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The Epic Story of Maximum Likelihood
Stephen M. Stigler

Abstract. At a superficial level, the idea of maximum likelihood must be
prehistoric: early hunters and gatherers may not have used the words “method
of maximum likelihood” to describe their choice of where and how to hunt
and gather, but it is hard to believe they would have been surprised if their
method had been described in those terms. It seems a simple, even unassail-
able idea: Who would rise to argue in favor of a method of minimum likeli-
hood, or even mediocre likelihood? And yet the mathematical history of the
topic shows this “simple idea” is really anything but simple. Joseph Louis
Lagrange, Daniel Bernoulli, Leonard Euler, Pierre Simon Laplace and Carl
Friedrich Gauss are only some of those who explored the topic, not always in
ways we would sanction today. In this article, that history is reviewed from
back well before Fisher to the time of Lucien Le Cam’s dissertation. In the
process Fisher’s unpublished 1930 characterization of conditions for the con-
sistency and efficiency of maximum likelihood estimates is presented, and
the mathematical basis of his three proofs discussed. In particular, Fisher’s
derivation of the information inequality is seen to be derived from his work
on the analysis of variance, and his later approach via estimating functions
was derived from Euler’s Relation for homogeneous functions. The reaction
to Fisher’s work is reviewed, and some lessons drawn.

Key words and phrases: R. A. Fisher, Karl Pearson, Jerzy Neyman, Harold
Hotelling, Abraham Wald, maximum likelihood, sufficiency, efficiency,
superefficiency, history of statistics.

1. INTRODUCTION

In the 1860s a small group of young English in-
tellectuals formed what they called the X Club. The
name was taken as the mathematical symbol for the
unknown, and the plan was to meet for dinner once
a month and let the conversation take them where
chance would have it. The group included the Dar-
winian biologist Thomas Henry Huxley and the social
philosopher-scientist Herbert Spencer. One evening
about 1870 they met for dinner at the Athenaeum Club
in London, and that evening included one exchange
that so struck those present that it was repeated on sev-
eral occasions. Francis Galton was not present at the
dinner, but he heard separate accounts from three men
who were, and he recorded it in his own memoirs. As
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Galton reported it, during a pause in the conversation
Herbert Spencer said, “You would little think it, but
I once wrote a tragedy.” Huxley answered promptly,
“I know the catastrophe.” Spencer declared it was im-
possible, for he had never spoken about it before then.
Huxley insisted. Spencer asked what it was. Huxley
replied, “A beautiful theory, killed by a nasty, ugly lit-
tle fact” (Galton, 1908, page 258).

Huxley’s description of a scientific tragedy is singu-
larly appropriate for one telling of the history of Maxi-
mum Likelihood. The theory of maximum likelihood is
very beautiful indeed: a conceptually simple approach
to an amazingly broad collection of problems. This the-
ory provides a simple recipe that purports to lead to the
optimum solution for all parametric problems and be-
yond, and not only promises an optimum estimate, but
also a simple all-purpose assessment of its accuracy.
And all this comes with no need for the specification
of a priori probabilities, and no complicated deriva-
tion of distributions. Furthermore, it is capable of being
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Joe Hodges’s Nasty, Ugly Little Fact (1951)

Tn = X̄n if |X̄n| ≥ 1

n1/4

= αX̄n if |X̄n| < 1

n1/4 .

Then
√

n(Tn − θ) is asymptotically N(0,1) if θ �= 0,
and asymptotically N(0, α2) if θ = 0.
Tn is then “super-efficient” for θ = 0 if α2 < 1.

FIG. 1. The example of a superefficient estimate due to Joseph L.
Hodges, Jr. The example was presented in lectures in 1951, but
was first published in Le Cam (1953). Here X̄n is the sample mean
of a random sample of size n from a N(θ,1) population, with
nVar(X̄n) = 1 all n, all θ (Bahadur, 1983; van der Vaart, 1997).

automated in modern computers and extended to any
number of dimensions. But as in Huxley’s quip about
Spencer’s unpublished tragedy, some would have it that
this theory has been “killed by a nasty, ugly little fact,”
most famously by Joseph Hodges’s elegant simple ex-
ample in 1951, pointing to the existence of “superef-
ficient” estimates (estimates with smaller asymptotic
variances than the maximum likelihood estimate). See
Figure 1. And then, just as with fatally wounded slaves
in the Roman Colosseum, or fatally wounded bulls in a
Spanish bullring, the theory was killed yet again, sev-
eral times over by others, by ingenious examples of in-
consistent maximum likelihood estimates.

The full story of maximum likelihood is more com-
plicated and less tragic than this simple account would
have it. The history of maximum likelihood is more in
the spirit of a Homeric epic, with long periods of peace
punctuated by some small attacks building to major
battles; a mixture of triumph and tragedy, all of this
dominated by a few characters of heroic stature if not
heroic temperament. For all its turbulent past, maxi-
mum likelihood has survived numerous assaults and
remains a beautiful, if increasingly complicated the-
ory. I propose to review that history, with a sketch of
the conceptual problems of the early years and then a
closer look at the bold claims of the 1920s and 1930s,
and at the early arguments, some unpublished, that
were devised to support them.

2. THE EARLY HISTORY OF
MAXIMUM LIKELIHOOD

By the mid-1700s it seems to have become a com-
monplace among natural philosophers that problems
of observational error were susceptible to mathemat-
ical description. There was essential agreement upon
some elements of that description: errors, for want of

a better assumption, were supposed equally able to be
positive and negative, and large errors were expected
to be less frequently encountered than small. Indeed,
it was generally accepted that their frequency distribu-
tion followed a smooth symmetric curve. Even the goal
of the observer was agreed upon: while the words em-
ployed varied, the observer sought the most probable
position for the object of observation, be it a star dec-
lination or a geodetic location. But in the few serious
attempts to treat this problem, the details varied in im-
portant ways. It was to prove quite difficult to arrive at
a precise formulation that incorporated these elements,
covered useful applications, and also permitted analy-
sis.

There were early intelligent comments related to this
problem already in the 1750s by Thomases Simpson
and Bayes and by Johann Heinrich Lambert in 1760,
but the first serious assault related to our topic was by
Joseph Louis Lagrange in 1769 (Stigler, 1986, Chap-
ter 2; 1999, Chapter 16; Sheynin, 1971; Hald, 1998,
2007). Lagrange postulated that observations varied
about the desired mean according to a multinomial dis-
tribution, and in an analytical tour de force he showed
that the probability of a set of observations was largest
if the relative frequencies of the different possible val-
ues were used as the values of the probabilities. In
modern terminology, he found that the maximum like-
lihood estimates of the multinomial probabilities are
the sample relative frequencies. He concluded that the
most probable value for the desired mean was then the
mean value found from these probabilities, which is the
arithmetic mean of the observations. It was only then,
and contrary to modern practice, that Lagrange intro-
duced the hypothesis that the multinomial probabilities
followed a symmetric curve, and so he was left with
only the problem of finding the probability distribu-
tion of the arithmetic mean when the error probabili-
ties follow a curve. This he solved for several exam-
ples by introducing and using “Laplace Transforms.”
By introducing restrictions in the form of the curve
only after deriving the estimates of probabilities, La-
grange’s analysis had the curious consequence of al-
ways arriving at method of moment estimates, even
though starting with maximum likelihood! (Lagrange,
1776; Stigler, 1999, Chapter 14; Hald, 1998, page 48.)

At about the same time, Daniel Bernoulli considered
the problem in two successively very different ways.
First, in 1769 he tried using the hypothesized curve as
a weight function, in order to weight, then iteratively
reweight and average the observations. This was very
much like some modern robust M-estimates. Second,
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in 1778 (possibly after he had seen a 1774 memoir
of Laplace’s with a Bayesian analytical formulation),
Bernoulli changed his view dramatically and used the
same curve as a density for single observations. He
multiplied these densities together, and he sought as
the true value for the observed quantity, that value that
made the product a maximum (Bernoulli, 1769, 1778;
Stigler, 1999, Chapter 14; Laplace, 1774).

These and the other attempts of that time were
primarily theoretical explorations, and did not attract
many practical applications or further development.
And while they all used phrases that could easily be
translated into modern English as “Maximum Likeli-
hood,” and in some cases even be defended as maxi-
mum likelihood, in no case was there a reasoned de-
fense for them or their performance. The most that was
to be found was the superficial invocation that the value
derived was “most probable” because it made the only
probability in sight (the probability of the observed
data) as large as possible.

The philosophically most cogent of these early treat-
ments was that of Gauss, in his first publication on
least squares in 1809 (Gauss, 1809). Gauss, like Daniel
Bernoulli in 1778, adopted Laplace’s analytical formu-
lation, but unlike Bernoulli, Gauss explicitly invoked
Laplace’s Bayesian perspective using a uniform prior
distribution for the unknowns. Where Laplace had then
sought (and found) the posterior median (which mini-
mized the posterior expected error), Gauss chose the
posterior mode. In accord with modern maximum like-
lihood with normally distributed errors, this led Gauss
to the method of least squares. The simplicity and
tractability of the analysis made this approach very
popular over the nineteenth century. By the end of that
century this was sometimes known as the Gaussian
method, and the approach became the staple of many
textbooks, often without the explicit invocation of a
uniform prior that Gauss had seen as needed to justify
the procedure.

