests and other post-modeling devices
are recommended. Indeed Box and Jenkins (1970) have
stressed these post-modeling devices. See also Tsay
(1992) for some later developments. These are un-
doubtedly very important developments. However, the
challenge remains as to whether we can adopt the Box
spirit more seriously right at the modeling stage rather
than at the post-modeling stage.

It is worth recalling the fact that the classic autore-
gressive (AR) model of Yule (1927) and the moving
average (MA) model of Slutsky (1927) were originally
proposed to capture the sunspot cycle and the business
cycle, respectively, rather than for the purpose of short-
term prediction.

2. THE MATCHING APPROACH

We shall use the letters y and x to signify respec-
tively the real time series under study and the time
series generated by the postulated model. The adjec-
tive observable is reserved for a stochastic process. An
observed time series consisting of observations con-
stitutes (possibly part of) a realization of a stochas-
tic process. In order for model (1.3) to be able to ap-
proximate an observable {yt : t = 1,2, . . .} well, it is
natural to require throughout this paper that the state
space of {xt (θ) : t = 1,2, . . .} covers that of the observ-
able {yt : t = 1,2, . . .}. For expositional simplicity, let
p = 1. Starting from x0(θ) = y0, the postulated model
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is said to match an observable time series under study
perfectly if their conditional distributions are the same,
namely,

P {x1(θ0) < u1, . . . , xn(θ0) < un|x0(θ0) = y0}
(2.1)

≡ P {y1 < u1, . . . , yn < un|y0}
almost surely for some θ0 and any n and any real
values u1, . . . , un. We call the approach based on the
above model, including all its weaker versions, some
of which will be described in the next two subsections,
collectively by the name catch-all approach.

However, formulation (2.1) is usually quite difficult
to implement in practice. In the next two subsections,
we suggest two weaker forms, although other forms are
obviously possible.

In the econometric literature, the notion of calibra-
tion has been introduced (e.g., Kydland and Prescott,
1996). It has many alternative definitions. Broadly
speaking, calibration consists of a series of steps in-
tended to provide quantitative answers to a particular
economic question. A crucial step involves some so-
called “computational experiments” with a substantive
model of relevance to economic theory; it is acknowl-
edged that the model is unlikely to be the true model
for the observed economic data. At the philosophi-
cal level, calibration and our feature matching share
almost the same aim. However, there are some fun-
damental differences in methodology. Our methodol-
ogy provides a statistical and coherent framework (in
a non-Bayesian sense) to estimate all the parameters of
a postulated (and usually wrong) model. As far as we
know, calibration seems to be in need of such a frame-
work. See, for example, Canova (2007), esp. page 239.
The hope is that our methodology will be useful to sub-
stantive modelers in all fields, including ecology, eco-
nomics, epidemiology and others. At the other end of
the scale, it has been suggested that our methodology
has potential in data mining (K.S. Chan, private com-
munication).

2.1 Matching Up-to-m-Step-Ahead Point
Predictions

If we are interested in the mean conditional on some
initial observation, say y0, we can weaken the matching
requirement (2.1) to

E[(x1(θ0), . . . , xm(θ0))|x0(θ0) = y0]
≡ E[(y1, . . . , ym)|y0],

where the length m of the random vector is, in practice,
bounded above by the sample size under consideration.

The expectation is taken with respect to the relevant
joint distribution of the random vector conditional on
the initial value being y0. Since a postulated model is
just an approximation of the underlying dynamics, we
set θ0 to minimize the difference of the prediction vec-
tors, that is,

E{‖E[(x1(θ), . . . , xm(θ))|x0(θ) = y0]
(2.2)

− E[(y1, . . . , ym)|y0]‖2}.
Here, ‖ · ‖ denotes the Euclidean norm of a vector. In
other words, we choose θ by minimizing up-to-m-step-
ahead prediction errors. It is basically based on a catch-
all idea. It is easy to see that the best θ based on mini-
mizing (2.2) depends on m. Generally speaking, we set
m = 1, when and only when we have complete faith in
the model, which is what the conventional methods do.
Denote the m-step-ahead prediction of yt+m based on
model (1.3) by

g
[m]
θ (yt ) = E(xt+m|xt = yt ).

If model (1.3) is deterministic [i.e., Var(εt ) = 0] or lin-
ear, g

[m]
θ (yt ) is simply a composite function,

g
[m]
θ (yt ) = gθ (gθ (· · ·gθ (︸ ︷︷ ︸

m folds

yt ) · · ·)).

Let

Q(yt , xt (θ))
(2.3)

= sup
wm

∞∑
m=1

wm

[
E
{
yt+m − g

[m]
θ (yt )

}2]
,

where wm ≥ 0 and
∑

wm = 1. Since

E
[{yt+m − E(yt+m|yt )}{E(yt+m|yt ) − g

[m]
θ (yt )

}]= 0,

we have

E
{
yt+m − g

[m]
θ (yt )

}2 = E{yt+m − E(yt+m|yt )}2

+ E
{
E(yt+m|yt ) − g

[m]
θ (yt )

}2
.

Let

Q̃(yt , xt (θ))

= sup
wm

∞∑
m=1

wm

[
E
{
E(yt+m|yt ) − g

[m]
θ (yt )

}2]
.

If the observable yt indeed follows the model of xt ,
then minθ Q̃(yt , xt (θ)) = 0. Otherwise we generally
expect minθ Q̃(yt , xt (θ)) > 0. Minimizing Q̃(yt ,
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xt (θ)) is for xt (θ) to arrive at a choice within the postu-
lated model that gives all (suitably weighted) multiple-
step-ahead predictions of yt as accurately as possible
in the mean squared sense.

Note that the above measure of the difference be-
tween two time series is based on a (weighted) least
squares loss function. Clearly there exist many other
possible measures. For example, if the distribution of
the innovation is known, a likelihood type measure of
the difference can be used instead. A Bayesian may
perhaps then endow {wm} with some prior distribu-
tion. This line of development may be worth further
exploration as suggested by an anonymous referee. In-
tuitively speaking, a J -shaped {wm} tends to empha-
size low-pass filtering, because E(yt+m|yt ) is a slowly
varying function for sufficiently large m. Similarly, an
inverted-J -shaped {wm} tends to emphasize high-pass
filtering. An optimal choice of {wm} strikes a good bal-
ance between high-pass filtering and low-pass filtering.

The most commonly used estimation method in time
series modeling is probably that based on minimizing
the sum of squares of the errors of one-step-ahead pre-
diction. This has been extended to the sum of squares
of errors of other single-step-ahead prediction. See, for
example, Cox (1961), Tiao and Xu (1993), Bhansali
and Kokoszka (2002) and Chen, Yang and Hafner
(2004). Clearly, the former method is predicated on the
model being true. The latter extension recognizes that
this is an unrealistic assumption for multi-step-ahead
prediction. Instead, a panel of models is constructed so
that a different model is used for the prediction at each
different horizon. The focus of the extension is predic-
tion.

The approach that we develop here essentially builds
on the above extension. First, we shift the focus away
from prediction. Second, we transform the prediction
based on a panel of models into the fitting of a single
time series model. We effectively synthesize the panel
into a catch-all methodology. Specifically, we propose
to minimize the sum of squares of errors of predic-
tion over all (allowable) steps ahead, as given in (2.3).
We stress again that our primary objective is feature
matching rather than prediction. Of course, it is con-
ceivable that good feature matching may sometimes
lead to better prediction, especially for the medium and
long term. Clearly each member of the panel can be re-
covered, at least formally, from the catch-all setup by
setting, in turn, the weight, wj , to unity, leaving the rest
to zero.

2.2 Matching ACFs

Suppose that the observable {yt } and {xt (θ)} are both
second-order stationary. If we are interested in second-
order moments, then a weaker form of (2.1) is the fol-
lowing difference or distance function:

D
C
(yt , xt (θ)) = sup

{wm}

∞∑
m=0

wm

{
γx(θ)(m) − γy(m)

}2
.

Here, the suffixes of y and x(θ) are self-explanatory.
We assume that the spectral density function (SDF) of
the observable yt exists; it is given by

fy(ω) = 1

2π
γ (0) + 1

π

∞∑
k=1

γy(k) cos(kω).

The SDF of xt (θ), which we also assume to exist, can
be defined similarly. We can also measure the differ-
ence between two time series by reference to the dif-
ference between their SDFs, for example,

D
F
(yt , xt (θ)) =

∫ π

−π

{
fy(ω)

fx(ω)
+ log

(
fx(ω)

fy(ω)

)
− 1

}
dω,

which is called the Itakura–Saito distortion measure;
see also Whittle (1962). Further discussion on measur-
ing the difference between two SDFs can be found in
Georgiou (2007).

Suppose that {xt (θ)} and the observable {yt } have
the same marginal distribution and they each have
second-order moments. Then we can prove that

D
C
(yt , xt (θ)) ≤ C1Q̃(yt , xt (θ)),

D
F
(yt , xt (θ)) ≤ C2Q̃(yt , xt (θ))

for some positive constants C1 and C2. Moreover, if
{xt (θ)} and the observable {yt } are linear AR models,
then there are some positive constants C3 and C4 such
that

Q̃(yt , xt (θ)) ≤ C3DC
(yt , xt (θ)),

Q̃(yt , xt (θ)) ≤ C4DF
(yt , xt (θ)).

For further details, see Theorem A in the Appendix.
For linear AR models under the above setup, Q̃(·, ·),

DC(·, ·) and DF (·, ·) are equivalent. However, the
equivalence is not generally true. A counterexample
can be constructed easily by reference to the classic
random telegraph signal process. [See, e.g., Parzen
(1962), page 115].

Let us close this section by describing one way of
implementing the ACF criterion for an ARMA model
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with normal innovation. Suppose y1, . . . , yT
are obser-

vations from the observable {yt }. Whittle (1962) con-
sidered a “likelihood function” for ARMA models in
terms of the SDF. Let

I (w) = 1

2πT

∣∣∣∣∣
T∑

t=1

yt exp(−ιωt)

∣∣∣∣∣
2

be the periodogram of the sample, where ι is the imag-
inary unit. Let fθ (ω) be the theoretical SDF of an
ARMA model with parameters θ . Whittle (1962) pro-
posed to estimate θ by

θ̂ = min
θ

T∑
j=1

{
I (ωj )

fθ (ωj )
+ log(fθ (ωj ))

}
,

where ωj = 2πj/T . From the perspective of fea-
ture matching, the celebrated Whittle’s likelihood is
not a conventional likelihood but a precursor of the
extended-likelihood approach. It matches the second-
order moments, by using a natural sample version of
DF (yt , xt (θ)) up to a constant. For this reason, it is
expected that for misspecified models, Whittle’s esti-
mator can lead to better matching of the ACFs of the
observed time series than the innovation driven meth-
ods [e.g., the least squares estimation (LSE) or the
maximum likelihood estimation (MLE)]. We shall give
some numerical comparison between Whittle’s estima-
tor and the others in Sections 5 and 6 below.

