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Comment: On Random Scan
Gibbs Samplers
Richard A. Levine and George Casella

1. INTRODUCTION

We congratulate the authors on a review of conver-
gence rates for Gibbs sampling routines. Their com-
bined work on studying convergence rates via or-
thogonal polynomials in the present paper under dis-
cussion (which we will denote as DKSC from here
onward), via coupling in Diaconis, Khare and Saloff-
Coste (2006), and for multivariate samplers in Khare
and Zhou (2008), enhances the toolbox of theoretical
convergence analysis. This has the potential of opening
new avenues of pursuit for gauging chain convergence
in practice, and optimally implementing Gibbs sampler
strategies. In this discussion, we focus on the latter,
within the context of the random scan Gibbs sampler
presented in DKSC. Although the analysis in DKSC
does not seem to extend to the random scan implemen-
tation we consider, a study of convergence rate and
estimator precision is possible, in theory, for special
cases as well as in general practice. Our aim is to mo-
tivate further research within the context of DKSC to
identify objective criteria for optimizing implementa-
tion of the random scan Gibbs sampler.

2. REVISITING RANDOM SCAN GIBBS SAMPLERS

The random scan Gibbs sampler considered in
DKSC has an equal likelihood of visiting each coor-
dinate, (x, θ), during an iteration of the sampler. As
put forth by the seminal convergence theory work of
Liu, Wong and Kong (1995) and discussed more re-
cently by Levine and Casella (2006), an optimal im-
plementation of the random scan strategy may visit
less often components with a marginal that is easier
to understand or describe. For example, in the bivariate
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cases of DKSC, each iteration of the random scan vis-
its x with probability α1 and θ with probability 1 −α1,
where α1 ∈ (0,1), not necessarily equal to 0.5. For the
general multivariate problem of sampling a d-vector X,
the random sweep strategy is characterized by selection
probabilities α = (α1, α2, . . . , αd), where

∑d
i=1 αi = 1,

αi not necessarily equal to 1/d for all i.
In the notation of DKSC, the transition kernel of the

random scan Gibbs sampler for a function g ∈ L2(P )

is

K̄g(x, θ) = α1

∫
�

g(x, θ ′)π(θ ′|x)π(dθ ′)
(1)

+ (1 − α1)

∫
X

g(x′, θ)fθ (x
′)μ(dx′).

Unfortunately, K̄ in (1) is not readily diagonalizable
as the decomposition in the proof of DKSC Theo-
rem 3.1, part (c), relies on the equal selection proba-
bilities (α1 = 0.5) to partition the transition kernel act-
ing on appropriate functions g. However, in the cases
of discrete state spaces and Gaussian target distribu-
tions, both considered in the exposition of DKSC, we
may identify explicit convergence rates and optimally
choose selection probabilities. In the following sec-
tions, we elaborate on these findings and present an
alternative approach with estimator precision as an ob-
jective criterion. We also suggest avenues for future re-
search within the context of DKSC to address the ran-
dom scan Gibbs sampler decision problem.

3. CONVERGENCE RATES

Convergence rates of Gibbs sampling routines may
be formulated in two special cases: Gaussian and dis-
crete target distributions. DKSC Section 6.3 eludes to
the case of Gaussian distributions, identifying the work
of Goodman and Sokal (1989), that shows convergence
rates as the largest eigenvalue of a matrix related to
the dispersion matrix and an autoregressive transition
of the Markov chain (see Khare and Zhou, 2008, as
well). Amit (1996) and Roberts and Sahu (2001) pro-
vide an alternative expression which lends well to our
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analysis of random scan Gibbs samplers. In particu-
lar, Levine et al. (2005) shows that for a d-dimensional
Gaussian target distribution with d-vector zero mean
and dispersion matrix �, Nd(0,�), the random scan
Gibbs sampler has convergence rate ρ(I − �SR)

where ρ(·) is the spectral radius (maximum modu-
lus eigenvalue), � = diag(α1, . . . , αd), R = �−1 and
S = diag(1/r11, . . . ,1/rdd) with rii the (i, i)th or ith
diagonal element of R. Note that ρ(I − �SR) is a
function of the selection probabilities and thus may be
used as an objective criterion for optimal choice of α.