3. KARL PEARSON AND L. N. G. FILON

Over the 19th century, the theory of estimation gen-
erally remained around the level Laplace and Gauss left
it, albeit with frequent retreats to lower levels. With re-
gard to maximum likelihood, the most important event
after Gauss’s publication of 1809 occurred only on the
eve of a new century, with a long memoir by Karl Pear-
son and Louis Napoleon George Filon, published in
the Transactions of the Royal Society of London in
1898 (Pearson and Filon, 1898). The memoir has a

place in history, more for what in the end it seemed
to suggest, rather than for what it accomplished. The
two authors considered a very general setting for the
estimation problem—a set of multivariate observations
with a distribution depending upon a potentially large
array of constants to be determined. They did not re-
fer to the constants as parameters, but it would be hard
for a modern reader to view them in any other light,
even though a close reading of the memoir shows that
it lacked the parametric view Fisher was to introduce
more than 20 years later (Stigler, 2007).

The main result of Pearson and Filon (expressed in
modern terminology) came from taking a likelihood ra-
tio (a ratio of the frequency distribution of the observed
data and the frequency distribution evaluated for the
same data, but with the constants slightly perturbed),
expanding its logarithm in a multivariate Taylor’s ex-
pansion, then approximating the coefficients by their
expected values and claiming that the resulting expres-
sion gave the frequency distribution of the errors made
in estimating the constants. They erred in taking the
limit of the coefficients, in effect using a procedure that
did not at all depend upon the method of estimation
used and would at most be valid for maximum likeli-
hood estimates, a fact they failed to recognize. Their
last step employed an implicit Bayesian step in the
manner of Gauss. When cubic and higher order terms
were neglected, their formula would give a multivari-
ate normal posterior distribution (extending results of
Laplace a century earlier), although Pearson and Filon
cautioned against doing this with skewed frequency
distributions. A modern reader would recognize their
resulting distribution as the normal distribution some-
times used to approximate the distribution of maximum
likelihood estimates, but Pearson and Filon made no
such restriction in the choice of estimate and applied
it heedlessly to all manner of estimates, particularly to
method of moments estimates.

The result may in hindsight be seen to be a mess,
not even applying to the examples presented, and the
approach was soon to be abandoned by Pearson him-
self. But it led to some correct results for the bivari-
ate normal correlation coefficient, and it was bold and
surely highly suggestive to a reader like Ronald Fisher,
to whom I now turn. I have recently published a de-
tailed study (Stigler, 2005) of how Fisher was led to
write his 1922 watershed work on “The Mathematical
Foundations of Theoretical Statistics,” so I will only
briefly review the main points leading to that memoir.
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4. R. A. FISHER

At Cambridge Fisher had studied the theory of er-
rors and even published in 1912 a short piece com-
mending the virtues of the Gaussian approach to esti-
mation, particularly of the standard deviation of a nor-
mally distributed sample. He had been so taken by the
invariance of the estimates so derived, how (for exam-
ple) the estimate of the square of a frequency constant
was the square of the estimate of the constant, that he
termed the criterion “absolute” (Fisher, 1912). But his
approach at that time was superficial in most respects,
tacitly endorsing the naïve Bayesian approach Gauss
had used, without noticing the lurking inconsistency in
even the example he considered, in that the estimate of
the squared standard deviation based upon the distrib-
ution of the data, namely 1

n

∑
(xi − x̄)2, did not agree

with that found applying the same principle to distrib-
ution of 1

n

∑
(xi − x̄)2 alone.

Four years later, Fisher sent to Pearson for possi-
ble publication a short, equally superficial critique of
a Biometrika article by Kirstine Smith advocating the
minimum chi-square approach to estimation (Smith,
1916). Pearson’s thoughtful rejection letter to Fisher
focused on the lack of a clear and convincing ratio-
nale for the method of choosing constants to maxi-
mize the frequency function, and Pearson even stated
that he now thought the Pearson–Filon paper was re-
miss on the same count. He called particular attention
to a perceptive footnote in Smith’s paper that argued
the case against the Gaussian method: the probabil-
ity being maximized was not a probability but rather
a probability density, an infinitesimal probability, and
of what force was such meager evidence in defense of a
choice? At least the minimum chi-square method opti-
mized with respect to an actual metric. Two more years
passed, and in 1918 Fisher discovered sufficiency in
the context of estimating the normal standard deviation
(Fisher, 1920); he recalled Pearson’s challenge to pro-
duce a rationale for the method, and he was off to the
races, quickly setting to work on the monumental pa-
per on the theory of statistics that he read to the Royal
Society in November 1921 and published in 1922.

5. FISHER’S FIRST PROOF

By my reconstruction, Fisher’s discovery of suffi-
ciency was quickly followed by the development of a
short argument that he gave in that great 1922 paper;
indeed it was the first mathematical argument in the pa-
per. The essence of the argument in modern notation is

the following. Suppose you have two candidates as es-
timates for a parameter θ , denoted by S and T . Suppose
that T is a sufficient statistic for θ . Since generally both
S and T are approximately normal with large samples,
let us (anticipating a species of argument Wald was to
develop rigorously in 1943) follow Fisher in consid-
ering that S and T actually have a bivariate normal
distribution, both with expectation = θ , and with stan-
dard deviations σS and σT and correlation ρ. Then the
standard facts of the bivariate normal distribution tell
us that E(S|T = t) = θ + ρ(σS/σT )(t − θ). Since T

is sufficient, this cannot depend upon θ , which is only
possible if ρ(σS/σT ) = 1, or if σT = ρσS ≤ σS . Thus T

cannot have a larger mean squared error than any other
such estimate S, and so must be optimum according to
a clear metric criterion, expected squared error! In one
stroke Fisher had (if one accepts the substitution of ex-
act for approximate normality) the simple and powerful
result:

Sufficiency implies optimality, at least when
combined with consistency and asymptotic
normality.

The question was, how general is this result? Neither
Fisher nor much of posterity thought of consistency
and asymptotic normality as major restrictions. After
all, who would use an inconsistent estimate, and while
there are noted exceptions, is not asymptotic normality
the general rule? Indeed, Fisher clearly knew the result
was stronger than this, that a sufficient estimate cap-
tured all the information in the data in even stronger
senses; the argument was only to present the claim in
terms of a specific criterion, minimum standard error.
But what about sufficiency?

At this point Fisher appears to have made an in-
teresting and highly productive mistake. He quickly
explored a number of other parametric examples and
came to the conclusion that maximizing the likelihood
always led to an estimate that was a function of a suf-
ficient statistic! When he read the paper to the Royal
Society in November 1921, his abstract, as printed in
Nature (November 24, 1921) emphatically stated, “Sta-
tistics obtained by the method of maximum likelihood
are always sufficient statistics.” And from this it would
follow, with the minor quibble that perhaps consistency
and asymptotic normality may be needed, that maxi-
mum likelihood estimates are always optimum. A truly
beautiful theory was born, after over a century and a
half in gestation.

Even as the paper was being readied for press, doubts
occurred to the one person best equipped to understand
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the theory, Fisher himself. The bold claim of the ab-
stract does not appear in the published version; neither
does its denial. He expressed himself in this way:

“For the solution of problems of estimation
we require a method which for each partic-
ular problem will lead us automatically to
the statistic by which the criterion of suffi-
ciency is satisfied. Such a method is, I be-
lieve, provided by the Method of Maximum
Likelihood, although I am not satisfied as to
the mathematical rigour of any proof which
I can put forward to that effect. Readers
of the ensuing pages are invited to form
their own opinion as to the possibility of the
method of maximum likelihood leading in
any case to an insufficient statistic. For my
own part I should gladly have withheld pub-
lication until a rigourously complete proof
could be formulated; but the number and
variety of new results which the method
discloses press for publication, and at the
same time I am not insensible of the advan-
tage which accrues to Applied Mathematics
from the co-operation of the Pure Mathe-
matician, and this co-operation is not infre-
quently called forth by the very imperfec-
tions of writers on Applied Mathematics”
(Fisher, 1922, page 323).