3. TIME SERIES WITH MEASUREMENT ERRORS

To illustrate the advantages of the catch-all ap-
proach, which involves minimal assumptions on the
observed time series, we give detailed analyses of two
cases involving measurement errors, one of which is
related to a linear AR(p) model and the other a non-
linear skeleton model. They can be considered special
cases of model misspecification in that the observable
y-time series is a measured version of the x-time se-
ries subject to measurement errors. For the linear case,
measurement error is an old problem in time series
analysis that was studied at least as early as Walker
(1960). Some new lights will be shed.

3.1 Linear AR(p) Models

Consider the following AR(p) model:

xt = θ1xt−1 + · · · + θpxt−p + εt .(3.1)

Stationarity is assumed. By the Yule–Walker equa-
tions, we have the recursive formula for the ACF,

{γ (j)}, of the x-time series, namely,

γ (k) = γ (k − 1)θ1 + γ (k − 2)θ2 + · · ·
(3.2)

+ γ (k − p)θp, k = 1,2, . . . .

Let m ≥ p and ϒm = (γ (1), γ (2), . . . , γ (m))�, θ =
(θ1, . . . , θp)� and

�m =

⎛
⎜⎜⎜⎝

γ (0) γ (−1) · · · γ (−p + 1)

γ (1) γ (0) · · · γ (−p + 2)
...

γ (m − 1) γ (m − 2) · · · γ (m − p)

⎞
⎟⎟⎟⎠ .

The Yule–Walker equations can be written as

�mθ = ϒm.

Suppose that the observable y-time series is given
by yt = xt + ηt , for t = 0,1,2, . . . , where {ηt } is in-
dependent of {xt } and is a sequence of independent
and identically distributed random variables each with
zero mean and finite variance. Clearly, {yt } is no longer
given by an AR(p) model of the form (3.1).

Let {γ̃ (j)} denote the ACF of the observable y-time
series. Let �̃m and ϒ̃m denote the analogously defined
matrix and vector of ACFs for the observable y-time
series.

Suppose we are now given the observations {y1, y2,

. . . , yT }, and we wish to fit the wrong model of the
form (3.1) to them. We may estimate γ̃ (j) by γ̂ (j) =
γ̂ (−j) = T −1∑T −j

t=1 (yt − ȳ)(yt+j − ȳ), ȳ being the
sample mean. Let �̂m and ϒ̂m denote the obvious sam-
ple version of �̃m and sample version of ϒ̃m, respec-
tively.

Since any p equations can be used to determine the
parameters, the Yule–Walker estimators typically use
the first p equations, that is,

θ̂ = �̂−1
p ϒ̂p or θ̂ = (�̂�

p �̂p)−1�̂�
p ϒ̂p,

which is also the minimizer of
∑p

k=1{γ̂ (k) − γ̂ (k −
1)θ1 − γ̂ (k − 2)θ2 − · · · − γ̂ (k − p)θp}2, involving the
ACF only up to lag p. We can achieve closer matching
of the ACF by incorporating lags beyond p as well. For
example, we may consider estimating θ by minimizing

m∑
k=1

{γ̂ (k) − γ̂ (k − 1)θ1

− γ̂ (k − 2)θ2 − · · · − γ̂ (k − p)θp}2,

m ≥ p.
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Denoting the minimizer by θ̂{m}, we have

θ̂{m} = (�̂�
m�̂m)−1�̂�

mϒ̂m

(3.3)

=
{

m∑
k=0

ϒ̆kϒ̆
�
k

}−1 m∑
k=0

ϒ̆kγ̂ (k + 1),

where ϒ̆k = (γ̂ (k), γ̂ (k + 1), . . . , γ̂ (k + p − 1))�. Let
us call the estimator θ̂{m} the up-to-lag-m Yule–Walker
estimator (or AYW(≤ m)). For the error-free case, that
is, ηt = 0 with probability 1, it is easy to see that θ̂{p} is
the most efficient amongst all θ̂{m},m = p,p + 1, . . . .

Otherwise, under some regularity conditions, we have
in distribution

√
n
{
θ̂{m} − ϑ

}→ N(0, �̃m),

where ϑ = (�̃�
m�̃m)−1�̃�

mϒ̃m and �̃m is a positive
definite matrix. For Var(εt ) > 0 and Var(ηt ) = σ 2

η >

0, the above asymptotic result holds with ϑ = θ +
σ 2

η (��
m�m +2σ 2

η �p +σ 4
η I )−1(�p +σ 2

η I )θ. For further
details, see Theorem B in the Appendix.

Clearly the bias σ 2
η (��

m�m +2σ 2
η �p +σ 4

η I )−1(�p +
σ 2

η I )θ in the estimator will be smaller when m is larger.
For sufficiently large sample size, the smaller bias can
lead to higher efficiency in the sense of mean squared
errors (MSE). Let ϒ̄k = (γ (k), γ (k + 1), . . . , γ (k +
p − 1))�. Then

��
m�m = ��

p �p +
m∑

k=p

ϒ̄kϒ̄
�
k .

Thus, the bias can be reduced more substantially if the
ACF decays very slowly and a larger m is used. For ex-
ample, a highly cyclical time series usually has slowly
decaying ACF, in which case the AYW will provide
a substantial improvement over the Yule–Walker esti-
mators. However, even with the ACF slowly decaying,
a large m may cause larger variability of the estima-
tor. Therefore, a good choice of m is also important in
practice. We shall return to this issue later.

In fact, Walker (1960) suggested using exactly p

equations to estimate the coefficients giving

θ̂W.� = arg min
θ

{2p−1+�∑
k=p+�

ϒ̆kϒ̆
�
k

}−1 2p−1+�∑
k=p+�

ϒ̆kγ̂ (k + 1).

Note the difference between AYW and θ̂W.�. Walker
(1960) showed that in the presence of measurement
error, then � = p is the optimal choice amongst all
candidates with � ≥ p, by reference to MSE. How-
ever, Walker’s method seems counterintuitive because

it relies on the sample ACF at higher lags to a greater
extent than those at the lower lags. Further discus-
sion on Walker’s method can be found in Sakai, Soeda
and Tokumaru (1979) and Staudenmayer and Buonac-
corsi (2005). It is well known that an autoregressive
model plus independent additive white noise results in
an ARMA model. Walker’s approach essentially treats
the resulting ARMA model as a true model. This ap-
proach has attracted attention in the engineering lit-
erature. See, for example, Friedlander and Sharman
(1985) and Stoica, Moses and Li (1991). The essen-
tial difference between this approach and the catch-all
approach is that the latter postulates an autoregressive
model to match the observations. And we know that it
is a wrong model, as we consistently do with all postu-
lated models. Note that the use of sample ACFs at all
possible lags has points of contact with the so-called
generalized method of moments, used extensively in
econometrics. See, for example, Hall (2005).

Next, we consider estimation based on Q(·, ·). Given
a finite sample size, we may stop at, say, the m-step-
ahead prediction. Let e1 = (1,0, . . . ,0)� and

� =

⎛
⎜⎜⎝

θ1 θ2 · · · θp−1 θp

1 0 · · · 0 0
...

...
... 0 0

0 0 · · · 1 0

⎞
⎟⎟⎠ .

We estimate θ by

θ̃{m} = arg min
θ

T∑
t=p+1

m∑
k=1

wk{yt−1+k

(3.4)
−e�

1 �k(yt−1, . . . , yt−p)�}2,

where wk is a weight function, typically positive def-
inite. A reasonable choice of wk is the absolute value
of the autocorrelation function of the observed time se-
ries, that is, wk = |ry(k)|. We call θ̃{m} in (3.4) the up-
to-m-step-ahead prediction estimator [APE or APE(≤
m)].

The asymptotic properties of θ̃{m} will be discussed
later.

3.2 Nonlinear Skeletons

A deterministic nonlinear dynamic model with mea-
surement error is commonly used in many applied ar-
eas, for example, ecology, dynamical systems and oth-
ers. See, for example, May (1976), Gurney, Blythe
and Nisbet (1980), Tong (1990), Anderson and May
(1991), Alligood, Sauer and Yorke (1997), Grenfell,
Bjørnstad and Finkenstädt (2002), Chan and Tong
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(2001) and the examples in Section 6. Consider using
the following nonlinear skeleton:

xt = gθ (xt−1, . . . , xt−p)(3.5)

to match the observable time series {yt }.
Employing the Q(·, ·) criterion, the estimator is

given by

θ̃{m} = arg min
θ

T∑
t=p+1

m∑
k=1

wk

{
yt−1+k

(3.6)
−g

[m]
θ (yt−1, . . . , yt−p)

}2
,

which we again call the up-to-m-step-ahead prediction
estimator [APE or APE(≤ m)]. Here the weight func-
tion {wk} is as defined in (2.3).

For ease of explanation, we consider again yt = xt +
ηt and p = 1. Starting from any state x̃0 = x0, let x̃t =
g

[m]
θ (x0). Suppose the dynamical system has a negative

Lyapunov exponent

λθ (x0) = lim
n→∞n−1

n−1∑
t=0

log(|g′
θ (x̃t )|) < 0,

for all states x0. Similarly starting from xt let xt+m =
g

[m]
θ0

(xt ). We predict xt+m by ŷt+m = g
[m]
θ (yt ). By the

definition of the Lyapunov exponent, we have∣∣g[m]
θ (xt + ηt ) − g

[m]
θ (xt )

∣∣≈ exp{mλθ(xt )}|ηt |.
More generally, suppose the system xt = gθ0(xt−1,

. . . , xt−p) has a finite-dimensional state space and ad-
mits only limit cycles, but xt is observed as yt =
xt + ηt , where {ηt } are independent with mean 0.
Suppose that the function gθ (v1, . . . , vp) has bounded
derivatives in both θ in the parameter space � and
v1, . . . , vp in a neighborhood of the state space. Sup-
pose that the system zt = gθ (zt−1, . . . , zt−p) has only
negative Lyapunov exponents in a small neighborhood
of {xt } and in θ ∈ �. Let Xt = (xt , xt−1, . . . , xt−p)

and Yt = (yt , yt−1, . . . , yt−p). If the observed Y0 =
X0 + (η0, η−1, . . . , η−p) is taken as the initial values
of {xt }, then for any n,

f (ym+1, . . . , ym+n|X0)

− f (ym+1|X0 = Y0)(3.7)

· · ·f (ym+n|X0 = Y0) → 0

as m → ∞. Suppose the equation
∑

Xt−1
{gθ (Xt−1) −

xt }2 = 0 has a unique solution in θ , where the sum-
mation is taken over all limiting states. Let θ{m} =
arg minθ m−1∑m

k=1 E{yt−1+k − g
[k]
θ (Yt−1)}2. If the

noise takes value in a small neighborhood of the ori-
gin, then

θ{m} → θ0 as m → ∞.

Note that |f (y1|X0)−f (y1|X0 = Y0)| 
= 0 implies that

f (y1, . . . , yn|X0 = Y0)


= f (y1|X0 = Y0)f (y2|X1 = Y1)

· · ·f (yn|Xn−1 = Yn−1),

which challenges the commonly used (conditional)
MLE. Equation (3.7) indicates that using high step-
ahead prediction can reduce the effect of noisy data
(e.g., due to measurement errors), and provide a bet-
ter approximation of the conditional distribution. The
second part suggests that using high step-ahead pre-
diction errors in a criterion can reduce the bias caused
by the presence of ηt . It also implies that any set of
past values, for example, (yt−1, . . . , yt−p) for t > p,
can offer us an estimator with the first summation in
(3.6) removed. However, the summation over all past
values is more efficient statistically. For further details,
see Theorem C in the Appendix.