Consider a different form of the Gaussian example
of DKSC Section 4.3, along the lines of Section 6.3,
a bivariate Gaussian target distribution with bivariate
mean of zero, standard deviations σ1 and σ2, and cor-
relation ρ. The convergence rate is

λrs = 0.5
{
1 +

√
1 + 4α2

1(1 − ρ2) − 4α1(1 − ρ2)
}
.

Interestingly, the covariance structure, with covariance
τ = ρσ1σ2, leaves the convergence rate as a function
of the correlation ρ and not the variance components.
The random scan with equal selection probabilities,
α1 = 0.5, has the smallest convergence rate, over the
range of standard deviations and correlation.

In the case of multivariate Gaussian distributions, the
random scan with equal selection probabilities is not
necessarily optimal with respect to convergence rate.
For example, consider a trivariate Gaussian distribution
with zero mean vector and dispersion matrix

� = diag(σ 2
1 , σ 2

2 , σ 2
3 ) − 1/(d + 0.005)J

where J is a matrix of ones, an exchangeable correla-
tion structure considered by Roberts and Sahu (2001)
and Levine et al. (2005). In the case σ1 = 10 and
σ2 = σ3 = 1, the random scan Gibbs sampler with α =
(0.22,0.39,0.39) has the smallest convergence rate.
Nonetheless, the gain in rate over the random scan with
equal selection probabilities is less than 10%. Levine et
al. (2005) provide further illustrations of optimal ran-
dom scan Gibbs samplers for multivariate Gaussian tar-
get distributions where non-equal selection probabili-
ties minimize the convergence rate. However, often the
computational cost in identifying the selection proba-
bilities that minimize the convergence rate is not suffi-
ciently offset by the gain in convergence speed.

In the case of discrete state spaces, Frigessi et al.
(1993) shows that for a transition matrix Prs , the
convergence rate is the second largest eigenvalue in
modulus, ρ2(Prs) = max{|λ| : λ an eigenvalue of Prs ,
λ �= 1}, the largest eigenvalue being equal to one. Note

that ρ2(Prs) is a function of the selection probabilities
and thus may be used as an objective criterion for opti-
mal choice of α.

Consider the binomial example of DKSC Section 5.1
where at iteration t , θ |Xt−1 ∼ hypergeometric(n1,

n2,Xt−1), X = θt−1 + ε with ε ∼ binomial(n2,p) and
marginally X ∼ binomial(n1 + n2,p), θ ∼
binomial(n1,p). Of course the cardinality of the state
space is a function of n1 and n2 so a closed form ex-
pression of the convergence rate as a function of α1 is
not available. However, for given n1 and n2, we may
easily minimize ρ2(Prs) with respect to the selection
probabilities. Empirical evidence suggests that the ran-
dom scan with equal selection probabilities, α1 = 0.5,
leads to the smallest convergence rate.

Levine (2005) provides illustrations of optimal ran-
dom scan Gibbs sampler for multivariate discrete target
distributions. As with multivariate Gaussian target dis-
tributions, the random scan with equal selection proba-
bilities is non-optimal with respect to convergence rate,
however the loss in convergence speed is minimal. The
random scan Gibbs sampler analyses in DKSC for bi-
variate chains, and that of Khare and Zhou (2008) for
multivariate target distributions, may thus be a worth-
while pursuit, focusing exclusively on uniform visita-
tion of coordinates. We will discuss this matter more
below.

4. ASYMPTOTIC VARIANCE

We have seen that if the optimality criterion is con-
vergence rate, it is often the case that there is only min-
imal gain in using the optimal random scan rather than
the equal probability scan. The story is not the same,
however, if we shift attention to estimator precision as
the objective criterion.

An alternative means of choosing random scan selec-
tion probabilities is through a study of estimator preci-
sion. Suppose interest lies in estimating Eπ {h(X)} for
a function h ∈ L2(π), where π is the distribution of
the d-vector X. The natural estimator of this expected
value is the sample mean, (1/m)

∑m
i=1 h(Xi) of m vari-

ates generated by the random scan Gibbs sampler. We
may thus identify the best scan strategy through a min-
imization of the asymptotic variance

R(α, h) = lim
m→∞mVAR

{
1

m

m∑
i=1

h(Xi)

}
.(2)

Levine and Casella (2006) show that the two-lag auto-
covariance in the asymptotic variance expansion may
be presented as the square of the convergence rate,
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relating these two objective criteria. (See Chen, Liu
and Wang, 2002, for more details on this relationship.)
Levine and Casella (2006) also show that R(α, h) is a
polynomial in α. For sake of space, we will not dupli-
cate the expressions here. However, optimization of the
asymptotic variance over the selection probabilities is
feasible, particularly in the case of Gaussian and dis-
crete target distributions.