The 1922 paper did present several related argu-
ments in addition to the Waldian one I reported above.
It stated less boldly a converse of the statement in the
1921 abstract that, “it appears that any statistic which
fulfils the condition of sufficiency must be a solution
obtained by the method of the optimum [e.g. maxi-
mum likelihood]” (page 331). But Fisher did not now
claim that a sufficient statistic need always exist. In-
stead Fisher gave an improved non-Bayesian version of
the Pearson–Filon argument for asymptotic normality,
expanding the likelihood function about the true value
and pointing out how and why the argument requires
maximum likelihood estimates (and that it would not
apply to moment estimates), and how it could be used
to assess the accuracy of maximum likelihood esti-
mates (pages 328–329). And there, in a long footnote,
he called Karl Pearson to task for not earlier calling at-
tention himself to the error in the 1898 paper. Fisher
noted that in 1903 Pearson had published correct stan-
dard errors for moment estimates, even while citing
the 1898 paper without noting that the standard errors
given in 1898 for several examples were wrong. In the

1922 paper Fisher also pointedly included a section il-
lustrating the use of maximum likelihood for Pearson’s
Type-III distributions (gamma distributions), contrast-
ing his results with the erroneous ones Pearson and
Filon had given in 1898 for the same family.

6. THREE YEARS LATER

By 1925 Fisher’s earlier optimism had faded some-
what, and he prepared a revised version of his theory
for presentation to the Cambridge Philosophical Soci-
ety. At some point in the interim he had recognized
that sufficient statistics of the same dimension as the
parameter did not always exist. What led to this re-
alization? Fisher did not say, although in a 1935 dis-
cussion he wrote, “I ought to mention that the theo-
rem that if a sufficient statistic exists, then it is given
by the method of maximum likelihood was proved in
my paper of [1922]. . . . It was this that led me to at-
tach especial importance to this method. I did not at
that time, however, appreciate the cases in which there
is no sufficient statistic, or realize that other proper-
ties of the likelihood function, in addition to the posi-
tion of its maximum, could supply what was lacking”
(Fisher, 1935, page 82). I speculate that he learned this
in considering a problem where no sufficient statistic
exists, namely the problem that figured prominently in
the 1925 paper, the estimation of a location parameter
for a Cauchy distribution. In any event, in that 1925
paper Fisher did not dwell on this discovery of insuf-
ficiency; quite the contrary. The possibility that suffi-
cient statistics need not exist was only casually noted
as a fact 14 pages into the paper, and a reader of both
the 1922 and 1925 papers might not even notice the
subtle shift in emphasis that had taken place.

Where in 1922 Fisher started with consistency and
sufficiency, in 1925 he began with efficiency. Writing
of consistent and asymptotically normal estimates, he
stated, “The criterion of efficiency requires that the
fixed value to which the variance of a statistic (of the
class of which we are speaking) multiplied by n, tends,
shall be as small as possible. An efficient statistic is one
for which this criterion is satisfied” (page 703). With
this in mind, his main claim now was (page 707), “We
shall see that the method of maximum likelihood will
always provide a statistic which, if normally distributed
in large samples with variance falling off inversely to
the sample number, will be an efficient statistic.”

Thus in 1925 the theory said that if there is an effi-
cient statistic, then the maximum likelihood estimate is
efficient. When a sufficient and consistent estimate ex-
ists, it will also be maximum likelihood, but that is not
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necessary for efficiency. He granted that more than one
efficient estimate could exist, but he repeated a proof
he had already given in 1924 (Fisher, 1924a) that any
two efficient estimates are correlated with correlation
that approaches 1.0 as n increases.

7. THE 1925 “ANOVA” PROOF

What did Fisher offer by way of proof of this new
efficiency-based formulation? His 1922 treatment had
leaned crucially on sufficiency, but that was no longer
generally available. In its place he depended upon a
new and limited but mathematically rather clever proof
that I will call the “analysis of variance proof.” The
proof was clearly based upon a probabilistic version of
the analysis of variance breakdown of a sum of squares
that Fisher was developing separately at about the same
time for agricultural field trials. Fisher’s own 1925 pre-
sentation of the argument is fairly opaque and does not
explain clearly its underlying logic; in 1935 he gave an
improved presentation that helps some (Fisher, 1935,
pages 42–44). The mathematical details of the proof
have been clearly re-presented by Hinkley (1980) at
some length. I will be content to offer only a sketch
emphasizing the essence of the argument, what I be-
lieve to be the logical development Fisher had in mind.
It will help the historical discussion to divide his 1925
argument into two parts, just as Fisher did in the 1935
version.

Let f (x; θ) be the density of a single observation,
and let φ be the likelihood function for a sample of n

independent observations, so that log φ = � logf . Fol-
lowing Fisher, let X = 1

φ
∂φ
∂θ

= ∂
∂θ

logφ—what we now
sometimes refer to as the score function. Fisher was
only concerned here with situations where the maxi-
mum likelihood estimate could be found from solving
the equation X = 0 for θ . The first part of the argument
was really more of a restatement of what he had shown
in 1922: from expanding the score function in a Tay-
lor series, he had that the score function was approx-
imately a linear function of the maximum likelihood
estimate; as he put it, X = −nA(θ − θ̂ ) “if θ − θ̂ is a
small quantity of order n−1/2,” where his −nA denoted
what we now call the Fisher Information in a sample,
I (θ). Since under fairly general regularity conditions
E(X) = ∫ 1

φ
∂φ
∂θ

φ = ∫ ∂φ
∂θ

= ∂
∂θ

∫
φ = ∂

∂θ
1 = 0, we also

have Var(X) = I (θ). As Fisher noted, I (θ) may be
found from any of the alternative expressions

I (θ) = −E

(
∂2 logφ

∂θ2

)
= E

(
∂ logφ

∂θ

)2

= −nE

(
∂2 logf

∂θ2

)
= nE

(
∂ logf

∂θ

)2

.

Fisher did not discuss conditions under which the lin-
ear approximation would prove adequate; he was con-
tent to exploit it as a simple route to the asymptotic dis-
tribution of the maximum likelihood estimate, namely
N(θ,1/I (θ)). Thus far he had not gone beyond the
1922 argument.

The part of the argument that was novel in 1925, the
“ANOVA proof,” then went as follows: Let T be any
estimate of θ , assumed to be consistent and asymptot-
ically normal N(θ,V ). In the proof Fisher used this
as the exact distribution of T , and further treated V

as not depending upon θ , as would approximately be
the case for “reasonable” estimates T in what we now
call “regular” parametric problems. Fisher considered
the score function X as a function of the sample and
looked at its variation over different samples in two
ways. The first was to consider the total variation of X

over all samples, namely its variance Var(X) = I (θ).
And for the second, he evaluated Var(X|T ), the con-
ditional variation in X given the value of T for the
sample (i.e., the variance of X among all samples
that give the same value for T ). From this he com-
puted E[Var(X|T )], which he found equal to Var(X)−
1/V . Since Var(X) = E[Var(X|T )] + Var[E(X|T )]
(this is the ANOVA-like breakdown I refer to), this
would give Var[E(X|T )] = 1/V . But Var(X|T ) ≥ 0
always, which implies that necessarily E[Var(X|T )] ≥
0, and so Var(X) − 1/V ≥ 0. This gave 1

V
≤ I (θ), or

V ≥ 1
I (θ)

for any such T , with equality for efficient
estimates—what we now refer to as the information
inequality. Thus if the maximum likelihood estimate
indeed has asymptotic variance 1/I (θ), he had estab-
lished efficiency.

The logic of the proof—and the likely route that led
Fisher to it—seems clear. If there were a sufficient sta-
tistic S, then the factorization theorem (which Fisher
had recognized in 1922, at least in part) would give
φ = C · h(S; θ), where the proportionality factor C

may depend upon the sample but not on θ . By suf-
ficiency, X would then depend upon the sample only
through S, and so Var(X|S) = 0 for all values of S,
and consequently E[Var(X|S)] = 0 also. Also, if S

is sufficient, the maximum likelihood estimate (found
through solving X = 0 for θ ) is a function of S. The
failure of T to capture all of the information in the
sample is then reflected through the variation in the val-
ues of X given T , namely through Var(X|T ) and thus
E[Var(X|T )]. This latter quantity plays the role of a
residual sum of squares and measures the loss of effi-
ciency of T over S (or at least over what would have
been achievable had there been a sufficient statistic).
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What is more, this interpretation gave Fisher a target
to pursue in trying to measure the amount of lost infor-
mation, or even to determine how one might recover
it, just as in an analysis of variance one can advance
the analysis by introducing factors that lead to a de-
crease in the residual sum of squares. In the remainder
of the 1925 paper Fisher pursued just such courses. He
introduced both the term and the concept of an ancil-
lary statistic, in effect as a covariate designed to reduce
the residual sum of squares toward its theoretical min-
imum achievable value. He gave particular attention to
multinomial problems and focused on a study of the
information loss when no sufficient estimate existed,
and the loss in information in using an estimate that
was efficient but not maximum likelihood (e.g., a min-
imum chi-square estimate). He found the latter differ-
ence tended to a finite limit, a measure of what C. R.
Rao (1961, 1962) was later to term “second-order effi-
ciency.”

By 1935 Fisher evidently had come to see the first
part of the argument—the part establishing that the
maximum likelihood estimate actually achieved the
lower bound 1/I (θ)—as unsatisfactory, and he offered
in its place a different argument to show the bound was
achieved. That argument (Fisher, 1935, pages 45–46)
was derived from what I will call his third proof; I shall
comment on it later in that connection.