There are other interesting special cases. For exam-
ple, when the postulated model has a chaotic skeleton,
the initial values play a crucial role. One approach is
to treat the initial values as unknown parameters. See,
for example, Chan and Tong (2001) for more details.
Another example is when the postulated model is non-
linear, and is driven by nonadditive white noise with
an unknown distribution. Here, the exact least squares
multi-step-ahead prediction is quite difficult to obtain
theoretically and time consuming to calculate numeri-
cally; see, for example, Guo, Bai and An (1999). In this
case, the up-to-m-step-ahead prediction method is dif-
ficult to implement directly. However, our simulations
suggest that approximating the multi-step-ahead pre-
diction by its skeleton is sometimes helpful in feature
matching, especially when the observed time series is
quite cyclical (Chan, Tong and Stenseth, 2009).

4. ISSUES OF THE ESTIMATION METHOD

We now turn to some theoretical issues and calcula-
tion problems. In conventional statistical theory for pa-
rameter estimation, by consistency is generally meant
that the estimated parameter vector converges to the
true parameter vector in some sense as the sample size
tends to infinity. The postulated model is assumed to
be the true model in the above conventional approach.

In the absence of a true model and ipso facto true
parameter vector, we propose an alternative definition
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of consistency. Specifically, by consistency we mean
that the estimated parameter vector will, in some sense,
tend to the optimal parameter vector that represents
the best achievable feature matching of the postulated
model to the observable time series. To be more pre-
cise, for some positive integer m (which may be infi-
nite), we define the optimal parameter by

ϑm,w = arg min
θ

m∑
k=1

wkE[yt+k

− E{xt+k(θ)|Xt(θ) = Yt }]2,

where Xt(θ) = (xt (θ), . . . , xt−p+1(θ)) and {wk} de-
fines the weight function, typically positive and sum-
ming to unity. For ease of exposition, we assume that
the solution to the above minimization is unique. Now,
we say that an estimator is feature-consistent if it con-
verges to ϑm,w in probability as the sample size tends
to infinity. It is easy to prove that under some regularity
conditions, θ̃{m} is asymptotically normal, that is,

T −1/2(θ̃{m} − ϑm,w
) D→ N(0,�)

for some positive definite matrix �. For further details,
see Theorem D in the Appendix.

The optimal parameter depends on m and the weight
function wk . As discussed in Section 3.1, when the au-
tocorrelation decays less slowly, we should consider
using a larger m. Alternatively, we can consider assign-
ing heavier weights for larger k. Our experience sug-
gests that, for a postulated linear time series model, wk

can be selected as the absolute value of the sample ACF
function. For a postulated nonlinear time series model
aiming to match possibly high degrees of periodicity,
wk can be chosen as constant lasting for approximately
one, two or three periods. Note that by setting w1 = 1
and all other wj ’s zero, the estimation is equivalent to
the LSE, and the MLE in the case of exponential family
of distributions.

The above feature suggests that we may regard θ̃{m}
as a maximum extended-likelihood estimator and func-
tions such as

∑T
t=p+1

∑m
k=1 wk{yt−1+k − e�

1 �k(yt−1,

. . . , yt−p)�}2 or their equivalents as extended-likeli-
hoods (or XT-likelihoods for short), with Whittle’s like-
lihood as a precursor. An XT-likelihood carries with it
the interpretation as a weighted average of likelihoods
of a cluster of models around the postulated model. In
this sense, it is related to Akaike’s notion of the likeli-
hood of a model (Akaike, 1978).

For the numerical calculation involved in (3.4) and
(3.6), the gradient and the Hessian matrix of the

loss function can be obtained recursively for dif-
ferent steps of prediction. Consider (3.6) as an ex-
ample. Let g

[m]
θ stand for g

[m]
θ (yt−1, . . . , yt−p) and

write gθ (v1, . . . , vp) as g(v1, . . . , vp, θ1, . . . , θq). Let

g
[0]
θ = yt−1, . . . , g

[−p+1]
θ = yt−p , ∂g

[m]
θ /∂θk = 0 and

∂2g
[m]
θ /(∂θk∂θ�) = 0, k, � = 1, . . . , q if m ≤ 0. Then

for m ≥ 1,

g
[m]
θ = g

(
g

[m−1]
θ , . . . , g

[m−p]
θ , θ1, . . . , θq

)
and

∂g
[m]
θ

∂θk

=
p∑

i=1

ġi

∂g
[m−i]
θ

∂θk

+ ġp+k

(
g

[m−1]
θ , . . . , g

[m−p]
θ , θ1, . . . , θq

)
,

k = 1, . . . , q,

where ġk(v1, . . . , vp, . . . , vp+q) = ∂g(v1, . . . , vp, . . . ,

vp+q)/∂vk, k = 1, . . . , p + q , and

∂2g
[m]
θ

∂θk ∂θ�

=
p∑

i=1

p∑
j=1

g̈i,j

∂g
[m−i]
θ

∂θk

∂g
[m−j ]
θ

∂θ�

+
p∑

i=1

ġi

∂2g
[m−i]
θ

∂θk ∂θ�

+
p∑

i=1

g̈p+k,i

(
g

[m−1]
θ , . . . , g

[m−p]
θ ,

θ1, . . . , θq

)∂g
[m−i]
θ

∂θ�

+ g̈p+k,p+�

(
g

[m−1]
θ , . . . , g

[m−p]
θ , θ1, . . . , θq

)
,

where g̈k,�(v1, . . . , vp, . . . , vp+q) = ∂2g(v1, . . . , vp,

. . . , vp+q)/(∂vk∂v�) for k, � = 1, . . . , p + q . The
Newton–Raphson method can then be used for the
minimization.

5. SIMULATION STUDY

There are many different ways to measure the good-
ness of matching the observed by the postulated model,
depending on the features of interest. We suggest two
here. (1) The ACFs are clearly important features in the
context of linear time series, and relevant even for non-
linear time series analysis. Therefore, a natural mea-
sure can be based on the differences of the ACFs, for
example, [

N∑
k=0

{ry(k) − rx(k)}2/N

]1/2

(5.1)
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for some N , sufficiently large or even infinite, where
ry(k) and rx(k) are the theoretical ACFs (if available)
or sample ACFs. Clearly, we can use other distances
to measure the differences of the ACFs. (2) For highly
cyclical {yt }, we can measure the differences between
the observed and the attractor (i.e., the limiting state)
generated by the skeleton of postulated model, after al-
lowing for possible phase shifts. Thus, we can use the
following quasi-sample-path measure:

min
k

T∑
t=1

|yt − xt+k|/T ,(5.2)

where T is the sample size as before.
To check the efficacy of estimation of parameters,

especially in a simulation study, we can use an obvious
measure: {(θ̂ − θ)�(θ̂ − θ)/p}1/2 for any estimator θ̂

of θ = (θ1, . . . , θp)�. Obviously, it is a function of the
number of steps m in APE(≤ m) or AYW(≤ m). Note
m = 1 corresponds to the commonly used estimation
method based on the least squares, or the maximum
likelihood when normality is assumed. Note that the
MLE is also based on the one-step-ahead prediction for
dynamical models that are driven by Gaussian white
noise. In our plotting below, results for APE(≤ 1) and
AYW(≤ 1) are not marked separately from those for
APE(≤ m) and AYW(≤ m) with m > 1.

EXAMPLE 5.1 (Model misspecification). We pos-
tulate an AR(p) model to match data generated by
fractionally integrated noise (1 − B)dyt = εt , where
0.5 > d > −0.5 and B is the back-shift operator and
{εt } are i.i.d. N(0,1). The process is stationary, but
has long-memory when 0.5 > d > 0. The closer is d to
0.5, the longer is the memory. For the use of low-order
ARMA models for short-term prediction of this type
of long-memory model, see, for example, Man (2002).
Any AR(p) model with finite p is a “wrong” model
for the process. In the following analysis, the order p

is assumed unknown and determined by AIC.
The simulation results shown in Figure 1 are based

on 2,000 replications. We have the following observa-
tions. (1) With a misspecified model, the APE(≤ m)

and the AYW(≤ m) with m > 1 show better matching
of the ACFs than the APE(≤ 1) and AYW(≤ 1). When
d is closer to 0.5, the AR model is less likely to fit
the data well, thus necessitating a larger m. (2) When
the autocorrelation is not strong, which is the case with
d being close to zero, the AYW with large m shows
better matching of the ACF than the APE; otherwise
APE shows better matching. It is interesting to note
that although APE does not target the ACF directly, it

FIG. 1. Simulation results for Example 5.1 with different sam-
ple size T , index d and the number of steps m in AYW(≤ m) or
APE(≤ m). In each panel, the dotted line, the solid line and the
dashed line correspond to the Whittle estimator, the APE and the
AYW, respectively.

can match the ACF well in comparison with the AYW.
(3) For small sample size or when d is not so close to
0.5, the APE(≤ m) with m > 1 show better matching
than the Whittle estimator; otherwise the Whittle esti-
mator shows better matching.

EXAMPLE 5.2 (State–space model). Consider the
AR(4) model with observation errors

xt = β1xt−1 + β2xt−2 + β3xt−3 + β4xt−4 + εt ,

yt = xt + ηt .

This is also a special case of a state–space model.
The estimation of the state model is of interest and
has attracted considerable attention. See, for example,
Durbin and Koopman (2001) and Staudenmayer and
Buonaccorsi (2005).

To cover as widely as possible all admissible val-
ues on the parameter space, we choose β1, β2, β3 and
β4 uniformly distributed in the stationary region. In
the model, {εt } is a sequence of independently and
identically distributed random variables, each with a
unit normal distribution, or i.i.d. N(0,1) for short;
{ηt } is i.i.d. N(0, σ 2

η ), such that the signal-noise ratio
σ 2

η /Var(yt ) = sn is fixed. Again, we run the simula-
tion 2,000 times. The results are summarized in Fig-
ures 2 and 3. When p is known, Figure 2 suggests
that APE(≤ m) and AYW(≤ m) with m > 1 can usu-
ally produce models that better match the dynamics
of the hidden state time series {xt } than APE(≤ 1)
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FIG. 2. Results for Example 5.2 when the order p = 4 is known.
In each panel, the dotted line, the solid line and the dashed line
correspond respectively to the Kalman filter, the APE(≤ m) and
the AYW(≤ m) over different m.

and AYW(≤ 1). When p is selected by AIC, Figure 3
suggests that APE(≤ m) and AYW(≤ m) with m > 1
can still lead to better matching than APE(≤ 1) and
AYW(≤ 1).

To compare with the Kalman filter approach which
utilizes the maximum likelihood method or other meth-
ods such as the EM algorithm, we apply the R package
“dlm” kindly provided by Professor Giovanni Petris.
The results are shown by dotted lines in Figure 2. When
the order is known, the Kalman filter shows good per-
formance in estimating the coefficients and in match-
ing the ACF, but it shows very unstable performance

FIG. 3. Results for Example 5.2 when the order p is selected by
AIC. In each panel, the solid line is for APE(≤ m) and the dashed
line is for AYW(≤ m).

when the sample size is small. Even worse, if the order
is selected by the AIC, the Kalman filter appears to be
incapable of producing reasonable matching, so much
so that the results are outside the range in Figure 3 in
the wrong direction.