Consider again the bivariate Gaussian example
(DKSC Sections 4.3 and 6.3). A second-order approx-
imation of the asymptotic variance (2) for linear func-
tions h(X) identifies optimal random scans with non-
equal selection probabilities, following the intuition
presented earlier of visiting more often the most vari-
able coordinate. For example, in the case of estimating
the sum of the coordinates, the asymptotic variance is

R(α, h) = σ 2
1 + σ 2

2 + 2ρσ1σ2 + α1(ρσ1 + σ2)
2

+ (1 − α1)(σ1 + ρσ2)
2 + α2

1(ρσ1 + σ2)
2

+ (1 − α1)
2(σ1 + ρσ2)

2

+ 2α1(1 − α1)(ρσ1 + σ2)(σ1 + ρσ2)ρ.

If the standard deviations are σ1 = 2 and σ2 = 1 with
correlation ρ = 0.5, the scan that minimizes the as-
ymptotic variance has α1 = 0.93.

In the case of discrete state spaces, Peskun (1973)
shows that the asymptotic variance is R(α, h) =
h(2BZ−B−BA)hT where A is a matrix with each row
containing the vector of stationary distribution proba-
bilities π , B is a diagonal matrix with π on the diago-
nal, h is a vector of the function h applied to each ele-
ment of the state space, and Z = {I − (Prs − A)}−1 the
fundamental matrix with identity matrix I. Consider
again the binomial example of DKSC Section 5.1. As
in the Gaussian case, minimization of this asymptotic
risk over α1 identifies optimal random scans that visit
the most variable coordinate at a higher frequency. For
example, if parameters are set at n1 = 6, n2 = 3, and
p = 0.5, the scan that minimizes the asymptotic vari-
ance has α = 0.56.

Levine et al. (2005) and Levine and Casella (2006)
show that these optimal random scans present signifi-
cant improvement over a random scan with equal se-
lection probabilities, not only in asymptotic variance
but also in chain mixing.

5. IMPLEMENTATIONS

For general applications of the random scan Gibbs
sampler to multivariate target distributions, neither the

convergence rate nor the asymptotic variance may nec-
essarily be available in closed form. However two im-
plementations have been proposed to choose optimal
selection probabilities in practice. Levine et al. (2005)
suggests using a Gaussian approximation to the target
distribution to determine the optimal random scan, per-
haps in a tuning phase of the sampler or as an adaptive
procedure. Since the convergence rate and asymptotic
variance are accessible under a Gaussian target distri-
bution, several adaptive and non-adaptive random scan
Gibbs sampler algorithms present themselves.

Levine and Casella (2006) propose an adaptive ran-
dom scan Gibbs sampler which chooses optimal selec-
tion probabilities “on the fly,” learning and adapting the
sweep strategy as the chain traverses the state space.
The induced chain is no longer Markov but still con-
verges to the desired equilibrium distribution. In the
most general form, the adaptive strategy identifies a
minimax random scan for the set of selection proba-
bilities that minimizes the asymptotic variance for the
worst possible function of interest.

The optimal random scan Gibbs samplers deter-
mined with respect to the convergence rate and as-
ymptotic variance, though potentially identifying dif-
ferent sets of selection probabilities, are not contra-
dictory. As suggested by Mira (2001) and discussed
further in Levine et al. (2005), the convergence rate
criterion is most desirable during the burn-in period
of the Markov chain, estimator precision is of impor-
tance for drawing inferences from the Gibbs sampler
output. Therefore, our recommendation is to first im-
plement a random scan with equal selection probabil-
ities and then, during the post-processing phase of the
sampler, choose selection probabilities that minimize
the asymptotic variance. The convergence rate calcula-
tions of DKSC are of utmost importance then for con-
vergence assessment. If the techniques allow for matrix
decompositions or expressions for the asymptotic vari-
ance, the tools provide for pre- and post-burn-in im-
plementations of the random scan Gibbs sampler. Fur-
thermore, such expressions may lend to computation-
ally inexpensive implementations of both the Gaussian
approximation and adaptive procedures for optimally
selecting random scan Gibbs samplers.
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