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Comment
Arnold Zellner

The authors are to be congratulated for their deep ap-
preciation of Jeffreys’s famous book, Theory of Proba-
bility, and their very impressive, knowledgeable con-
sideration of its contents, chapter by chapter. Many
will benefit from their analyses of topics in Jeffreys’s
book. As they state in their abstract, “Our major aim
here is to help modern readers in navigating this dif-
ficult text and in concentrating on passages that are
still relevant today.” From what follows, it might have
been more accurate to use the phrase, “modern well-
informed Bayesian statisticians” rather than “modern
readers” since the authors’ discussions assume a rather
advanced knowledge of modern Bayesian statistics.
Readers who are “just” physicists, chemists, philoso-
phers of science, economists, etc., may have great
difficulty in understanding the authors’ guide to Jef-
freys’s book. This is unfortunate since the book pro-
vides methods and philosophical principles relevant for
all the sciences. Perhaps in the future, additional re-
views of Jeffreys’s book will be prepared that are un-
derstandable to a broader range of readers, as was done
in having scientists and scholars from many fields dis-
cuss at length Jeffreys’s and others’ thoughts on sim-
plicity and complexity at a conference and reported in
Zellner, Kuezenkamp and McAleer (2001).

Another point that affects the authors’ discussion
is their apparent misinterpretation of the title of Jef-
freys’s book. They write, “The title itself is mislead-
ing in that there is no exposition of the mathematical
bases of probability theory in the sense of Billings-
ley (1986) and Feller (1997).” In this regard, years ago
Lord Rutherford, a famous physical scientist, said that
if you need statistics to analyze your data, you bet-
ter redesign your experiment, and as a result the word
“statistics” was not highly regarded in the physical sci-
ences and the term “probability theory” was employed
by Jeffreys, Jaynes (2003) and many other physical
scientists to include applied and theoretical statistics,
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mathematical methods, including elements of formal
probability theory and philosophical aspects of sci-
ence. With their narrow interpretation of Jeffreys’s ti-
tle, the authors found many discussions in the book
to be “irrelevant,” whereas Jeffreys considered them
to be of fundamental importance and did not want to
have his book limited to just mathematical topics, as
in his and his wife’s very famous book, Mathemati-
cal Methods of Physics. And indeed, Good [(1980),
page 32] wrote, “In summary, Jeffreys’s pioneering
work on neo-Bayesian methods. . . was stimulated by
his interest in philosophy, mathematics, and physics,
and has had a large permanent influence on statisti-
cal logic and techniques. In my review Good (1962) I
said that Jeffreys’s book on probability “is of greater
importance for the philosophy of science, and obvi-
ously of greater immediate practical importance, than
nearly all the books on probability written by profes-
sional philosophers lumped together.” I believe this is
still true, though more professional philosophers have
woken up.”

With respect to the discussion of Chapter 1, readers
will wonder what the authors mean by terms like “sub-
jective,” “objective,” “objective priors” and “genuine
prior information.” Contrary to what the authors state,
Jeffreys did adjust his “objective priors” (1) to get a
“reasonable” amount of invariance, (2) to get “reason-
able” results in the Laplace rule of succession, bino-
mial problem and (3) to correct for “selection results”
in testing many alternative models with large sets of
data. Thus he was not always an “objective” Bayesian
but rather a very thoughtful Bayesian who recognized
needs for better procedures for certain problems and
provided them in many cases. Perhaps he should be
called a “pragmatic” Bayesian.

Most important in Chapter 1 is Jeffreys’s axiom sys-
tem for learning from data and experience that is ap-
plicable to research in all fields of science. He con-
sidered deduction and induction at great length in a
most interesting productive manner and the authors
provide interesting and useful comments. However, the
authors’ introduction of decision theoretic considera-
tions as a solution in discussion of point 1 fails to
recognize that the decision theoretic solution based on
limited data, though “optimal” may not be very good
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because of the limited data employed. Good science re-
quires testing models’ explanatory and predictive per-
formance using much data in order to ascertain the va-
lidity of a particular theory, say Einstein’s theory and
along the way in testing many variants of the original
model will probably be considered. And finally, one
has to specify a loss or utility function. . . whose loss
function? Errors in formulating loss or utility functions
can vitally affect the quality of “optimal” decisions, as
is well known. And to suggest that the debate about
model choice was not present in Jeffreys’s time over-
looks the well-known debates that raged about New-
ton’s “laws” versus Einstein’s “laws” and the adequacy
of quantum theory, etc., during the early 20th century
and beyond, about which Jeffreys was fully aware. Fur-
ther, the authors’ statement in point 8 about grounding
Theory of Probability within mathematics fails to note
that Jeffreys recognized that there is controversy about
the foundations of mathematics. Still he pragmatically
adopted point 8.