Fisher’s 1925 work was conceptually deep and has
been the subject of much fruitful modern discussion,
particularly by Efron (1975, 1978, 1982, 1998), Efron
and Hinkley (1978) and Hinkley (1980).

8. AFTER 1925: CORRESPONDENCE
WITH HOTELLING

Fisher’s beautiful theory had become more compli-
cated but was still quite attractive. The proofs Fisher
offered in 1925 were not such as would satisfy the
Pure Mathematician he had referred to in 1922, nor
would they withstand the challenges that would come
a quarter century later. Were they all that he could of-
fer? To answer this, it would help us to listen in on a
dialogue between Fisher and a nonhostile, highly in-
telligent party. Many in the audience in England who
were interested in this question had axes to wield, and
Fisher’s transparent digs at Karl Pearson, even though
they came in the form of legitimately pointing out ma-
jor errors in Pearson’s previous work, just set those
axes a-grinding. But there was one reader who ap-
proached Fisher’s level as a mathematician and was
so distant both geographically (he was in California)

and scientifically (he was working on crop estimating
at that time) that he was able to engage in just such a
dialogue. I refer to Harold Hotelling.

Hotelling received his Ph.D. from Princeton Uni-
versity in 1924, for a dissertation in point set topol-
ogy. In that same year he joined the Food Research
Institute at Stanford University, where he worked on
agricultural problems. Soon after, he discovered Fisher
through Fisher’s 1925 book, Statistical Methods for
Research Workers. Hotelling reviewed that book for
JASA; in fact he reviewed each of the first seven edi-
tions and the first three of these were volunteered re-
views, not requested by the Editor (Hotelling, 1951).
He started up a correspondence with Fisher, and tried
unsuccessfully to get Fisher to visit Stanford in 1928
and 1929 (Stigler, 1999a). After several friendly ex-
changes of letters, on October 15, 1928, Fisher (who
had had several requests from others for detailed math-
ematical proofs) wrote, asking Hotelling, “Now I want
your considered opinion as to the utility of collect-
ing such scraps of theory as are needed to prove just
what is wanted for my practical methods.” Hotelling
replied December 8, strongly encouraging such a work
as valuable for mathematics generally, and stated that
“a knowledge of the grounds for belief in a theory helps
to dispel the absurd notions which tend to cluster even
about sound doctrines.” Fisher’s Christmas Eve 1928
reply proposed that they collaborate:

24 Dec ’28
Dear Prof. Hotelling

Your letter has arrived on Christmas Eve,
and has given me plenty to think about for
the holidays. You will not expect too much
of my answer, as you see that I am writing
first and thinking afterwards; but I can see
already that I have a great deal to thank you
for.

After a few hours consideration I believe
my right course is to send you a draft con-
tents, to be pulled to pieces or recast as
much as you like, and to say I will do my
best to fill the bill if you will be joint author
and be responsible for the pure mathemat-
ics. If you consent to this and to taking the
first decision, like an editor, as to inclusion
or exclusion, on the clear understanding that
either of us may throw it up as soon as we
think it is not worth while, I will start send-
ing stuff in. It will be mostly new as many
of the proofs can be done much better than
in my old publications.
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Have you all my old stuff? I believe you
have, but if not I will try to find anything
still lacking.

It seems a monstrous lot of work, but I
will not grumble if I need not think too
much about arrangement.

Yours sincerely
R. A. Fisher

[Hotelling Papers Box 3]

Fisher’s draft table of contents is given as Appen-
dix 1 below. That work was never to be completed.
There was no apparent split between the two, but as the
project went on, Fisher’s increasing focus on genetics
as his 1930 book The Genetical Theory of Natural Se-
lection went through the press, and Hotelling’s move
in 1931 to the Department of Economics at Columbia
University, were likely causes for the drop in inter-
est. By February 1930 Fisher was writing, “It is a
grind getting anything serious done in the way of a
text book; I hope you will stick to yours, though; as
well as developing the purely mathematical develop-
ments.” Nonetheless, Hotelling spent nearly six months
at Rothamsted over the last half of 1929 and saw quite
a bit of Fisher over that time. Hotelling returned to
the United States in late December in time to submit
a paper to the American Mathematical Society (AMS)
and present it at their meeting in Des Moines, Decem-
ber 31. That paper was entitled, “The consistency and
ultimate distribution of optimum statistics”; that is, on
the consistency and asymptotic normality of maximum
likelihood estimates. It was published in the October
1930 issue of the Transactions of the AMS.

It is a reasonable guess that the approach taken in the
paper reflected Fisher’s views to some degree, com-
ing directly after the long visit with Fisher, although
Fisher apparently played no direct role in the writing.
At any rate, when Fisher wrote to Hotelling on the 7th
of January in 1930 to thank him for a copy, Fisher’s
only complaint was that the definition of “consistency”
Hotelling gave was slightly different from Fisher’s.
Fisher wrote,

“It is worth noting to avoid future confusion
that you are using consistency in a some-
what different sense from mine. To me a sta-
tistic is inconsistent if it tends to the wrong
limit as the sample is increased indefinitely.
I do not think I have ever attempted to ap-
ply the distinction of consistency or incon-
sistency to statistics which tend to no limit,

whereas you call them all inconsistent. Thus
I should not call the mean of a sample from

1

π

dx

1 + (x − m)2

an inconsistent statistic, though you would.
Congratulations on a very fine paper.”

Hotelling’s paper is little referred to today, which
seems a shame. It is beautifully written, as was most
of Hotelling’s work, and among other things he ex-
plained Fisher’s own work on this topic more clearly
than Fisher ever did. He reviewed Fisher’s proof of as-
ymptotic normality (the one based upon the Pearson–
Filon approach), and he gently noted that “it is not clear
what conditions, particularly of continuity, are neces-
sary in order that the proofs which have been given
shall be valid.” To repair this omission Hotelling of-
fered two explicit proofs for the case of one contin-
uous variable, stating overconfidently that “the exten-
sions to any number of variables are perfectly obvious;
and the corresponding theorems for discrete variables
follow immediately. . . .” The problem is, as Hotelling’s
clear exposition makes apparent to a modern reader,
the proof does not work. He simplified the problem by
transforming the parameter space to a finite interval (if
necessary) by an arc tangent transformation, and dis-
cretized the observed variable by grouping in a finite
number of small intervals, and did not realize that the
two combined do not ensure the uniformity he would
need to achieve the desired result for other than discrete
distributions with bounded parameter sets. The error
evidently came to Hotelling’s attention by 5 Decem-
ber 1931, when he circulated a list of 37 “Outstanding
Problems in the Theory of Statistics.” Problem #16 on
the list was, “Prove the validity of the double limiting
process used in the proof of (Hotelling, 1930), for as
general a situation as possible.”

9. THE GEOMETRIC SHADOW OF A NASTY
LITTLE FACT

To this point there had been not even a hint of the fu-
ture appearance of any nasty, ugly little fact that might
sully the beautiful theory. But then, on November 15,
1930, Hotelling wrote to Fisher with some pointed
questions. The letter reflected a geometric view of the
inference problem that Hotelling seems to have found
in Fisher’s work by 1926 and developed further after
their conversations at Rothamsted. Hotelling gave one
statement of the view in his 1930 paper (which must
have been drafted at Rothamsted), and he restated it
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FIG. 2. A reconstruction of Hotelling’s geometric view of the multinomial estimation problem, circa Fall 1929. Here x represents a multino-
mial observed relative frequency vector in the simplex, and the curve f (p) the potential values of the multinomial probability vector; the true
value of the parameter p (p0) is shown, as is the MLE and a contour of the likelihood surface.

in his November letter in different but equivalent nota-
tion. The essence is captured by Figure 2, drawn to dis-
play what Hotelling conveyed in words and symbols.

Hotelling considered a parameterized multinomial
problem with m cells, where the observations are a vec-
tor of relative frequencies of counts x = (x1, . . . , xm)

taking values in the m-dimensional simplex∑m
t=1 xt = 1, xt ≥ 0 all t . Let the probabilities of the

cells f (p) = (f1(p), . . . , fm(p)) depend upon a pa-
rameter p; this describes a curve in the simplex as p

varies. Let p = p0 denote the true value of the para-
meter, let p̂ be the maximum likelihood estimate of p,
and let f (p0) and f (p̂) be the points on the curve
corresponding to these two values. In his 1930 paper,
Hotelling stated further, “The likelihood L is constant
over a system of approximately spherical hypersur-
faces about [x]. The point [f (p̂)] is the point of the
curve which lies on the smallest of the approximate
spheres meeting the curve, and is therefore approxi-
mately the nearest point on the curve to [x]” (Hotelling,
1930).

Here then is how Hotelling raised his question in cor-
respondence, in the context of what must have been a
shared frame of discourse they had adopted at Rotham-
sted.

