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Comment: The Need for Syncretism in
Applied Statistics
Sander Greenland

It is an honor to comment on Prof. Efron’s latest con-
tribution to the merging of frequentist and Bayesian
thinking into a harmonious (even if not strictly coher-
ent) statistical viewpoint. I will review my thinking
along those lines and some inspirations for it. I agree
with most of Dr. Efron’s views expressed here and in
Efron (2005), with these important exceptions: First,
I disagree that frequentism has supplied a good set
of working rules. Instead, I argue that frequentism
has been a prime source of reckless overconfidence
in many fields (especially but not only in the form of
0.05-level testing; see Rothman, Greenland and Lash,
2008, Chapter 10 for examples and further citations).
I also disagree that Bayesians are more aggressive than
frequentists in modeling. The most aggressive model-
ing is that which fixes unknown parameters at some
known constant like zero (whence they disappear from
the model and are forgotten), thus generating overcon-
fident inferences and an illusion of simplicity; such
practice is a hallmark of conventional frequentist ap-
plications in observational studies.

As working rules, the problem with conventional
methods lies not so much with frequentism, but rather
with frequentist tools for designed experiments being
misapplied to observational data (Greenland, 2005a).
Bayesians can and do misapply their methods simi-
larly; they just haven’t been given as much opportu-
nity to do so. Conversely, many frequentist as well
as Bayesian tools for observational studies have been
developed, especially for sensitivity analysis. But the
overconfidence problem has been perpetuated by the
ongoing concealment of unbelievable point-mass pri-
ors within models in order to maintain frequentist iden-
tification of target parameters.

The problem can be addressed by sacrificing iden-
tification and replacing bad modeling assumptions
with explicit and reasonable priors (Gustafson, 2005;
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Greenland, 2005a, 2009a). Perhaps ironically, frequen-
tist thought experiments and simulations can then pro-
vide both contextual and frequentist diagnostics (Ru-
bin, 1984; Greenland, 2006; Gustafson and Greenland,
2009). Thus, frequentist thinking can address Bayesian
overconfidence just as Bayesian thinking can address
frequentist overconfidence. Hence I would strengthen
Box’s plea for ecumenism (Box, 1983) into an imper-
ative to fuse Bayesian and frequentist concepts and
methods in statistical inference—and in teaching as
well. This theme is far from new (e.g., besides Box,
see Good, 1983; Diaconis and Freedman and discus-
sants, 1986; Samaniego and Reneau, 1994), yet it has
barely touched everyday teaching and practice. In this
case (unlike many) that is not because of software lim-
itations; in fact, for the bulk of applications the same
software can be used for both frequentist and Bayesian
calculations (Greenland, 2007, 2009a).

HIERARCHICAL MODELING: WHERE PRIORS AND
FREQUENCIES MEET

Bayesian and frequentist ideas intertwine in hier-
archical modeling (Efron’s Section 9), which encom-
passes both Bayesian and empirical-Bayes approaches
(Good, 1983, 1987) as well as other shrinkage tech-
niques. Efron and Morris (1973, 1975) were among
the earliest to demonstrate convincingly that hierarchi-
cal models offered practical as well as theoretical ad-
vantages for data analysis. Their writings (along with
those of Jack Good, George Box and Edward Leamer)
inspired my applications of hierarchical modeling and
Bayesian methods in epidemiology, where the hierar-
chy levels are naturally determined by physical struc-
tures and observation processes.

As an example, in nearly all observational studies
of nutrient effects, individual risks are regressed di-
rectly on nutrient intakes calculated from food intakes.
This conventional model makes no further use of the
food intakes, and so assumes implicitly that foods have
no effect on risk beyond their calculated nutrient con-
tent. This is an unsupported and very doubtful assump-
tion. A more realistic model allows food effects beyond
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measured-nutrient content. However, the resulting two-
level hierarchical model is not identified without a prior
because nutrient intakes are linear functions of food
intakes (making nutrient and food intakes completely
collinear). Using any contextually defensible prior re-
veals that the conventional analysis generates overcon-
fident inferences, both in the Bayesian sense of over-
stating information (Greenland, 2000), and also in the
frequentist sense of producing interval undercoverage
(Gustafson and Greenland, 2006). That overconfidence
may explain the rather embarrassing track record of nu-
tritional epidemiology when compared against clinical
trials (Lawlor et al., 2004). Ecologic analyses provide
other examples in which use of the natural hierarchical
structure with explicit priors is needed to avoid over-
confidence (Wakefield, 2009).