Most important in Chapter 1 are Jeffreys’s com-
ments on his dissatisfaction with the standard proof of
the product rule of probability that is used to derive
Bayes’ theorem that led him to introduce the product
rule of probability as an axiom, rather than a theorem
in his system, as the authors note in their discussion
of the derivation of Bayes’ theorem. Jeffreys noted
that the assumption that the elements of the sets A, B
and the intersection of A and B are equally likely to be
drawn, all having a probability equal to 1/n, where n

is the total number of elements, will not be satisfied in
many cases. After stating that he was unable to prove
the product rule without this assumption, he pragmat-
ically introduced the result as Axiom 7 on page 25.
Since many, including myself, worried about this ba-
sic point, I was happy to discover that the proof of the
product rule could be generalized by going to a hier-
archical model with the probabilities for elements of
the sets assumed to have properties that produced the
usual product rule of probability; see Zellner (2007).
Further, earlier in my concern about valid proofs or
derivations of Bayes’ theorem, I approached the prob-
lem as an engineer might by considering the informa-
tional inputs, namely the information in a prior density
and in a likelihood function, and the output informa-
tion, the information in a posterior density for the pa-
rameters and a marginal density for the observations.
On using Shannon’s measure of information, it is pos-
sible to form an expression, output information minus
input information and to minimize it with respect to the
choice of the form of the output or posterior density

for the parameters. The solution is to take the posterior
density equal to the prior density times the likelihood
function divided by the marginal density of the obser-
vations, which is precisely the result yielded by Bayes’
theorem. Also, when this solution is employed, it is the
case that the output information equals the input infor-
mation and thus the procedure is 100% efficient. See
Zellner (1988) for the detailed results and commentary
on them by E. T. Jaynes, B. M. Hill, S. Kullback and
J. Bernardo, all reprinted in Zellner (1997b) along with
solutions to variants of the above problem. For exam-
ple, in some problems we may not have an input prior
but just an input likelihood function. Then the solution
to the minimization problem is to take the posterior
density proportional to likelihood function, a 100% ef-
ficient solution that happens to be exactly the fiducial
inference procedure suggested by R. A. Fisher who, as
Jeffreys and others pointed out, did not have a theoret-
ical justification for it. Also, other optimal information
processing results are presented that take account of
the varying quality of input information, temporal re-
lations of the inputs from one period to the output of
the next period, etc. In effect, we now have a number
of optimal learning models, not just one, Bayes’ theo-
rem, to use in learning from data and experience. Given
that Jeffreys was deeply concerned about how to jus-
tify Bayes’ theorem and how to learn effectively from
data and experience, I hope that he likes these results
that flowed from his concern about the validity and ap-
plicability of proofs of Bayes’ theorem.

With respect to the authors’ comments on prior den-
sities, in particular non-informative priors, they very
thoughtfully review Jeffreys’s innovative procedure for
producing non-informative priors with many critical
remarks regarding his use and misuse of unbounded
measures. As regards a prior for the binomial parame-
ter p, which can take on values in the closed inter-
val zero to 1, the authors consider Laplace’s uniform
prior, Haldane’s prior and the Jeffreys’s prior followed
by a thoughtful discussion of the famous Laplace Rule
of Succession for analysis of which Jeffreys suggests
putting lumps of probability on the values zero and
one and spreading out the remaining probability mass
uniformly, zero to one in order to get “reasonable”
results for Laplace’s problem: given n independent
dichotomous, binomial trials and observing n “suc-
cesses” in n trials, what is the probability of a suc-
cess on the next try? Jeffreys expressed his view that
his non-informative prior and Haldane’s prior that are
symmetric around a half and go to infinity at p = 0
and p = 1 put too much mass in the neighborhoods of
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the extreme points, 0 and 1, while the Laplace uniform
prior does not put enough mass in the neighborhood
of the extreme points, again very pragmatically sug-
gests a modified Laplace mixed prior density. As I have
pointed out in Zellner [(1997b), page 117], my “max-
imal data information prior” (MDIP) for the binomial
parameter p, in the closed interval 0 to 1 is