Dear Dr. Fisher:
Thank you very much for your recent let-

ter, with graph and data.
I have been examining various problems

in Maximum Likelihood of late; I wonder if
you can enlighten me as to the conditions
under which your proof holds good regard-
ing the minimum variance of statistics ob-
tained by this method, or rather, as to the

exact meaning of the theorem. One of sev-
eral questions is whether the variance of a
statistic or its mean square deviation from
the true value should be used as a measure
of accuracy.

Denoting by p̂ the optimum estimate of a
parameter p, whose true value is p0, can it
be said that the variance of p̂, assuming p̂

normally distributed, is less than that of any
other function of the same observations?
Obviously not without further qualification,
since a function of the observations can be
defined having an arbitrarily small variance.
We must therefore restrict the comparison
to a special class of functions suitable for
estimating p, but the definition of this class
must not involve p0. How should the class
be defined? As the class of consistent statis-
tics? If so, the following difficulty must be
faced.

Consider a distribution of frequency
among a finite number m of classes, involv-
ing a parameter p. In a sample of n, let xt

be the number [Hotelling evidently means
relative frequency] falling in the t th class.
Let ft (p) be the probability of an individual
falling into this class. If we take x1, . . . , xm

as coordinates in m-space, the equations

xt = ft (p) (t = 1, . . . ,m)

represent a curve with p as parameter. The
points corresponding to samples will form
a “globular cluster” (as you so well put it
in 1915)1 about that point on the curve for

1Here Hotelling evidently refers to Fisher’s use in Fisher (1924,
at page 101) of the evocative astronomical term “globular cluster”
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which p = p0. The method of maximum
likelihood corresponds approximately, for
large samples, to taking for p̂ the para-
meter of the point of the curve nearest to
that representing the sample; i.e., to project-
ing orthogonally. Now consider some other
method of projecting sample points upon
the curve; for example an orthogonal pro-
jection followed by an alternate stretching
and contracting along the curve. Then if p0
happens to give a point in one of the re-
gions of condensation [i.e. high density],
this method of estimation will, for suffi-
ciently large samples, yield a statistic with
smaller variance than that by the method of
maximum likelihood. To be sure, its vari-
ance will be larger if the true value p0 lies
in a region of rarefaction [i.e. low density],
and averaging for different possible values
of p0 might indicate a greater average vari-
ance than that of the optimum statistic. But
such an averaging would seem to be of a
piece with “Bayes’ Theorem,” in supposing
equal a priori probabilities.

Hotelling went on to state that even in the particu-
lar case of symmetric beta densities, maximum likeli-
hood failed to be optimum, but his derivation there was
marred by a simple error in differentiation. Before he
received Fisher’s reply of the 28th of November, 1930,
Hotelling wrote again, on December 12, correcting his
own error with regard to the beta estimation problem
and enlarging on his other comment, to the point of
rather clearly speculating on the possibility of superef-
ficient estimates.

The general question of the exact circum-
stances in which optimum statistics have
minimum variance. . . is extremely interest-
ing. That the property is not perfectly gen-
eral seems clear from a consideration of
some of the distributions having discontinu-
ities; and also from the fact that, if the true
value were known, a system of estimation
could be devised which would give it with
arbitrarily small variance; and such a system
of estimation might happen to be adopted
even if the true value were unknown.

to describe a point cloud. Fisher (1924) used the term in summariz-
ing the multiple dimensional space approach he had taken in Fisher
(1915). Fisher did not use the term in Fisher (1915), although it
would have been appropriate there also.

I have two students working on the opti-
mum estimates of m for the above curve and
for the Type III case you treated. Failing to
get anything of consequence for small sam-
ples by purely mathematical methods, they
will probably soon resort to experiment.2

Cordially yours,
Harold Hotelling

Hotelling’s letters posed a challenging question in a
direct but nonconfrontational way. Clearly, Hotelling
said, some more constraints on the class of estimates
would be needed; the geometric view they had ev-
idently shared at Rothamsted suggested that consis-
tency alone was not enough. There is no obvious
guarantee that the curve f (p) and the contours of the
likelihood are such that improvement over maximum
likelihood is not possible. What would be needed to
prevent this, or at least to convince a reader such as
Hotelling that the worry was groundless? Hotelling’s
hypothetical improvements were certainly vague. A
modern reader might be tempted to see them as fore-
shadowing Hodges’s estimate or even shrinkage via
Stein estimation, but even though they fall short of that,
they presented a clear challenge to Fisher.

10. FISHER’S REPLY: A THIRD PROOF OF THE
EFFICIENCY OF MAXIMUM LIKELIHOOD

By 1930 Fisher was no stranger to challenges by
skeptical readers. His general reaction to one from a
friendly source was to state clearly what he was pre-
pared to say, while avoiding speaking directly to the
point raised. Without addressing the criticism, much
less admitting its validity, he would move directly to
a new and improved position, often not giving any in-
dication that it represented the strongest statement that
could be made and perhaps even hinting otherwise or
at least allowing the reader to speculate so. Such was
the case here.

Fisher’s reply to the first of Hotelling’s letters was
brief, but it included one enclosure (A) that outlined a
new proof that illuminated Fisher’s views, as well as
a second short note (B) correcting Hotelling’s error in
differentiating the beta density.

28 November 1930
Dear Hotelling,

I enclose two notes A and B on the points
you raise. The first brings in the general

2From comments elsewhere in the correspondence it is clear that
by “experiment” Hotelling means simulation with dice or cards.
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variances and covariances for the multino-
mial, and is done more prettily by replacing
the multinomial by a multiple Poisson,3 but
the argument is probably clearer as it stands.

This is a very short note; the meat of my
letter is in the enclosures. . . . .

Yours sincerely,
R. A. Fisher

[Hotelling Papers Box 45]

Fisher’s Enclosure A presented a sketch of a new,
third proof of the efficiency of maximum likelihood,
one that took a different point of attack. The argu-
ment, given in toto as Appendix 2 below, was ele-
gant, geometric, and I believe also correct, or at least
completable, under the tacit regularity conditions im-
plied by the analysis. The geometric stance he took
was that which he and Hotelling would have discussed
at Rothamsted, restricted to the case of a parametric
multinomial family of distributions. Without any dis-
cussion, but in evident reply to Hotelling’s request for
further restrictions on the class of estimates allowed in
order to rule out nasty little facts of the sort Hotelling
had hinted at, Fisher did introduce a new restriction
on the class of estimates T for which the result was
claimed. As Fisher put it, the estimates under consider-
ation were now assumed to be homogeneous functions
T = φ(x1, . . . , xs) of degree zero, where (x1, . . . , xs )
is the vector of counts. This, and the tacitly assumed
smooth differentiability, gave him access to a number
of simple relationships leading to a conclusion he sum-
marized as follows:

“The criterion of consistency thus fixes the
value of T at all points on the expectation
line, while the criterion of efficiency in con-
junction with it fixes the direction in which
the equistatistical surface cuts that line. All
statistics which are both consistent and effi-
cient thus have surfaces which touch on that
line. The surface for Maximum Likelihood
has the plane surface of this type.”

A homogeneous function φ of degree h is one
where φ(cx, cy, . . .) = chφ(x, y, . . .), and in the ap-
plied mathematics of Fisher’s day their principal ad-
vantage was that if differentiable, they satisfied Euler’s
Relation xφx + yφy + zφz + · · · = hφ(x, y, z, . . .),

3An analytical trick he had introduced in Fisher (1922a), see also
the revised footnote in the reprinting of this paper in Fisher (1974).

where φx denotes the partial derivative of φ with re-
spect to x (see, e.g., Courant, 1936, Vol. 2, pages 108–
109). In Fisher’s case, the homogeneous functions φ

of degree zero would be functions of the sample rela-
tive frequencies only, and would not otherwise depend
upon the sample size n. This might be considered a
strong restriction upon the class of estimates (Fisher
did not comment upon this), but with the assumed dif-
ferentiability and Euler’s Relation with h = 0, and the
exactly known covariances for the multinomial, Fisher
had an easy expression for the asymptotic variance for
all estimates T in this class. He did not require recourse
to the regularity assumptions implicit in the substitut-
ing normal distributions for approximately normal dis-
tributions, or in assuming the variance of T was ap-
proximately constant, as he had in his previous proof.
It was then an easy step to use standard Lagrangian
methods to minimize this asymptotic expression for
the variance for consistent estimates within this class
and show the resulting equations were those that also
determined the maximum likelihood estimate.