EXAMPLE 5.3 (Nonlinear time series model 1:
smooth model). Consider the simple nonlinear model

xt = b1xt−1 + b2x
2
t−1 + σ0εt ;

yt = xt + σ1ηt

with parameters b1 = 3.2 and b2 = −0.2; both εt and
ηt are i.i.d. N(0,1) but εt is truncated to lie in [−4,4].
We replicate our simulation 1,000 times for each set of
variances σ 2

0 and σ 2
1 . The matching results are shown

in Figure 4.
By coping well with noisy data due to σ1η, APE(m >

1) demonstrates substantial improvement on the pa-
rameter estimation (in panel 1 of Figure 4), the ACF-
matching of the hidden time series xt (panel 2 of Fig-
ure 4) and the ACF-matching of the observed time se-
ries (in panel 3 of Figure 4). It is not surprising that
when the model is perfectly specified (i.e., σ1 = 0),
the APE(≤ 1) can provide better performance than
APE(≤ m) with m > 1 in terms of the parameter esti-
mation and the ACF-matching; see panels 4–5 of Fig-
ure 4. However, APE(≤ m) with m > 1 is still useful in
matching features of the observed time series as shown

FIG. 4. Results for Example 5.3 with T = 50 and different σ0 and
σ1. The first panel is the estimation error of (b1, b2) with σ1 = 1;
the second panel is the difference of ACFs between the matching
skeleton and the true ACF with σ1 = 1; the third panel is the dif-
ference of ACFs between the matching skeleton and the estimated
ACFs based on random realizations with σ1 = 1. Panels 4–6 are re-
spectively the corresponding results of panels 1–3 but with σ0 = 0.



32 Y. XIA AND H. TONG

TABLE 1
The simulation results for Example 5.4

Model Matching Cycle Frequency of
setting Method error periods correct periods (%)

T = 50, d = 2, APE(≤ 1) 2.1352 (1.0334) 5.3806 (0.6301) 31
period = 6 APE(≤ 50) 0.8523 (0.6591) 5.8629 (0.5141) 92
T = 50, d = 3, APE(≤ 1) 2.5301 (1.6729) 9.4839 (0.5824) 34
period = 10 APE(≤ 50) 1.3987 (0.8180) 9.9340 (0.1472) 66
T = 100, d = 2 APE(≤ 1) 1.5260 (1.0643) 5.5884 (0.6912) 57
period = 6 APE(≤ 50) 0.6471 (0.5301) 5.9180 (0.3940) 95
T = 100, d = 3 APE(≤ 1) 2.7196 (1.6411) 9.4005 (0.6224) 34
period = 10 APE(≤ 50) 1.1502 (0.5133) 9.9705 (0.0770) 78

in the last panel. Our results suggest that APE(≤ m)

with m > 1 leads to less improvement over APE(≤ 1)

when σ0 (for the dynamic noise) is larger but greater
improvement when σ1 (for the observation noise) is
larger.

EXAMPLE 5.4 (Nonlinear time series model 2:
SETAR model). Now, we consider a self-exciting
threshold autoregressive model (SETAR model) with
skeleton

xt =
{

a0 + b0xt−1, if xt−d ≤ c,
a1 + b1xt−1, if xt−d > c,

where parameters a0 = 3, b0 = 1, a1 = −3, b1 = 1 and
c = 0. A realization is shown in the first panel of Fig-
ure 5. It reveals a period of 6 when d = 2, and 10
(not shown) when d = 3. Suppose that we observe
yt = xt + ηt , where {ηt } are i.i.d. N(0,1). A typical

FIG. 5. The upper panel is a realization of the hidden skeleton in
Example 5.4. The lower panel is an observed time series subject to
additive measurement error from N(0, 1).

realization is also shown in the second panel of Fig-
ure 5.

Using the APE approach to the simulated data, we
denote the matching skeleton by xt and measure the
matching error defined in (5.2) with T = 100. Based on
100 replications, we summarize the results in Table 1.
The matching errors have means and standard devia-
tions in the parentheses in column 3; the average and
standard error (in the parentheses) of the periods in all
the matching models are listed in column 4. Our results
suggest that the APE(≤ m) with m > 1 performs much
better than the APE(≤ 1), both in terms of matching
the dynamic range and the periodicity.

6. APPLICATION TO REAL DATA SETS

In this section, we study four real time series, some
of which are very well known but others less so. They
are the sea levels data, the annual sunspot numbers,
Nicholson’s blowflies data, and the measles infection
data in London after the massive vaccination in the late
1960s.

6.1 Sea Levels Data

Long-term mean sea level change is of consider-
able interest in the study of global climate change.
Measurements of the change can provide an impor-
tant corroboration of predictions by climate models
of global warming. Starting from 1992, in each year
34 equally spaced observations were recorded. The
data with the linear trend and seasonality removed
are available at http://sealevel.colorado.edu/current/sl_
noib_ns_global.txt. The time series is depicted in the
first panel of Figure 6. Note that the data are subject to
measurement errors of 3–4 mm.

As an experiment with using a much less than ideal
model to match this data set, let us postulate an AR

http://sealevel.colorado.edu/current/sl_noib_ns_global.txt
http://sealevel.colorado.edu/current/sl_noib_ns_global.txt
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FIG. 6. Results for the sea level data. The data with linear trend
and seasonality removed are shown in the first panel. Panels 2–4
are the smoothed sample SDF and those of the fitted models by
MLE, the Whittle method and APE(≤ 20), respectively. Panel 5 is
the relative averaged multi-step-ahead prediction errors by taking
those of the one-step method as one unit. The curves marked by “◦,”
“×,” “�” and “�” are for APE(≤ 10), APE(≤ 20), APE(≤ 30)

and APE(≤ 50), respectively.

model. By AIC, the order of the AR model is selected
as 6. Next, we apply the MLE (equivalently the one-
step-ahead prediction estimation method), the Whit-
tle method and the up-to-m-step-ahead prediction es-
timation method to the data. The results are shown in
Figure 6. The sample spectral density function (SDF)
is estimated by the method of Fan and Zhang (2004).
The results show clear evidence of long-memory with
the singularity at the origin, which is well captured by
all three methods. However, for the peak away from
the origin, the Whittle estimation and APE(≤ m) show
very similar matching capability and both show much
better match than the MLE.

To investigate further, we build an AR(6) model for
every span of observations of length T = 100 and make

predictions from 1 step ahead to 30 steps ahead. For the
different estimation methods, their averaged prediction
errors based on all periods are displayed in the bottom
panels of Figure 6. The MLE method shows clear su-
perior performance for short-term prediction, while the
reverse is true from 5 steps onward.

6.2 Annual Sunspot Numbers

Sunspots, as an index of solar activity, are relatively
cooler and darker areas on the sun’s surface resulting
from magnetic storms. Sunspots have a cycle of length
varying from about 9 to 13 years. Statisticians have fit-
ted several models to predict sunspot numbers. They
have also noticed that the cycles are asymmetric and
that the time from the initial minimum of a cycle to
its next maximum, called the rise time, and the time
from a cycle maximum to its next minimum, called the
fall time, are fairly regular. Due to their link to other
kinds of solar activity, sunspots are helpful in predict-
ing space weather and the state of the ionosphere. Thus,
sunspots can help predict conditions of short-wave ra-
dio propagation as well as satellite communications.
Historical data of the sunspots have been recorded
in different parts of the world. The data we use are
the annual sunspot numbers for the period 1700–2008
which are obtainable from http://www.ngdc.noaa.gov/
stp/SOLAR/. Yule (1927) was the first statistician to
model the sunspot number using a model, now known
as the autoregressive model, with lag 2. Later refine-
ments of stationary linear models can be found in,
for example, Brockwell and Davis (1991) and others;
higher-order AR models or ARMA models are used.
Akaike (1978) suggested that the data are better mod-
eled as nonstationary over a long period. Tong and Lim
(1980) noticed nonlinearity in the data dynamics and
proposed the use of a self-exciting threshold autore-
gressive model (or a SETAR model for short). In the
following, we postulate a two-regime SETAR model of
order 3 with delay parameter equal to 2 for the annual
sunspot numbers (1700–2008). Specifically,

xt =
{

a0 + b0xt−1 + c0xt−2 + d0xt−3, if xt−2 ≤ τ0,
a1 + b1xt−1 + c1xt−2 + d1xt−3, if xt−2 > τ0,

where xt = log(no. of sunspots + 1). Note that Cheng
and Tong (1992) recommended a nonparametric AR(4)
model. We also tried SETAR model of order 4 with
delay parameter equal to 2. The performances of both
models are very similar.

We use each fixed span of T observations to fit the
postulated model and then use it to do a post-sample
prediction based on the skeleton of the fitted model.

http://www.ngdc.noaa.gov/stp/SOLAR/
http://www.ngdc.noaa.gov/stp/SOLAR/
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TABLE 2
The averaged difference (and its standard error) of cycle periods in the data and matching models

and the number of unstable matching models [in squared brackets]

m in Length of time series

APE(≤ m) 20 35 50 100

1 2.5448 (3.0084) [42] 1.7115 (1.8162) [2] 1.3355 (1.5718) [0] 1.5934 (1.4051) [0]
10 1.3454 (1.7082) [13] 0.9576 (0.8499) [0] 0.8459 (0.9584) [0] 0.4487 (0.5427) [0]
20 1.2972 (1.7143) [10] 0.8975 (1.1257) [0] 0.7580 (0.6074) [0] 0.4134 (0.9715) [0]
30 0.8802 (1.1415) [1] 0.8449 (0.5807) [0] 0.3640 (0.5894) [0]
50 0.8548 (0.5813) [0] 0.3538 (0.4267) [0]

We measure the following: (1) the difference of cycle
periods between the data and the fitted model; (2) the
frequency of stable fitted models; (3) the out-of-sample
prediction errors based on the skeletons of models fit-
ted by the APE(≤ m) for different m; (4) the difference
between the observed time series and the time series
generated by the best fitting skeleton by reference to
(5.2).

The results are shown in Figure 7 and Table 2. We
may draw the following conclusions. (1) When the ob-
served time series is short (e.g., T = 20,35), APE(≤
m) with m > 1 show better matching than APE(≤ 1)

in both one-step-ahead prediction and multi-step-ahead
prediction; see panels 1 and 2 in Figure 7. When the
length of the time series is longer (e.g., T = 50,100),
APE(≤ 1) can lead to fitted models with better short-
term (less than 4 steps ahead) prediction than APE(≤

FIG. 7. The dashed curves are the averaged prediction errors
based on APE(≤ 1), the solid curves are those based on APE(≤ m)

with m = 10,20,30,50, respectively. The horizontal dashed lines
are the matching errors for the APE(≤ 1), the solid lines are those
for APE(≤ m) with m = 10,20,30,50, respectively.

m) with m > 1, but for prediction beyond 4 steps
ahead, the reverse appears to be the case, in line with
our understanding of the APE method. (2) When the
observed time series is short, APE(≤ m) with m > 1
shows its ability in avoiding unstable models; see the
numbers in the square brackets of Table 2. (3) For both
short time series and long time series, models fitted by
APE(≤ m) with m > 1 show better matching of the ob-
served time series in terms of their cycles; see Table 2
and the horizontal lines in Figure 7.