In this work, I have come to appreciate that a simul-
taneously Bayesian and frequentist viewpoint is essen-
tial for a credible analysis of observational data. I must
be at least informally Bayesian, knowing that there
is no contextual credibility without consideration and
use of prior information, especially in model specifica-
tion. But I should also be at least informally frequen-
tist, knowing that priors should be weighted lightly
unless they derive from statistical observations such
as frequencies in partially exchangeable past experi-
ence (e.g., surveys) or classical measurement processes
(e.g., laboratory determinations). Most of all, I should
not rigidly adhere to ideologies or models, especially
when a clash between my prior and my likelihood
function shows that my understanding of the situa-
tion is more deficient than I initially thought (Box,
1980, 1990).

PRIORS: EVERYBODY USES THEM (BUT MOST
CALL THEM “MODELS”)

As Efron illustrates in Section 4, all analyses labeled
as frequentist are built on priors, although these priors
are called “models,” which avoids the controversies as-
sociated with overtly Bayesian analysis (Leamer, 1978;
Box, 1980, 1983). Even the simplest randomized-trial
analysis is based on a model, namely the prior belief
that treatment was randomized fairly, and the reported
subjects actually exist. As numerous cases of fraud
demonstrate, that belief may be mistaken more often
than those receiving medical treatment would like to
think (e.g., see Greenland, 2009b).

Labeling assumptions and models as prior beliefs
might better alert us to the act of faith involved in their
use. As Box (1980) said

I believe that it is impossible logically to
distinguish between model assumptions and
the prior distribution of the parameters. The
model is the prior in the wide sense that it
is a probability statement of all the assump-
tions currently to be tentatively entertained
a priori. On this view, traditional sampling
theory was of course not free from assump-
tions of prior knowledge. Instead it was as
if only two states of mind had been allowed:
complete certainty or complete uncertainty.

I have grown increasingly uncomfortable with the
convention of failing to label models as priors. It en-
courages the use of arbitrary constraints, and questions
constraints only if the analysis data (the direct evi-
dence) can reveal departures—even though studies are
not designed with anywhere near sufficient power to re-
veal all important model violations. The representation
of modeling constraints in belief networks (Madigan,
Mosurski and Almond, 1997) can aid in the display of
these constraints as imposed beliefs and thus expose
implausible aspects of the model, although of course
it cannot address data limitations. Yet single datasets
are often too limited to tell us much about either the
effects under study or our models (Robins and Green-
land, 1986)—at least if we do not impose a hoard of
dubious independence constraints that amount to point-
mass priors with no supporting data.

Additivity in generalized linear models is an exam-
ple: with n covariates, additivity sets all orders of prod-
uct terms (“interactions”) among them to zero, and
is equivalent to using a point mass at zero for the
joint prior on these terms. Entering the few “signif-
icant” two-way products hardly makes a dent in this
set of constraints if n > 5; yet n > 8 is common and
n > 20 not unusual. Arbitrary additive constraints can
be relatively harmless when estimating a population-
average effect, because the specification error they en-
tail may average out in much the way random resid-
ual error does (Greenland and Maldonado, 1994). But
the constraints can be deadly when used for individual
(clinical) risk prediction, as adverse drug interactions
demonstrate.

Hierarchical methods offer one way to relax additiv-
ity constraints in a controlled fashion, by including all
or many products but shrinking their estimates toward
zero or a second-level structure (Wakefield, De Vocht
and Hung, 2010). More generally, we can expand an
unrealistic conventional model by embedding it in a
richer, more realistic hierarchical model, then shrink
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estimates from the latter using prior distributions. As-
pects of these distributions may be chosen to improve
frequency performance in high-dimensional problems,
but such methods do not preclude the use of prior infor-
mation to judge those and other aspects of the formal
prior distribution.