Fisher published this third proof later only in a dis-
guised form, namely where he assumed that the esti-
mate T was to be found from an estimating equation
restricted to be a linear function of the relative frequen-
cies; that is, without stating where he had begun, he
jumped directly to Euler’s Relation. In that guise, and
without the geometric setting and intuition, it appeared
in his 1935 paper (Fisher, 1935, pages 45–46) where
it served to provide an improved version of the demon-
stration that the maximum likelihood estimate achieves
the information lower bound. It also appeared in Fisher
(1938, pages 30–32), a 45-page tract he put together
for a visit to India at Mahalonobis’s invitation in Janu-
ary 1938. That tract was mostly cobbled together from
Fisher’s papers, and it summarized his view to that
time. And in his 1956 book, he gave (apparently only
as an illustration) another, simplified version, restricted
to estimates T that were themselves linear in the rela-
tive frequencies (Fisher, 1956, pages 145–148).

Hotelling’s role in this was that of an important cat-
alyst. He helped lead Fisher to reconsider the problem
and provided a remarkably acute audience, but he him-
self did not contribute further to the theory of maxi-
mum likelihood. Hotelling did write one other related
paper during his nearly six months at Rothamsted in
1929. It was an investigation of the differential geome-
try of parameter spaces, with what is sometimes called
the Jeffreys information metric, after Jeffreys (1946)
(Kass, 1989; Kass and Vos, 1997). The paper, entitled
“Spaces of statistical parameters,” included Type-III or
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gamma densities as one example, must also have been
written by Hotelling at Rothamsted. On 27 December
1929, a summary of the paper was read by Oystein Ore
in Hotelling’s absence to the Annual Meeting of the
American Mathematical Society in Bethlehem, Penn-
sylvania. Only an abstract was ever published, but the
summary Ore read survives (part of a thick folder of
other, later notes by Hotelling), and it is printed here,
together with the abstract (Hotelling, 1930a), as Ap-
pendix 3.

11. THE SITUATION TO 1950

In all, Fisher gave three proofs of the optimality of
maximum likelihood. The first, in 1922, was based
upon the erroneous belief that maximum likelihood
estimates were always sufficient statistics, and it de-
pended upon treating approximately normally distrib-
uted random variables as if they were in fact normally
distributed. The second proof, in 1925, was what I
called the ANOVA proof. It too required the same im-
plicit appeal to regularity by using normality in place
of approximate normality, as well as assuming that
the asymptotic variances of the estimates were approx-
imately constant, and that the likelihood was suffi-
ciently regular to permit the evaluation and manipu-
lation of various integrals. The third, in 1930 in cor-
respondence (and later in print in 1935 in a version
restated in terms of estimating functions that lost the
geometric origin), placed more severe restrictions upon
the distributions (assumed multinomial) and estimates
(smoothly differentiable functions of the relative fre-
quencies only, not varying with sample size), but it
yielded a more satisfactory proof. Even if not all de-
tails were filled in, that task was fairly easy for the lim-
ited setting considered. Indeed, the third proof was im-
mune to the ugly little facts that Hotelling hinted at in
1930 and Hodges produced explicitly in 1951, but at
a cost in generality. Still, multinomial distributions are
as general as one could hope for in the discrete case,
and the intuition developed from the geometric setting
of that third proof provided at least superficial promise
that the result held much more generally, for continu-
ous parametric families.

Over the next few years, several mathematicians
recognized the unsatisfactory extent of rigorous sup-
port given for such a broad theory and tried their
hands at filling in the gaps Fisher had knowingly leapt
over as well as some he had not even recognized.
The major early efforts were by Joseph Doob (1934,
1936) and Abraham Wald (1943, 1949) in the United

States, Daniel Dugué (1937) in France, and then Harald
Cramér (1946, 1946a) writing during the war in isola-
tion in Sweden (having read Fisher, Doob, Dugué, but
apparently not Wald). Both Doob and Wald had strong
connections with Hotelling; both pursued their stud-
ies of this topic on Carnegie Fellowships working with
Hotelling at Columbia, Doob in 1934–1935, and Wald
in 1938–1939. Doob left for the University of Illinois
in 1935, but Wald stayed on at Columbia, replacing
Hotelling in 1939–1940 while Hotelling was on leave,
and again permanently when Hotelling moved to North
Carolina in 1946.

Of these writers, Doob and Dugué fell into new diffi-
culties (as Hotelling had in his 1930 paper); Doob was
gently corrected by Wald, and Dugué’s slip was appar-
ently first noticed a decade later, in the mid-1940s by
Edith Mourier, who brought it to Darmois’s attention.
The Wald and Cramér treatments were the most satis-
factory; both raised the level of rigor to new heights,
although both suffered from the complexity of the con-
ditions assumed and the limitations imposed. Wald was
already publishing on the theory of estimation by 1939,
and his 1943 proof of the asymptotic sufficiency of
the maximum likelihood estimates can be seen as a
form of the completion of Fisher’s 1922 proof. Cramér
also was firmly based on Fisher; indeed his develop-
ment followed the structure of Fisher’s work closely,
but with rigorous demonstrations and explicit state-
ments of conditions. Much of what Cramér presented
might be seen as a realization of the book Fisher and
Hotelling might have written, albeit without the geom-
etry.

While this reaction to Fisher’s theory (namely that
it was not true, or at least not proven as stated) pro-
gressed in some quarters, another appeared, namely
claims that the theory was not new. In this respect
the reactions were like those in the seventeenth cen-
tury to William Harvey’s 1628 demonstration of the
circulation of blood, where denials of the truth of the
claimed phenomenon coexisted with priority claims
on behalf of Hippocrates, circa 400 BC (Stigler, 1999,
pages 207ff). Karl Pearson to his death and some others
in his camp considered Fisher’s maximum likelihood
simply the Gaussian method, warmed over and served
again without overt reference to any Bayesian under-
pinnings. That can be attributed to a lack of under-
standing of what Fisher was accomplishing, a phenom-
enon that afflicted even such first-class older statisti-
cians as G. Udny Yule. Yule’s otherwise excellent 1911
textbook was frequently revised but never made more
than the most superficial reference to Fisher (other than
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to his correction to Pearson on degrees of freedom),
even to the 10th edition of 1936 (Yule, 1936). Another,
more recent claimant’s name was added to Gauss’s in
1935 when Arthur Bowley, in moving a vote of thanks
for Fisher (1935), called attention to work by Edge-
worth in 1908–1909 that bore at least superficial simi-
larity to some of Fisher’s work, namely the information
inequality of the second of the three proofs.

Bowley clearly had only a dim understanding of this
work of Fisher’s, and his remarks were mild compared
to those 15 years later by Jerzy Neyman. Neyman’s dif-
ficulties with Fisher began in 1934 and involved both
scientific and personal issues, in what would become a
long-running feud. Generally the dispute simmered at
a low level: Fisher would, after the initial split, mostly
ignore Neyman except for occasional barbs (usually
veiled, without mentioning Neyman by name), and
Neyman would generally downplay the importance and
originality of Fisher’s work, rising on occasion for a
more detailed published blast (Zabell, 1992; Kruskal,
1980).

In 1937 Neyman had been content to attribute the
simple idea of maximum likelihood to Karl Pearson,
citing Pearson’s derivation of the product moment es-
timate of the normal correlation coefficient as the
“most probable” value, using the Gaussian method
Pearson later abandoned (Neyman, 1937, page 345;
1938, pages 132, 136; Pearson, 1896, pages 262–265).
But in 1951 Neyman’s focus on Fisher reached a peak,
and he latched on to the claim of priority for Edgeworth
and deployed it as a rhetorical weapon in the feud. In a
review of the collection of papers (Fisher, 1950), Ney-
man resurrected Bowley’s discovery, accusing Fisher
of “an unjustified claim of priority” with respect to “the
so-called property of efficiency of the maximum likeli-
hood estimates” (Neyman, 1951). What is more, Ney-
man wrote, “Actually, the proofs of the efficiency of
maximum likelihood estimates offered both by Edge-
worth and by Fisher are inaccurate, and the assertion,
taken at its full generality, is false.” This comes close
to being an accusation of a false claim of priority for
a false discovery of an untrue fact, which would be a
rare triple-negative in the history of intellectual prop-
erty disputes. Savage (1976) wrote of Fisher with this
review in mind, “nor did he always emerge as the
undisputed champion in bad manners.” On the other
side, in 1938 Fisher had reviewed Neyman’s influential
Lectures and Conferences on Mathematical Statistics
(1938), a book which had only a few grudging refer-
ences to Fisher. Fisher’s review consisted of only two
sentences, the first innocuous and the second, “There

is not enough original material to justify publication
as a book, and too much that is really trivial” (Fisher,
1938–1939). In June 1951, Neyman also wrote to the
editor of the Journal of the American Statistical As-
sociation, W. Allen Wallis, unsuccessfully requesting
that the Journal reprint Edgeworth’s 1908–1909 papers
(letter in Neyman papers, Bancroft Library).