6.3 Nicholson’s Blowflies

The data consist of the total number of blowflies
(Lucilia cuprina) in a population under controlled lab-
oratory conditions. The data represent counts for ev-
ery second day. The developmental delay (from egg to
adult) is between 14 and 15 days for the blowflies un-
der the conditions employed (Gurney, Blythe and Nis-
bet, 1980). Nicholson obtained 361 bi-daily recordings
over a 2-year period (722 days). However, due to bi-
ological evolution (Stokes et al., 1988), the whole se-
ries cannot be considered to represent the same system;
a major transition appears to have occurred around day
400. Following Tong (1990), we consider the first part
of the time series (to day 400, thus T = 200), for which
the population has a 19 bi-days cycle; see Figure 8.

Next, we postulate the single species animal pop-
ulation discrete model (1.2) with b(xt−τ ) = cxα−1

t−τ ·
exp(−xt−τ /N0), and thus

xt = cxα
t−τ exp(−xt−τ /N0) + νxt−1,

where we take τ = 8 (bi-days) corresponding to the
time taken for an egg to develop into an adult. Note
that we specify b(xt−τ ) slightly differently from Gur-
ney, Blythe and Nisbet (1980) by adding an exponent
α − 1 to xt−τ , which is usually necessary when a dif-
ferential equation model is discretized and approxi-
mated by a time series model; see Glass, Xia and Gren-
fell (2003). In the model, there are four parameters:



FEATURE MATCHING 35

FIG. 8. Results for the Nicholson’s blowflies data. In the first
two panels, the dashed lines are for the observed population; the
solid lines are for realizations from models fitted by APE(≤ 1) and
APE(≤ T ), respectively. The dashed lines in panels 3 and 4 are the
periodograms of the observed data, and the solid lines are those of
the models fitted by APE(≤ 1) and APE(≤ T ), respectively. In pan-
els 5 and 6, for each τ marked in the x-axis, the vertical column is
the periodogram with the values color-coded, brighter color (blue
being dull) corresponding to higher power value. Thus the brightest
point indicates the cycle-period of the dynamics at τ .

c,α,N0 and ν. The (one-step-ahead prediction) MLE
estimates for the parameters are

ĉ = 20.1192, N̂0 = 589.5553,

ν̂ = 0.7598, α̂ = 0.8461.

The APE method gives

ĉ = 591.5801, N̂0 = 1307.0,

ν̂ = 0.6469, α̂ = 0.2633.

The skeletons based on the postulated model with
parameters estimated by above methods are shown in
panels 1 and 2 in Figure 8, respectively. They show
that APE(≤ T ) results in a model whose skeleton
matches the observed cycles to a much greater extent
than APE(≤ 1). APE(≤ 1) gives a period of 21 bi-
days; APE(≤ T ) gives a period of 19 bi-days, which

is almost exactly the average period of the observed
cycles. We have also postulated a SETAR model. With
APE(≤ T ), the SETAR model can also capture the ob-
served period very well, but again this is not the case
with APE(≤ 1). To investigate how the cycles change
with the time needed by the fly to grow to maturity,
we vary the time τ from 4 to 100 bi-days. The cor-
responding cycles (in bi-days) are shown in the last
two panels of Figure 8. APE(≤ T ) shows a clear lin-
early increasing trend in the cycle-periods as τ in-
creases, while APE(≤ 1) shows strange excursions that
are difficult to interpret. The linear relationship sug-
gested by APE(≤ T ) may be helpful in throwing some
light on the important but not completely resolved cy-
cle problem of animal populations. We have also tried
APE(≤ m) with m equal to twice or thrice the cycle-
period. Their results are similar to those of APE(≤ T ).

6.4 Measles Dynamics in London

It is well known that the continuous-time suscepti-
ble-infected-recovered (SIR) model using a set of or-
dinary differential equations can describe qualitatively
the behavior of epidemics quite well. However, it is
difficult to use it for real data modeling when the ob-
servations are made in discrete time. To bridge the
gap between the theoretical model and real data fit-
ting, several discrete-time or chain models have been
introduced. The Nicholson–Bailey host-parasite model
(Nicholson and Bailey, 1935) is an early example. Bai-
ley (1957), Bartlett (1960) and Finkenstädt and Gren-
fell (2000) proposed different types of discrete-time
epidemic models. A general discrete-time or chain
model can be written as follows:{

St+1 = St + Bt − It+1,

It+1 = StP (It ),
(6.1)

where It , St and Bt are respectively the number of the
infectious, the number of the susceptible and the num-
ber of births, all at the t th time unit. There are many
possible functional forms for the (probability) P(It ).
Examples are 1 − (1 − r0/N)It (Bartlett, 1960), 1 −
exp(−r0It/N) (Bartlett, 1956), r0It/N (Baily, 1957)
and R0I

α
t /N (Liu, Hethcote and Levin, 1987; Finken-

städt and Grenfell, 2000), where N is the effective pop-
ulation of hosts, and r0 is the basic reproductive rate.

Next, we postulate the following (deterministic)
discrete-time SIR model for the transmission of mea-
sles:

It+1 = exp(δt,kβk)St It ,

St+1 = St + bt − It+1 = S0 +
t∑

τ=0

Bτ −
t+1∑
τ=1

Iτ ,
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where exp(δt,kβk) is employed to indicate the sea-
sonality force, with δt,k = 1 if time t is at the kth
season, 0 otherwise. For measles, the time unit for t

is bi-weekly, based on the infection procedure of
measle; see Finkenstädt and Grenfell (2000). Now,
k = 1, . . . ,26 bi-weeks corresponds to about 54 weeks
in a year. Finkenstädt and Grenfell (2000) considered
the same model but with the first equation being It+1 =
exp(δt,kβk)St I

α
t . Here, we take α = 1 for two reasons.

(1) If α < 1, Finkenstädt and Grenfell (2000) were
unable to use the model to explain the dynamics of
measles in the massive vaccination era. (2) Experience
with statistical modeling of ecological populations sug-
gests that α can be taken as 1 with improved interpreta-
tion; see Bjønstad, Finkenstädt and Grenfell (2002). In
practice, It may not be observed directly; what can be
observed is a random variable, say yt , that has mean It .
For this observable yt , we postulate a model xt that fol-
lows a Poisson distribution with mean It .

There are some problems with the data. There is
nonnegligible observation error in the data due to the
under-reporting rate, which can be as high as 50%; see
Finkenstädt and Grenfell (2000), where a method was
proposed to recover the data. Following their method,
the data were adjusted for the under-reporting rate. The
adjusted data are shown in dashed lines in panels 1 and
2 of Figure 9. It is known that the role of vaccination
is equivalent to the reduction of the birth rate (Earn
et al., 2000). Thus, we adjust the number of births
by multiplying it by the un-vaccination rate, that is,
1−(vaccination rate). We show the adjusted births in
the third panel of Figure 9. Another problem with the
data is that the susceptible St is unknown, which can
also be reconstructed by the method of Finkenstädt and
Grenfell (2000).

The estimates of the model by APE(≤ 1) are listed in
Table 3. To ease the calculation of APE(≤ T ), we sim-
plify the model by taking βk = β̄ +λ(βk,1 − β̄), where
β1,1, . . . , β26,1 are the estimates of APE(≤ 1) and β̄ is
their average. Consequently, only λ and S0 need to be
estimated in implementing APE(≤ T ). The skeletons
based on models fitted by APE(≤ 1) and APE(≤ T )

are shown in solid red lines in panel 1 and panel 2 of
Figure 9, respectively. APE(≤ T ) shows a much bet-
ter match than APE(≤ 1) in terms of outbreak scale
and cycle period. The periodogram is also much better
matched by APE(≤ T ) than by APE(≤ 1); see the last
two panels of Figure 9. We have also tried APE(≤ m)

with m being twice or thrice the cycle period (i.e., 26
bi-weeks). The results are similar to APE(≤ T ).

FIG. 9. Results for modeling the measles incidents in London.
The dashed lines in panels 1 and 2 are the recovered incidents
of measles; the solid lines are the realizations of the model based
on APE(≤ 1) and APE(≤ T ), respectively. Panel 3 is the adjusted
birth rate by removing the vaccinated; in the bottom panels, the
dashed lines are the periodograms of the data and the red lines
are those of the matching skeleton by APE(≤ 1) and APE(≤ T ),
respectively.

An important feature in the measles transmission
is that there were some big annual outbreaks in the
1950s when the birth rate was very high after the sec-
ond world war, and some big bi-annual outbreaks in
the middle of the 1960s when the birth rate was rel-
atively low. The dynamics before the massive vacci-
nation in the late 1960s was modeled very well by
a time series model in Finkenstädt and Grenfell (2000).
The theory that relates population cycle length to birth
rate has been well accepted in epidemiology and ecol-
ogy. In epidemiology, the relationship will either pro-
long or shorten the cumulation procedure of suscepti-
bles for a big outbreak. Observations from the other
sources have lent support to this theory. For example,
the measles in New York have a three-year or four-
year cycle when the birth rate is very low. As another
supporting piece of evidence, in the vaccination era,
the cycles lasted longer, to four or five years because
vaccination is equivalent to the reduction of birth rate
in the transmission of disease. However, the dynam-
ics after the massive vaccination is difficult to model
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TABLE 3
Parameters in the measles transmission model

Method β1 β2 β3 β4 β5 β6 β7 β8

APE(≤ 1) −11.92 −12.00 −11.88 −11.99 −11.89 −11.81 −11.89 −11.97
APE(≤ T ) −11.95 −12.00 −11.93 −11.99 −11.93 −11.89 −11.93 −11.98

β9 β10 β11 β12 β13 β14 β15 β16
APE(≤ 1) −11.92 −11.99 −12.05 −12.01 −11.93 −11.96 −11.98 −12.04
APE(≤ T ) −11.95 −11.99 −12.03 −12.00 −11.96 −11.98 −11.99 −12.02

β17 β18 β19 β20 β21 β22 β23 β24
APE(≤ 1) −11.95 −12.15 −12.28 −12.40 −12.21 −11.99 −11.79 −11.87
APE(≤ T ) −11.97 −12.08 −12.16 −12.23 −12.12 −11.99 −11.87 −11.92

β25 β26 S0
APE(≤ 1) −11.99 −11.98 17,8280
APE(≤ T ) −11.99 −11.98 16,8190

due to the quickly changing birth rate. The method
of Finkenstädt and Grenfell (2000) has failed to cap-
ture this change of cycles in the vaccination era. It is
therefore worth noting that our modified model, with
the aid of APE(≤ m) with m > 1, shows satisfactory
matching. To investigate further how the cycles change
with the birth rate, for each fixed number of births we
run the estimated model and depict its periodogram
and highlight the peaks by color-coding (brighter color
for higher power). The peaks with the brightest points
correspond to the cycles of the postulated model. Fig-
ure 10 shows clearly that when the birth rate is high
(from about 5,000 upward) the cycle is annual, but
when the birth rate is medium at about 3,000 to 4,000,
the cycles become two-year cycles. As the birth rate

FIG. 10. Measles transmission. Each vertical column is the peri-
odogram with the values color-coded, brighter color corresponding
to higher power. (Dark blue is considered a dull color.)

gets lower, the model shows that cycles become three-
year cycles or even five-year cycles. It seems that by
fitting a substantive model with the catch-all approach,
we have obtained perhaps the first discrete-time model
that is capable of revealing the complete function link-
ing birth-rates to the cyclicity of measles epidemics,
thereby lending support to the general theory devel-
oped by Earn et al. (2000), which was based on dif-
ferential SIR equations in continuous time.