f (p) = 1.6186xppx(1 − p)(1−p)

a density that is symmetric about p = 1
2 , its minimal

value, and rises to 1.6186 at both p = 0 and p = 1. It
is thus “between” the uniform and Jeffreys’s and Hal-
dane’s priors that shoot off to infinity at the end points.
Further, a similar result is available for the multino-
mial model’s parameters. Also, the criterion functional
that is optimized to produce this MDIP for the bino-
mial parameter and many others is an information cri-
terion functional (see Zellner, 1997b, page 128ff for
details) and uses of it to produce priors for many mod-
els and problems that are in general invariant to linear
transformations and can be made invariant to other rel-
evant transformations and related to work by Jeffreys,
Berger, Bernardo and others on this difficult problem.

Further, in the case of a prior for a correlation coef-
ficient in a normal model, the authors present an “arc-
sine” prior for the correlation coefficient that is exactly
the MDIP for this parameter. Also, the MDIP approach
has been applied to the AR(1) stationary process,
a problem discussed in the current paper and by Jef-
freys. As explained in Zellner [(1997b), page 138], the
MDIP for this problem is p(b,σ ) = c(1 − b2)1/2/σ ,
with −1 < b < 1. This contrasts markedly with the Jef-
freys prior p(b,σ ) = c1/(1 − b2)1/2σ that the authors
present without noting that Jeffreys [(1967), page 359]
states, “The [Jeffreys] estimate rule gives a singularity
at not only b = 1, which might be tolerable, but also
at b = −1, which is not.” Thus Jeffreys, always honest
and pragmatic, reports that his prior for this problem
is intolerable. See also the MDIP prior for parameters
of a stationary AR(2) process and many other models
in Zellner (1997a). Given the remarkable properties of
MDIPs and the general principle from which they are
derived, it is indeed surprising that the authors make
no mention of them.

In closing, I shall quote the conclusions regarding
Jeffreys’s research contributions made by a leading
Bayesian statistician to provide readers with an alter-
native appreciation of Jeffreys’s contributions that can
be compared to that presented in the authors’ paper.
Seymour Geisser (1980) wrote:

If one were to present a short selected sum-
mary of Jeffreys’s contributions to Bayesian
inference, I believe that the following would
be on everybody’s list.

(1) He made the inductive argument a
“logical” one within the context of a Bayes-
ian framework and maintained it could only
be so within this framework.

(2) He made a valiant attempt to quantify
lack of knowledge by giving rather clever
canonical rules and conventions but was not
constrained to think only in these terms.

(3) He produced a normative catalog of
cogently reasoned Bayesian solutions to
many conventional statistical paradigms.

(4) He introduced and developed invari-
ance considerations into the Bayesian sys-
tem.

(5) His devastating critiques of the vari-
ous frequency theories propounded by
Venn, Fisher, Neymann and others were, in
the words of de Finetti (1970), closely ar-
gued and unanswerable.

In summary, Jeffreys’s approach amalga-
mated a Bayesian system with two primitive
data principles reflective of public scientific
work: (1) letting the data speak for them-
selves and (2) the actual units in which you
choose to express your work should by and
large not affect the inference. This is trans-
lated into so-called non-informative priors
and invariance under suitable transforma-
tions. It was a rather remarkable conception,
brilliantly executed, whose ultimate test is
how it works in practice (19–20).

Thanks again to the authors for their many insight-
ful comments that are very relevant for appraising
Jeffreys’s technical work and its mathematical basis.
In this connection, some years ago I asked the fa-
mous statistician David Cox why the British have
been so successful in the field of Statistics. He replied
that British statisticians were well trained in applied
mathematics, not theoretical mathematics. Perhaps this
explains Jeffreys’s limited knowledge of past measure
theory and ignorance of recent results on alternative
limiting processes for defining unbounded measures
that have appeared since his death in 1989.
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