But what of the basic question, did Edgeworth pre-
cede Fisher and did he in any way influence him if he
did? My own view, which is in general accord with
the conclusions Jimmie Savage (1976, pages 447–448)
and particularly John Pratt (1976) came to from a de-
tailed study of both Edgeworth and Fisher, is that while
there was indeed merit to Edgeworth’s work on this,
there was no merit to the 1951 accusation of “an un-
justified claim of priority.” In the course of a long, ob-
scure and rambling series of papers emphasizing the
use of inverse probability in estimation, Edgeworth
did include a treatment of what he called “the direct
method free from the speculative character which at-
taches to inverse probability.” He made what can in
retrospect be best interpreted as a statement that max-
imizing the likelihood within a very restricted class
of estimates (basically M-estimates for location para-
meters) gives the estimate with smallest standard de-
viation. The proof he offered (suggested by Professor
A. E. H. Love, an expert on the calculus of variations)
was based explicitly upon Schwarz’s inequality, and
bore no resemblance to any Fisher gave.

There is no indication that this work of Edge-
worth’s ever had any influence upon Fisher or any
other worker on this topic. And the obscurity of the
prose—uncommonly dense, even by Edgeworthian
standards—is such that it is hard to believe the re-
sult would have been recognized there by any con-
temporary reader other than Edgeworth himself. Even
at a later time, its recognition required a reader with
Fisher’s work in hand and either extensive experi-
ence with Edgeworth or a strong historical or per-
sonal motive. Bowley had studied Edgeworth’s work
and mode of expression thoroughly in preparing an
extended commemorative summary in 1928. Neyman
had both historical and personal motives, as well as
Bowley’s 1935 prompt. Even today anyone who tries
to learn what Edgeworth accomplished from Bowley’s
1928 summary (Bowley, 1928, pages 26–28) would
emerge completely at sea, no matter how long the text
is puzzled over. This is not to deny that when one
has dug through the thicket of the 1908–1909 origi-
nal, there is a limited result and a hint of understanding
that went beyond the limited result. Edgeworth was
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a statistical scientist with an uncommonly subtle and
deep mind (Stigler, 1986, Chapter 9; 1999, Chapter 5),
and his work here is further evidence of that. But,
for all that, the work stands as an independent partial
anticipation—a hint, not an instance, of what was to
come.

Edgeworth died in 1926 without ever commenting
on Fisher, and Fisher, as was his wont, dug in his heels
and refused to seriously engage the issue in print. His
frankest private statements were in two letters. The
first was a 12 February 1940 letter to Maurice Fréchet,
where he described Edgeworth’s statement as confus-
ingly linked to inverse probability, even though the
mathematics could be dissociated from that approach.
In that letter Fisher summed up his view in these words:
“The confusion of associating this method with Bayes’
theorem seems to have been originally due to Gauss,
who certainly recognized its merits as a method of es-
timation, though I do not know whether he proved any-
thing definite about it. I do not know of any explicit
statement of the properties, consistency, efficiency and
sufficiency, which may characterize estimates prior to
my 1922 paper” (Bennett, 1990, page 125). The second
letter, dated 2 July 1951, was to a Californian, Horace
Gray, who had spent time with Fisher in London 1935–
1936, and he had written to Fisher to call attention to
Neyman’s review. Fisher replied,

“Neyman is, judging from my own experi-
ence, a malicious mischief-maker. . . . Edge-
worth’s paper of 1908 has, of course, been
long familiar to me, and to other English
statisticians. No one could now read it with-
out realizing that the author was profoundly
confused. I should say, for my own part, that
he certainly had an inkling of what I later
demonstrated. The view that, in any proper
sense, he anticipated me is made difficult
by a number of verifiable facts” (Bennett,
1990, pages 138–139).

The facts Fisher listed were that (i) Edgeworth based
his investigation on inverse probability, (ii) he limited
attention to location parameters, and (iii) the formula
they shared in common, for the variance of efficient es-
timates, had been drawn from Pearson and Filon with
no notice given to the major errors in that work. Fisher
noted that since by 1903 Sheppard’s works had shown
that moment estimates had variances different from
those given by Pearson and Filon, this to Fisher raised
the questions: “Had Pearson and Filon’s variances any
validity at all? Does any class of estimate actually have

these variances? If so, how can such an estimate be ob-
tained in general? But Edgeworth would have been far
ahead of his time had he asked them.” Fisher would
grant Edgeworth “an inkling,” but no more. Some
might see more in Edgeworth than Fisher did, but they
do so from a different historical perspective. I believe
Fisher owed no intellectual debt to Edgeworth on this
issue, and it was his own loss. Had he taken the time
and trouble to learn from Edgeworth’s insight, he might
have gone even further. Savage (1976) proffered as ex-
planations for this neglect, that Fisher initially thought
Edgeworth’s premises ridiculous, and later “because it
is hard to seek diligently after the unwelcome.”

Neyman’s was not the only review to raise priority
issues about Fisher’s work. In a tendentious 1930 re-
view of the 3rd edition of Fisher’s Statistical Methods
for Research Workers, Charles Grove seemed to claim
that all in Fisher was to be found earlier in Scandina-
vian work by Thiele, Gram or Charlier. Grove (1930)
did not focus on maximum likelihood, which he evi-
dently thought was unsupported, but put forth instead
the claim that Thiele had in 1889 anticipated Fisher
on small sample inference and particularly on estimat-
ing cumulants with k-statistics, and Gram had done so
on the use of orthogonal polynomials in regression.
Fisher replied in the same publication, and more col-
orfully in a private letter to Grove’s colleague Arne
Fisher (a Dane who seems to have been the instigator of
Grove’s review). Fisher stated that Thiele “had no more
glimmer than [Karl] Pearson of some of the ideas we
now use” (Grove, 1930; Fisher, 1931; Bennett, 1990,
page 313). A scrupulous recent translation of Thiele
from the Danish (Lauritzen, 2002) with accompanying
commentary allows a better assessment of his excellent
work, which, however, did not include contributions to
maximum likelihood estimation.

12. DOUBTS ABOUT MAXIMUM LIKELIHOOD

The possibility that maximum likelihood estimates
could actually perform badly, or that they might be dra-
matically improved upon by another method, seems to
have not been raised prior to Hotelling’s probing let-
ters to Fisher of November 15 and December 12, 1930.
Kirstine Smith and Karl Pearson had questioned the
relative merits of the “Gaussian method” versus min-
imum chi-square in 1916, but any difference there was
minor; both were later seen to be asymptotically effi-
cient estimates. For the most part, the early reservations
about Fisher’s maximum likelihood centered on ques-
tions of priority (was he preceded? was anything really
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new in the method?) and issues of practical usefulness
(were the calculations too hard relative to the method
of moments?). As maximum likelihood became more
widely adopted in the 1930s, the increased attention
to proofs of its effectiveness (could a rigorous general
demonstration be devised?) led inevitably to questions
of when it might break down. The earliest explicit ex-
ample is perhaps due to Abraham Wald, in correspon-
dence with Jerzy Neyman in 1938.

Wald immigrated to the United States from Vi-
enna in Spring 1938, when shortly after Hitler’s an-
nexation of Austria he accepted an offer to join the
Cowles Commission for Research in Economics, then
located in Colorado Springs. He remained with Cowles
through the summer before joining Harold Hotelling
at Columbia University in Fall 1938. On Septem-
ber 20, 1938, a week before he left for Columbia, Wald
wrote to Neyman sending a promised manuscript on
the Markov inequality, but also describing a different
problem he had encountered. The problem described
was a slight generalization of one he would treat in
Wald (1940), namely estimating a straight line when
n points on the line are observed but both coordinates
are subject to independent errors. However, Wald’s let-
ter to Neyman contained a statement that he omitted
from the 1940 article: “I have shown that the method
of maximum likelihood leads to false estimations of
the parameters. . . . (i.e., leads to statistics of which the
stochastic limits are unequal to the values of the re-
spective parameters to be estimated). Hence the max-
imum likelihood method cannot be applied” (Neyman
Papers, Box 14, Folder 28). Wald stated that he had
solved this general estimation problem for the case of
independent normally distributed errors with possibly
unequal variances.4

Neyman replied on September 23 that he was quite
interested in the new problem, “the more so as it is
rather close to what I am trying to do myself.” Ten
years later Neyman and Elizabeth Scott published, with
a general citation to Wald (1940), a simplified version
of Wald’s example as one of several with increasing
numbers of parameters where maximum likelihood es-
timates are inconsistent. That version, in which the
straight line is y = x and the two coordinates’ er-
ror variances are equal, has come to be known as the
Neyman–Scott example. It is usually expressed as fol-
lows: Xij are independent N(μj ,σ

2), for i = 1,2, and

4If the observed points’ means are modeled as a random sam-
ple, the parameters do not grow in number with the sample size
and their maximum likelihood estimates are consistent under mild
conditions; see Kiefer and Wolfowitz (1956).

j = 1, . . . , n, in which case the maximum likelihood
estimate of σ 2 consistently estimates half the correct
value (Neyman and Scott, 1948).