THE NEED FOR EXPLICIT PRIORS IN
OBSERVATIONAL STUDIES

My discomfort with conventional treatments of mod-
eling has increased knowing that observational data
analysis can identify causal effects only by using in-
direct evidence, no matter how large the dataset or
how informed by past observational data. This is the
usual situation in epidemiology, where confounders,
selection-probability ratios, or valid exposure measure-
ments are unavailable for analysis (Greenland, 2005a;
Gustafson, 2005; Rothman, Greenland and Lash, 2008,
Chapter 19; Lash, Fox and Fink, 2009). The problem is
a variant of the nonidentifiability of a regression coeffi-
cient when some regressors are latent (Leamer, 1974).
In these cases a credible formal analysis must introduce
proper priors in place of overconfident identifying con-
straints.

Use of identified regression models as sources of ef-
fect estimates corresponds to a multidimensional point
prior that says there is no uncontrolled confounding or
selection bias, and that measurements (including val-
idation measurements) were accurate or at least reli-
able for life histories. Taken jointly, these assumptions
are absurd in topics like nutritional and “lifestyle” epi-
demiology. But relaxing these silly and harmful as-
sumptions leads to a realm where most Bayesians as
well as frequentists fear to tread: Specification of prior
distributions that cannot be effectively checked or up-
dated with the analysis data.

When the scientific validity of each analysis hinges
on extensive and untestable prior specifications, an
analysis can be no more than a rough guess about a
vast unknown, and represents but one element in a sen-
sitivity analysis (Greenland, 2005b). This is true even
of a formal sensitivity analysis, which is limited to ex-
amining a few parameters lest it become unintelligible.
In this reality, the importance of specific models and
priors should be de-emphasized in favor of providing
a framework for sensitivity analysis across plausible
models and priors. Accuracy of computation becomes
secondary to prior specification, which is too often ne-
glected under the rubric of “objective Bayes” (a.k.a.
“please don’t bother me with the science” Bayes).

There is simply no point in trying to do well at all
conceivable parameter values given the model when
the model embedding the parameter has already im-
posed doubtful point constraints. Hence I have sought
approaches in which informative priors are central.
Good (1983) provided the key ingredients: Priors can
be transformed into penalty functions, which can then
be transformed into “prior data” that generate the
penalties as log-likelihood contributions. This trans-
formation allows evaluation of prior-knowledge claims
in a currency familiar to the subject-matter expert,
as well as use of familiar and rapid fitting methods
for basic models (Bedrick, Christensen and Johnson,
1996, 1997; Greenland, 2006, 2007, 2009a, 2009c).

Note that conversion of priors to prior data does not
require conjugacy; it only requires that the penalties
have representations as transformed likelihoods from a
series of observations or experiments. The credibility
of the prior may be questioned if such a representa-
tion is absent, arcane, or absurd. Evaluation of priors
in terms of equivalent data is particularly illuminating
in human-subject fields, where data are expensive and
hence sparse. Here, strong priors may be seen as claim-
ing access to a volume of data that does not exist, thus
casting doubt on prior assertions of some experts (Hig-
gins and Spiegelhalter, 2002; Greenland, 2006).

When priors (the indirect evidence) are recalibrated
to match the frequentist outputs of reasonably sized
thought experiments, the combined evidence will often
be too limited to distinguish among the effect sizes at
issue (Greenland, 2009c). This is unwelcome news to
some colleagues, albeit no news to others. Regardless,
the future of indirect evidence should be recognition
for what it is: Omnipresent and essential for any infer-
ence beyond “more research is needed” (which may
the strongest conclusion we can hope to wrest from
most studies, albeit not always justifiable in economic
terms).

Thus I would conclude by echoing Efron: Whether
Bayesian, frequentist, ecumenic, or syncretic, statis-
ticians need to become better at creating and eval-
uating contextually informed models—which include
both well-informed prior distributions and sensible
qualitative structures. It follows that statistical train-
ing should introduce informative-Bayesian methods in
tandem with classical (and often destructive) frequen-
tist methods, rather than as an afterthought or specialty
topic. Data priors provide one easy and natural way to
do so, displaying as they do the symmetry between in-
direct and direct evidence, and exposing priors to a new
angle of criticism.
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