7. CONCLUDING REMARKS
AND FURTHER PROBLEMS

In this paper, we adhere to Box’s dictum and aban-
don, right from the very beginning, the assumption
of either the postulated parametric model being true
or the observations being error-free. Instead, we focus
on ways to improve the feature matching of a postu-
lated parametric model to the observable time series.
We have introduced the notion of an optimal parame-
ter in the absence of a true model and defined a new
form of consistency. In particular, we have synthesized
earlier attempts into a systematic approach of estima-
tion of the optimal parameter, by reference to up-to-
m-step-ahead predictions of the postulated model. We
have also developed some general results with proofs.

Conventional methods of estimation are typically
based on just the one-step-ahead prediction. Our anal-
ysis, simulation study and real applications have con-
vinced us that they are often found wanting in many sit-
uations, for example, the absence of a true model, short
data sets, observation errors, highly cyclical data and
others. Our stated primary objective is feature match-
ing. Prediction is secondary here. However, we have



38 Y. XIA AND H. TONG

evidence to suggest that a model with good feature
matching can stand a better chance of enjoying good
medium- to long-term prediction. Of course, if the aim
is prediction with a specified horizon, say m0, then we
simply set wm0 = 1 and the rest zero. In that case, our
catch-all approach really offers nothing new.

Let us now take another look at the difference be-
tween APE(≤ m) with m > 1 and APE(≤ 1). Sup-
pose we postulate the model xt = gθ (Xt−1)+ εt where
Xt−1 = (xt−1, . . . , xt−p) to match an observable y-
time series. Given data {y1, y2, . . . , yT }, APE(≤ m)

with m > 1 and with a constant wj > 0, all j , esti-
mates θ by minimizing the objective function

Lm(θ) =
T∑

t=p+1

min(m,T −t)∑
k=1

{
yt−1+k − g

[k]
θ (Yt−1)

}2

= L1(θ) + L+
1 (θ),

where Yt−1 = (yt−1, . . . , yt−p) and

L1(θ) =
T∑

t=p+1

{
yt − g

[k]
θ (Yt−1)

}2
,

L+
1 (θ) =

T∑
t=p+1

min(m,T −t)∑
k=2

{
yt−1+k − g

[k]
θ (Yt−1)

}2
.

Note that L1(θ) is the commonly used objective func-
tion for APE(≤ 1), while L+

1 (θ) is the extra infor-
mation provided by the dynamics. In terms of sam-
ples, L1(θ) is based on sample {yt , Yt−1 : t = p +
1, . . . , T }. The extra term L+

1 (θ) is associated with
the extra pseudo designed samples {yt−1+k, Yt−1 : t =
p + 1, . . . , T , k = 1, . . . ,m}. If the data are actually
generated by the postulated model (a rare event), then
under some general conditions such as εt are i.i.d. nor-
mal, L1(θ) will include all the information about θ . In
that case, estimation based on L1(θ) alone is the most
efficient and the extra term L+

1 (θ) can provide no addi-
tional information. However, if the data are not exactly
generated by the postulated model (a common event),
the extra information provided by L+

1 (θ) can indeed be
very helpful and should be exploited.

Despite evidence, both theoretical and practical, of
the utility of the catch-all approach, much more re-
mains to be done. Our paper should be seen as the
first word on feature matching. Although we have pro-
vided some concrete approaches, such as the catch-
all-conditional-mean approach, the catch-all-ACF ap-
proach, which can easily be generalized to catch-all-
mth-order moments and others, there are outstanding

issues. For example, we can, at present, offer no the-
oretical guidance on the specification of the weights,
{wm}. We have only offered some practical suggestions
based on our experience. It would be interesting to in-
vestigate further possible connections with a prior in
Bayesian statistics.

We have been quite fortunate with our real ex-
amples using the APE method, thanks to our long-
standing collaboration with ecologists and epidemiol-
ogists. However, we are conscious of the need for the
accumulation of further experience. We are convinced
that, especially in the area of substantive modeling,
guidance by relevant subject scientists is paramount.
Relevant references include He, Ionides and King
(2010), King et al. (2008), Laneri et al. (2010) and oth-
ers.

Last but not least, future research should include
at least the following: other weaker forms of (2.1),
choice of a suitable weaker form in a specific applica-
tion, other criteria for model comparison, non-additive
and/or heteroscedastic measurement errors, the relax-
ation of stationarity, the effect of prefiltering of data,
multiple time series, model selection among a set of
wrong models (each fitted by the catch-all method;
perhaps the idea of model calibration in econometrics
might be useful here), possible extension to other types
of dependent data, for example, spatial data.

APPENDIX: OUTLINES OF THEORETICAL
JUSTIFICATION

We need the following assumptions. However, these
assumptions can be relaxed with more complicated the-
oretical derivation.

(C1) Time series {yt } is a strictly stationary and
strongly mixing sequence with exponentially de-
creasing mixing-coefficients.

(C2) The moments E‖yt‖2δ , E‖g[k]
ϑ (yt , . . . , yt−p)}‖2δ ,

E‖∂g
[k]
ϑ (yt , . . . , yt−p)/∂θ‖δ and E‖∂2g

[k]
ϑ (yt )/

(∂θ ∂θ�)‖δ exist for some δ > 2.
(C3) The functions ∂g

[k]
θ (yt )/∂θ and ∂2g

[k]
θ (yt )/

(∂θ ∂θ�) are continuous in θ ∈ � and

�
def= E

m∑
k=1

wk

{
∂g

[k]
ϑ (yt )

∂θ

∂g
[k]
ϑ (yt )

∂θ�

− [
yt+k − g

[k]
ϑ (yt )

]∂2g
[k]
ϑ (yt )

∂θ ∂θ�
}

is nonsingular.
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(C4) The function
∑m

k=1 wkE[yt+k − g
[k]
θ (Yt )]2 has a

unique minimum point for θ in the parameter
space �.

THEOREM A. Suppose that {xt (θ)} and {yt } have
the same marginal distribution and each has second-
order moments. Then

D
C
(yt , xt (θ)) ≤ C1Q̃(yt , xt (θ)),

D
F
(yt , xt (θ)) ≤ C2Q̃(yt , xt (θ))

for some positive constants C1 and C2. Moreover, if
{xt (θ)} and {yt } are linear AR models, then there are
some positive constants C3 and C4 such that

Q̃(yt , xt (θ)) ≤ C3DC
(yt , xt (θ)),

Q̃(yt , xt (θ)) ≤ C4DF
(yt , xt (θ)).

PROOF. By the condition on the marginal distribu-
tions, we have

E(yt+m) = E(xt+m).(A.1)

Since E[yt {yt+m − E(yt+m|yt )}] = 0, we have

E(ytyt+m) = E
{
ytg

[m]
θ (yt )

}+ E
[
yt

{
yt+m − g[m](yt )

}]
= E

{
ytg

[m]
θ (yt )

}
+ E

[
yt

{
E(yt+m|yt ) − g

[m]
θ (yt )

}]
.

By the assumption on the marginal distribution, we
have

E
{
ytg

[m]
θ (yt )

}= E
{
xtg

[m]
θ (xt )

}
= E{xtE(xt+m|xt )} = E(xtxt+m).

Thus

E(ytyt+m) = E(xtxt+m)
(A.2)

+ E
[
yt

{
E(yt+m|yt ) − g

[m]
θ (yt )

}]
.

It follows from (A.1) and (A.2) that

γy(m) = γx(m) + �m,

where �m = E[yt {E(yt+m|yt ) − g
[m]
θ (yt )}]. By the

Hölder inequality, we have

|�m| ≤ {Ey2
t }1/2{E{E(yt+m|yt ) − g

[m]
θ (yt )

}2}1/2
.

Therefore,

D
C
(xt (θ), yt )

≤ sup
{wk}

∞∑
k=0

wk{Ey2
t }1/2

· {E{E(yt+k|yt ) − g
[k]
θ (yt )

}2}1/2

≤ C1Q̃(θ),

where C1 = {Ey2
t }1/2. This is the first inequality of

Theorem A.
For ease of exposition, assume that {yt } and {xt (θ)}

are given by AR models with the same order, P . Oth-
erwise we take the order as the larger of the two or-
ders. So yt = β1yt−1 + · · · + βP yt−P + εt and xt =
θ1xt−1 + · · · + θP xt−P + ηt .

Let e1 = (1,0, . . . ,0)�, Yt−1 = (yt−1, . . . , yt−P )�,
Xt−1 = (xt−1, . . . , xt−P )�, Et = (εt ,0, . . . ,0)� and

�0 =

⎛
⎜⎜⎜⎜⎜⎝

β1 β2 · · · βP−1 βP

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

� =

⎛
⎜⎜⎜⎜⎜⎝

θ1 θ2 · · · θP−1 θP

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

Then Yt−1+m = e�
1 �m

0 Yt−1 + e�
1 (Et−1+m +

�0Et−2+m + · · · + �m
0 Et ). It follows that

[γy(m), γy(m + 1), . . . , γy(m + P − 1)]
(A.3)

= E(yt−1+mY�
t−1) = e�

1 �m
0 �0,

where �0 = E(Yt−1Y
�
t−1) = (γy(|i−j |))1≤i,j≤P . Sim-

ilarly, we have

[γx(m), γx(m + 1), . . . , γx(m + P − 1)]
(A.4)

= E(xt−1+mX�
t−1) = e�

1 �m�,

where � = E(Xt−1X
�
t−1) = (γx(|i − j |))1≤i,j≤P .

Assuming εt , ηt are independent sequences of i.i.d.
random variables, we have

E(yt−1+m|Yt−1) = e�
1 �m

0 Yt−1,

E(xt−1+m|Xt−1 = Yt−1) = e�
1 �mYt−1.

(Note: The i.i.d. assumption can be relaxed at the ex-
pense of a much lengthier proof.) It follows that

E{E(yt−1+m|Yt−1) − E(xt−1+m|Xt−1 = Yt−1)}2

= e�
1 (�m

0 − �m)�0(�
m
0 − �m)�e1

= e�
1 [�m

0 �0 − �m� + �m(� − �0)]
· �−1

0 [�m
0 �0 − �m� + �m(� − �0)]�e1

≤ λ−1
min(�0)‖[γy(m) − γx(m),

γy(m + 1) − γx(m + 1), . . . ,
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γy(m + P − 1) − γx(m + P − 1)]
+ e�

1 �m(� − �0)‖2

≤ λ−1
min(�0)

m+P−1∑
k=m

{γy(k) − γx(k)}2

+ λ−1
min(�0)λ

m
max(�)P

P−1∑
k=0

{γy(k) − γx(k)}2,

where λmin(�0) and λmax(�) are the minimum eigen-
value of �0 and the maximum eigenvalue of �, respec-
tively. Note that λmax(�) < 1. Therefore,

Q̃(θ) ≤ Pλ−1
min(�0)

∞∑
m=0

wm{γy(k) − γx(k)}2

= C3Dc(xt (θ), yt ),

for some wm ≥ 0. The proof is completed. �
THEOREM B. Under assumptions (C1) and (C2),

we have in distribution
√

n
{
θ̂{m} − ϑ

}→ N(0, �̃m),

where ϑ = (�̃�
m�̃m)−1�̃�

mϒ̃m and �̃m is a positive def-
inite matrix. As a special case, if yt = xt + ηt with
Var(εt ) > 0 and Var(ηt ) = σ 2

η > 0, then the above

asymptotic result holds with ϑ = θ + σ 2
η (��

m�m +
2σ 2

η �p + σ 4
η I )−1(�p + σ 2

η I )θ.

PROOF. To simplify the range of summation in
the triangular array due to the lags with fixed m as
T → ∞, we introduce ∼= to denote the fact that the
quantities on both sides of it have negligible difference.
By Theorem 3.1 of Romano and Thombs (1996), in an
enlarged probability space we have

�̂m = �m + n−1/2Um + op(n−1/2),

ϒ̂m = ϒm + n−1/2Vm + op(n−1/2),

where Um and Vm have the same structure as �m and
ϒm, respectively, but with γ (k) being replaced by vk

and (vi+1, . . . , vi+j ) for any i, j being jointly normal,
with variance–covariance matrix given by Romano and
Thombs (1996). Therefore, we have

θ̂m = ϑ + n−1/2W + oP (n−1/2),

where W = (��
m�m)−1U �

mϒm + (��
m�m)−1��

m Vm −
(��

m�m)−1{��
m Um + U �

m�m}(��
m�m)−1��

m ϒm is a lin-
ear combination of {vk}. Thus, W is normally dis-
tributed with mean 0. This is the first part of Theo-
rem B.

If yt = xt + ηt , let γx(k) = n−1∑n
i=1 xtxt+k ; it is

easy to see that

γ̂y(k) ∼= γ̂x(k) + Dk + Ek, k = 0,1, . . . ,

where Dk = n−1∑n
t=1(xt+k + xt−k)ηt and Ek =

n−1∑n
t=1 ηtηt+k. By the central limit theorem and

Theorem 3.1 of Romano and Thombs (1996), in an
enlarged probability space there are random variables
ξk, ζk and δk such that γ̂x(k) = γx(k) + n−1/2ξk +
op(n−1/2),Dk = n−1/2ζk + op(n−1/2) and

Ek =
{

σ 2
η + n−1/2δk + op(n−1/2), if k = 0,

n−1/2δk + op(n−1/2), if k > 0,

where ξ0, ξ1, . . . , {ζk, k = 0,1, . . .}, δ0, δ1, . . . are mu-
tually independent and ξk = γx(k){Eε4

t − 1}1/2W0 +∑∞
j=1{γx(j +k)+γx(j −k)}Wj . Here W0,W1, . . . are

i.i.d. N(0,1), ζk ∼ N(0,2(γy(0) + γy(2k))), Cov(ζk,

ζ�) = 2(γy(k − �) + γy(k + �)) and δk ∼ N(0, σ 4
η ) if

k > 0 and δ0 ∼ N(0,E(η2 − 1)2). Define �k,Zk and
�k similarly as �k with γx(k) being replaced by ξk, ζk

and δk , respectively. Let Bk be a k × p matrix with the
first p × p submatrix being σ 2

η Ip and all the others 0.
We have

�̂k = �k + Bk + n−1/2Ek + op(n−1/2),

where Ek = �k + Zk + �k,

ϒ̂k = ϒk + n−1/2�k + op(n−1/2)

= �kθ + n−1/2�k + op(n−1/2),

and �k = (ξ1, . . . , ξk)
�. It follows that

θ̂m = [��
m�m + 2σ 2

η �p + σ 4
η I

+ n−1/2{(�m + Bm)�Em + E �
m(�m + Bm)}
+ op(n−1/2)]−1

· [��
m�m + σ 2

η �p

+ n−1/2{(�m + Bm)��m + E �
m�mθ}

+ op(n−1/2)]
= (��

m�m + 2σ 2
η �p + σ 4

η I )−1(��
m�m + σ 2

η �p)θ

+ n−1/2Wn + o(n−1/2)

= θ − σ 2
η (��

m�m + 2σ 2
η �p + σ 4

η I )−1(�p + σ 2
η I )θ

+ n−1/2Wn + o(n−1/2),

where Wm = (��
m�m + 2σ 2

η �p + σ 4
η I )−1{(�m +

Bm)��m + E �
m�mθ} − (��

m�m + 2σ 2
η �p + σ 4

η I )−2 ·
{(�m + Bm)�Em + E �

m(�m + Bm)}(��
m�m + σ 2

η �p)

is normally distributed. We have proved the second
part. �
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THEOREM C. Suppose the system {xt = gθ0(xt−1,

. . . , xt−p)} has a finite-dimensional state–space and
admits only limit cycles, but xt is observed as yt =
xt + ηt , where {ηt } are independent with mean 0.
Suppose that the function gθ (v1, . . . , vp) has bounded
derivatives in both θ in the parameter space � and
v1, . . . , vp in a neighborhood of the state–space. Sup-
pose that the system zt = gθ (zt−1, . . . , zt−p) has only
negative Lyapunov exponents in a small neighborhood
of {xt } and in θ ∈ �. Let Xt = (xt , xt−1, . . . , xt−p) and
Yt = (yt , yt−1, . . . , yt−p).

1. If the observed Y0 = X0 + (η0, η−1, . . . , η−p) is
taken as the initial values of {xt }, then for any n,

f (ym+1, . . . , ym+n|X0)

− f (ym+1|X0 = Y0) · · ·f (ym+n|X0 = Y0) → 0

as m → ∞.
2. Suppose the equation

∑
Xt−1

{gθ (Xt−1) − xt }2 = 0
has a unique solution in θ , where the summa-
tion is taken over all limiting states. Let θ{m} =
arg minθ m−1∑m

k=1 E{ yt−1+k −g
[k]
θ (Yt−1)}2. If the

noise takes value in a small neighborhood of the ori-
gin, then θ{m} → θ0 as m → ∞.

PROOF. Let Yt−1 = (yt−1, . . . , yt−p), Et−1 =
(ηt−1, . . . , ηt−p) and Xt−1 = (xt−1, . . . , xt−p). By the
condition, we have xt = gθ0(Xt−1). Write

E
[{

g
[k]
θ (Yt−1) − xt−1+k

}2]
= {

g
[k]
θ (Xt−1) − g

[k]
θ0

(Xt−1)
}2

− 2
{
g

[k]
θ (Xt−1) − g

[k]
θ0

(Xt−1)
}

· E
{
g

[k]
θ (Xt−1 + Et−1) − g

[k]
θ (Xt−1)

}
+ E

[{
g

[k]
θ (Xt−1 + Et−1) − g

[k]
θ (Xt−1)

}2]
.

Note that by the definition of the Lyapunov exponent,∣∣g[k]
θ (Xt + Et ) − g

[k]
θ (Xt)

∣∣
(A.5)

≤ exp(kλ){E‖Et‖}1/2.

Starting from X0 = Y0, the system at the kth step is
g[k](Y0). Since the Lyapunov exponent is negative, we
have (

g
[m+1]
θ0

(Y0), . . . , g
[m+n]
θ0

(Y0)
)

= (
g

[m+1]
θ0

(X0), . . . , g
[m+n]
θ0

(X0)
)

+ (δm+1, . . . , δm+n),

where δk = g
[k]
θ0

(Y0) − g
[k]
θ0

(X0), with |δk| ≤ exp(kλ) ·
{E‖E0‖}1/2. Therefore,

(ym+1, . . . , ym+n)|(X0 = Y0)

= (ym+1, . . . , ym+n)|X0 + (δm+1, . . . , δm+n).

Note that (ym+1, . . . , ym+n)|X0 = (g
[m+1]
θ0

(X0), . . . ,

g
[m+n]
θ0

(X0)) + (ηm+1, . . . , ηm+n) and that ηm+1, . . . ,

ηm+n are independent. Therefore the first part of The-
orem C follows.

By (A.5), we have∣∣E[{g[k]
θ (Yt ) − xt+k

}2]− {
g

[k]
θ (Xt) − g

[k]
θ0

(Xt)
}2∣∣

≤ C exp(kλ){E‖Et‖}1/2.

It follows that∣∣∣∣∣m−1
m∑

k=1

E
{
xt−1+k − g

[k]
θ (Yt )

}2

− m−1
m∑

k=1

{
g

[k]
θ (Xt ) − g

[k]
θ0

(Xt)
}2

∣∣∣∣∣
≤ C{E‖Et‖}1/2m−1

m∑
k=1

exp(kλ)

≡ �(m) → 0 as m → ∞.

That is,

m−1
m∑

k=1

{
g

[k]
θ (Xt ) − g

[k]
θ0

(Xt)
}2 − �(m)

≤ m−1
m∑

k=1

E
{
xt−1+k − g

[k]
θ (Yt )

}2(A.6)

≤ m−1
m∑

k=1

{
g

[k]
θ (Xt ) − g

[k]
θ0

(Xt)
}2 + �(m).

By the second inequality of (A.6) and the continuity,
we have as θ → θ0 and m → ∞,

m−1
m∑

k=1

E
{
xt−1+k − g

[k]
θ (Yt−1)

}2 → 0.(A.7)

Next, we show that if ‖θ − θ0‖ ≥ δ > 0, then as m →
∞ there exists δ′ > 0 such that

m−1
m∑

k=1

{
g

[k]
θ (Xt) − g

[k]
θ0

(Xt)
}2 ≥ δ′ > 0.(A.8)

We prove (A.8) by contradiction. Suppose the period of
the limit cycle is π . For continuous dynamics, the as-
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sumption of a unique solution is equivalent to the state-
ment that as i → ∞,

i+π∑
k=i+1

{gθ (Xk−1) − xk}2 → 0

(A.9)
⇐⇒ θ → θ0.

If (A.8) does not hold, that is, there is a ϑ such that

m−1
m∑

k=1

E
{
g

[k]
ϑ (Xt) − xt−1+k

}2 → 0,

then there must be a sequence {ij : j = 1,2, . . .} with
ij → ∞ as j → ∞ and

ij+π∑
k=ij−p

{
g

[k]
ϑ (Xt) − xt+k

}2 → 0 as j → ∞.(A.10)

Let zt+k = g
[k]
ϑ (Xt) and et+k = zt+k − xt+k . It follows

from (A.10) that for k = ij − p, . . . , ij + π ,

|et+k| → 0 as j → ∞,

and that

ij+π∑
k=ij+1

{gϑ(xt+k−1 + et+k−1, . . . ,

xt+k−p + et+k−p) − xt+k}2

→ 0.

By the same argument leading to (A.6), we have

ij+π∑
k=ij+1

{gϑ(xt+k−1, . . . , xt+k−p) − xt+k}2

≥
ij+π∑

k=ij+1

{gϑ(xt+k−1 + et+k−1, . . . ,

xt+k−p + et+k−p) − xt+k}2

− C(e2
t+ij−p + · · · + e2

t+ij+π)

→ 0

for some C > 0. Let j → ∞; we have∑ij+π

k=ij+1{gϑ(xt+k−1, . . . , xt+k−p)−xt+k}2 = 0, which
contradicts the assumption of a unique solution (A.9).

By (A.6), (A.7) and (A.8), we have completed the
proof of Theorem C. �

THEOREM D. Recall the notation in Section 3.2
and let Et = (εt ,0, . . . ,0)� and Nt = (ηt , . . . ,

ηt−p+1)
�. For the nonlinear skeleton, we further as-

sume that gθ (x) has bounded second-order derivative
with respect to θ in neighbor of ϑ for all possible
values of yt . Suppose that the assumptions (C1)–(C4)
hold. Then

T −1/2(θ̃{m} − ϑm,w
) D→ N(0,�−1�(�−1)�).

Specifically, for model (3.1) and yt = xt + ηt , if
E|εt |δ < ∞ and E|ηt |δ < ∞ for some δ > 4, then

� = Cov(�t ,�t)

+
∞∑

k=1

{Cov(�t ,�t−k) + Cov(�t−k,�t)},

� =
m∑

k=1

wkE
[
∂g

[k]
ϑ (yt )

∂θ

∂g
[k]
ϑ (yt )

∂θ�

− e�
1 (�k − �k)Xt

∂2g
[k]
ϑ (Xt)

∂θ∂θ�

+ e�
1 �k Nt

∂2g
[k]
ϑ (Nt )

∂θ∂θ�
]

with �t = ∑m
k=1 wk{∑k−1

j=0 e�
1 �je1εt+k−j + ηt+k} ·

∂g
[k]
ϑ (yt )/∂θ + {e�

1 (�k − �k)Xt − e�
1 �k Nt } ·

∂g
[k]
ϑ (yt )/∂θ . For the nonlinear model (3.5) and yt =

xt + ηt ,

� = Var

[
m∑

k=1

wk

∂g
[k]
ϑ (yt−k)

∂θ
ηt

+
m∑

k=1

wk

[
g

[k]
θ0

(Xt) − g
[k]
ϑ (yt )

]∂g
[k]
ϑ (yt )

∂θ

]

and

� =
m∑

k=1

wkE
{
∂g

[k]
ϑ (yt )

∂θ

∂g
[k]
ϑ (yt )

∂θ�
}
.

PROOF. Let Q(θ) = ∑m
k=1 wkE[yt+k − g

[k]
θ (Yt )]2

and

Qn(θ) =
m∑

k=1

wkT
−1

T∑
t=1

[
yt+k − g

[k]
θ (Yt )

]2

∼=
m∑

k=1

wk

1

T − k

T −k∑
t=1

[
yt+k − g

[k]
θ (Yt )

]2
def= Qn(θ).
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Let θ̃{m} = arg minθ∈� Qn(θ). We denote this by θ̃

and ϑm,w by ϑ , for simplicity. It is easy to see that
Qn(θ) → Q(θ). Following the same argument of Wu
(1981), we have θ̃ → ϑ in probability.

By the definition of θ̃ , we have ∂Qn(θ̃)/∂θ = 0. By
Taylor expansion, we have

0 = ∂Qn(θ̃)

∂θ
(A.11)

= ∂Qn(ϑ)

∂θ
+ ∂2Qn(θ

∗)
∂θ∂θ� (θ̃ − ϑ),

where θ∗ is a vector between θ̃ and ϑ , and

∂Qn(ϑ)

∂θ

= −2T −1
m∑

k=1

wk

T∑
t=1

[
yt+k − g

[k]
ϑ (Yt )

]
(A.12)

· ∂g
[k]
ϑ (Yt )

∂θ

= 2T −1
T∑

t=1

ξt,m,

where ξt,m = ∑m
k=1 wk[yt+k − g

[k]
ϑ (Yt )]∂g

[k]
ϑ (Yt )/∂θ .

By the definition of ϑ , we have ∂Q(ϑ)/∂θ = 0, that
is,

Eξt,m = 0.(A.13)

Since yt is a strongly mixing process with exponential
decreasing mixing coefficients, so is ξt,m. By (C2), we
have E‖ξt,m‖δ < ∞. It follows from Theorem 2.21 of
Fan and Yao [(2003), page 75] that

T∑
t=1

�t/
√

T
D→ N

(
0,

∞∑
k=0

��(k)

)
.

On the other hand, we have by (C3) and Proposition 2.8
of Fan and Yao [(2003), page 74]

∂2Qn(θ
∗)

∂θ∂θ

∼= 2T −1
T∑

t=1

m∑
k=1

wk

{
∂g

[k]
θ∗ (Yt )

∂θ

∂g
[k]
θ∗ (Yt )

∂θ�

− [
yt+k − g

[k]
ϑ (Yt )

]∂2g
[k]
θ∗ (Yt )

∂θ∂θ�
}

→ 2�.

For model (3.1), we have Xt+1 = �Xt + Et+1 and

Xt+k = �kXt + (Et+k + �Et+k−1 + · · · + �k−1Et+1).

Let � be the matrix � when θ = ϑ , respectively. Note
that Yt = Xt + Nt . It follows that

yt+k − �kYt

= (xt+k + Nt+k) − �k(Xt + Nt ) + (�k − �k)Yk

= (Et+k + �Et+k−1 + · · · + �k−1Et+1)

+ (Nt+k − �k Nt ) + (�k − �k)Yt

and

yt+k − e�
1 �kYt

=
k−1∑
j=0

e�
1 �je1εt+k−j + ηt+k(A.14)

+ e�
1 (�k − �k)Xt − e�

1 �k Nt .

It follows from (A.13) and (A.14) that

2
m∑

k=1

wkEe1

[
{(�k − �k)Yt − �k Nt }∂g

[k]
ϑ (Yt )

∂θ

]
= 0.

We have

∂Qn(ϑ)

∂θ

∼= −2T −1
T∑

t=1

m∑
k=1

wk

[{
k−1∑
j=0

e�
1 �je1εt+k−j + ηt+k

}

· ∂g
[k]
ϑ (Yt )

∂θ

+
{
{e�

1 (�k − �k)Xt − e�
1 �k Nt }∂g

[k]
ϑ (Yt )

∂θ

− E
[
{e�

1 (�k − �k)Xt − e�
1 �k Nt }

· ∂g
[k]
ϑ (Yt )

∂θ

]}]

def= −2T −1
T∑

t=1

�t

and that E�t = 0. Let ∂̃k = ∂(e�
1 �k)/∂θ . We further

have

∂g
[k]
ϑ (Yt )

∂θ
= ∂e�

1 �k

∂θ
Yt = ∂̃k(Xt + Nt ).

Since (Xt , εt , ηt ) is a stationary process and a strongly
mixing sequence (Pham and Tran, 1985) with exponen-
tially decreasing mixing coefficients, and �t is a func-
tion of {(Xτ , ετ , ητ ) : τ = t, t −1, . . . , t −m}, it is easy
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to see that �t is also a strongly mixing sequence with
exponentially decreasing mixing coefficients. Note that
E�t = 0 and E|�t |δ < ∞ for some δ > 2. By Theorem
2.21 of Fan and Yao [(2003), page 75], we have

T∑
t=1

�t/
√

T
D→ N

(
0,

∞∑
k=0

��(k)

)
.

On the other hand, we have in probability

∂2Qn(ϑ)

∂θ∂θ�

= 2T −1
m∑

k=1

wk

T∑
t=1

∂g
[k]
ϑ (Yt )

∂θ

∂g
[k]
ϑ (Yt )

∂θ�

− 2T −1
m∑

k=1

wk

T∑
t=1

{
k−1∑
j=0

e�
1 �je1εt+k−j + ηt+k

+ e�
1 (�k − �k)Xt − e�

1 �k Nt

}
∂2g

[k]
ϑ (Yt )

∂θ∂θ�

→ 2
m∑

k=1

wkE
{
∂g

[k]
ϑ (Yt )

∂θ

∂g
[k]
ϑ (Yt )

∂θ�
}

− 2
m∑

k=1

wkE
[
e�

1 (�k − �k)Xt

∂2g
[k]
ϑ (Xt)

∂θ∂θ�
]

+ 2
m∑

k=1

wkE
[
e�

1 �k Nt

∂2g
[k]
ϑ (Nt )

∂θ∂θ�
]

def= 2�.

Therefore, it follows from (A.11) that

T −1/2(θ̃ − ϑ)
D→ N

{
0,�−1

∞∑
k=0

��(k)(�−1)�
}
.

Next, consider model (3.5). Note that ηt+k = yt+k −
g

[k]
θ0

(Xt). We have from (A.12) that

∂Qn(ϑ)

∂θ

= −2T −1
m∑

k=1

wk

T∑
t=1

ηt+k

∂g
[k]
ϑ (Yt )

∂θ

−2T −1
m∑

k=1

wk

T∑
t=1

[
g

[k]
θ0

(Xt) − g
[k]
ϑ (Yt )

]

· ∂g
[k]
ϑ (Yt )

∂θ

∼= −2T −1
T∑

t=1

{[
m∑

k=1

wk

∂g
[k]
ϑ (Yt−k)

∂θ

]
ηt

+
m∑

k=1

wk

[
g

[k]
θ0

(Xt) − g
[k]
ϑ (Yt )

]

·∂g
[k]
ϑ (Yt )

∂θ

}
.

Let

Cm(xt−k, ηt−k) =
[

m∑
k=1

wk

∂g
[k]
ϑ (Yt−k)

∂θ

]
,

Bm(xt , ηt ) =
m∑

k=1

wk

[
g

[k]
θ0

(Xt) − g
[k]
ϑ (Yt )

]

· ∂g
[k]
ϑ (Yt )

∂θ
.

By (A.13), we have EBm(Xt , ηt ) = 0. Thus Bm(xt , ηt )

are independent with expectation 0. It is easy to see
that ξm,t = Cm(Xt−k, ηt−k)ηt + Bm(Xt , ηt ) is a mar-
tingale difference. The Lyapunov’s condition is satis-
fied. Thus, we have

T −1/2
T∑

t=1

ξt,m
D→ N{0,E(ξm,t ξ

�
m,t )}.(A.15)

Similarly to ∂Qn(ϑ)/∂θ above, we have

∂2Qn(θ
∗)

∂θ∂θ

∼= −2T −1
T∑

t=1

[
m∑

k=1

wk

∂2g
[k]
θ∗ (Yt−k)

∂θ∂θ�

]
ηt

(A.16)

+ 2T −1
T∑

t=1

m∑
k=1

wk

∂g
[k]
θ∗ (Yt )

∂θ

∂g
[k]
θ∗ (Yt )

∂θ�

→ 2
m∑

k=1

wkE
{
∂g

[k]
ϑ (Yt )

∂θ

∂g
[k]
ϑ (Yt )

∂θ�
}

(A.17)

def= 2�.

Finally, from (A.11), (A.15) and (A.16) we have

T −1/2(θ̃ − ϑ)
D→ N{0,�−1E(ξm,t ξ

�
m,t )�

−1}.
We have completed the proof. �
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