In June of 1951, just as Jerzy Neyman’s review
of Fisher’s Collected Papers appeared, the Berkeley
Statistical Laboratory convened for the summer un-
der Neyman’s general direction. One of three research
groups took as its charge “a complex of questions aris-
ing from considerations of superefficiency and identi-
fiability.” The group concentrating on this topic was
comprised of Joseph L. Hodges, Jr., Lucien Le Cam
and Agnes Berger. It was presumably shortly before
that time that Hodges, then an Assistant Professor at
Berkeley, constructed his example; in any event the
study was soon sufficiently advanced that a session
on the topic “Efficiency and superefficiency of esti-
mates” was arranged by Neyman to be held on Sat-
urday, December 29, 1951, at the Boston meeting
of the Institute of Mathematical Statistics. Four talks
were presented in that session, by Jerzy Neyman (“On
the problem of asymptotic efficiency of estimates”),
Joe Hodges (“Local superefficiency”), Lucien Le Cam
(“On sets of parameter points where it is possible
to achieve superefficiency of estimates”) and Joseph
Berkson (“Relative precision of least squares and max-
imum likelihood estimates of regression coefficients”)
(Biometrics, 1951; Littauer and Mode, 1952). Neither
Neyman’s nor Hodges’s talks were ever published; Le
Cam’s was developed into his Ph.D. dissertation and
published in 1953. That publication (Le Cam, 1953) in-
cluded Hodges’s example (credited to Hodges), and Le
Cam proved among other things that while supereffi-
ciency was clearly possible, the set of parameter points
where it could be achieved had Lebesgue measure zero.

In the decade that followed, a number of other ex-
amples were discovered or devised. Of these, the least
contrived was the problem of estimation for the five-
parameter mixture of two normal distributions, where
the likelihood function explodes to infinity when either
mean parameter equals any observation. This and sev-
eral other examples, including an important one by Ba-
hadur, are reviewed in Le Cam (1990) and Cox (2006,
Chapter 7). Le Cam speculates that the normal mixture
example (known in the folklore of the 1950s but appar-
ently not published then) was due to Jack Kiefer and
Jacob Wolfowitz; Cox (2006, pages 134–135) consid-
ers it to some extent pathological.

These early examples created a flurry of excitement
but are for the most part not seen today as debilitating
to the theory. Hodges’s example made a substantial im-
pact when it first became known, but it has, ever since
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Le Cam’s dissertation, come to be seen as an ingenious
but minor technical achievement. Hodges (see Figure 1
above) showed you could improve locally on maxi-
mum likelihood, basically by shrinking the estimate to-
ward zero, and as such it might also be viewed as an
early hint of the 1955 shrinkage estimates of Charles
Stein that in multiparameter problems can improve uni-
formly on maximum likelihood. But Hodges’s example
itself was for finite samples inferior to maximum likeli-
hood for parameter values not near zero, and it was not
long seen as a serious threat. The Wald–Neyman–Scott
example was of more practical import, and still serves
as a warning of what might occur in modern highly
parameterized problems, where the information in the
data may be spread too thinly to achieve asymptotic
consistency. The normal mixture example remains cer-
tainly of at least computational importance, as showing
how in complex settings it may be necessary to seek lo-
cal maxima or to constrain the parameter space. Fisher
never commented on any of these examples.

There continued over this period to be a number of
attempts to complete the theory, to give a rigorous de-
scription of conditions that approached necessary and
sufficient, conditions describing situations in which
maximum likelihood would not mislead. As work on
the topic became more refined and more correct, the
intrinsic difficulties of the topic also became more ap-
parent. The lists of conditions needed to prove opti-
mality by Wald and Cramér were already unwieldy and
the basic logic of the solutions retreated from sight; in-
deed one problem was that achieving rigor sometimes
led to the exclusion of basic examples, such as the es-
timation of the normal standard deviation, as in Wald
(1943). The consequences can still be seen today, in the
best textbook treatments, such as those by Bickel and
Doksum (2001) and by van der Vaart (1998), where
the elegance of the exposition comes from strategically
restricting the range of the coverage. Bahadur (1964)
gave a succinct and elegant theorem that builds upon
work of Le Cam, but only treated a one-dimensional
parameter and was restricted to estimates that are as-
ymptotically normal with variances that are continuous
in the parameter.

13. OF ERRORS IN THEORY

At many junctures in this story we have encountered
what might be judged theoretical errors committed by
the workers involved. Perhaps Lagrange, by ignoring
the curve his probabilities followed until the final stage,
could be judged in error; it certainly left him with

method of moment estimates that would be thought
woefully inefficient by the Fisher generation. Perhaps
Gauss’s use of a uniform prior, which rendered his so-
lution susceptible to change by nonlinear transforma-
tions of the parameters, would be considered an error.
Certainly Pearson and Filon erred in their promiscuous
use of a naïve passage to a limit in ways where it gave
wrong answers (Stigler, 2007). And certainly Fisher’s
1921 assumption that sufficient statistics always exist
was an error, and Hotelling’s 1930 proof of the consis-
tency and asymptotic normality of the maximum like-
lihood estimate cannot be counted correct for the gen-
erality claimed.

There are other errors I have not discussed. When
Lambert (1760) in a sketchy presentation gave only one
example, he got what was arguably the wrong answer
there. Lambert’s only specific result was for n = 2,
claiming the sample mean in that case always gave the
most probable result, a claim that would fail for the
Cauchy density. See Stigler (1999, Chapter 16). And
there were later smaller and subtler lapses in rigor in
attempts by Doob and by Dugué to themselves correct
some of Fisher’s oversights. But I do not mean at all to
suggest these pioneers had feet of clay. To the contrary.
Without Lagrange’s error he might not have found the
Laplace transform at that early date. Without Pearson
and Filon, Fisher might not have started down the road
he did. Without Fisher’s 1921 mistaken jump to a con-
clusion, he might not have rushed to complete his the-
ory, which even flawed and incomplete, was instrumen-
tal in launching twentieth century theoretical statistics.
Great explorations in uncharted territory seem to re-
quire great boldness, and even mischance can lead to
major advance.

14. CONCLUSION

Despite all these difficulties, maximum likelihood
remains one of the most used and useful techniques
of modern statistics. How can that be, in the face of
the nasty little facts uncovered by the 1950s? For one
thing, there is solid mathematical support in a wide
class of problems. Fisher’s proofs can all be defended
as correct, at least if one accepts as given the regularity
conditions and assumptions that were clearly implicit,
including the limitation in 1922 to sufficient estimates,
and in 1925 to score functions linearly approximable
by maximum likelihood estimates. Of course that de-
fense flirts with tautology: any statement is true if all
the conditions required for its truth are assumed; even
the Pearson–Filon derivation of the “probable errors of
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frequency constants” might be so defended. But there
is a big difference between the two cases. Fisher’s
implicit assumptions are in part fairly clear (smooth
differentiability, consistent estimates, e.g.) and were
clearly evident to Fisher himself; if he made a false
application of the theory, it is not known to me. On
the other hand, with Pearson–Filon the case was dif-
ferent, as the inappropriate applications in the same
paper make clear. Nonetheless, the intense mathemat-
ical investigations after 1938 and particularly in the
1950s revealed potential problems Fisher had not con-
sidered, with increasing numbers of parameters, un-
bounded likelihood functions and the possibility of lo-
cal improvement over maximum likelihood. Fisher was
surely aware of some of these problems, at least when
they were published, if not before. The first of them
he might have countered by noting that in such situa-
tions the amount of information in the data (the mea-
surement of which was one of his pioneering advances)
was being spread over a space of dimension increasing
in proportion with the sample size, and so of course
problems with consistency could be expected. But he
did not. The third possibility, local improvement, had
been brought early to his attention by Hotelling, but
here too Fisher remained silent, as he did in the face of
other examples as well. An explanation for this silence
might, ironically, have been given by Fisher himself in
a 14 January 1933 letter to Egon Pearson, commiserat-
ing with him on the difficulties he faced with his father,
Karl: “Many original men are for that reason unrecep-
tive, and this is a fault which age does nothing to cure”
(Fisher papers).

Personalities played a role in this development.
Fisher’s hostilities with Neyman surely increased his
stubborn resistance to public discussion of areas where
questions remained, and they surely contributed to the
zeal with which Neyman pursued the discovery and
public discussion of such problems. The latter might
be viewed as a benefit of the feud: when peace reigned
in the early 1930s and the only attention to the prob-
lem was by Fisher, Hotelling, and those Hotelling in-
spired to work on this (Doob, Wald) or a noncombatant
(Dugué), the problems in the proofs and the limitations
of the theory were not on public view. Indeed, there
has been no published criticism that clearly identified
the source of errors in the proofs of Hotelling, Doob or
Dugué even to the present day; either the early works
were ignored, were merely cited, or referred to with
a polite allusion such as to the proofs being “not rig-
orous” (e.g., Doob, 1934; Le Cam, 1953). The reader
got no sense of where and how real problems with the

theory might arise. Hostility bred uncivil discourse; it
also led to principled focus.

Yet despite these problems, time and again maxi-
mum likelihood has proved useful even in situations
where no general theorem could be found to defend its
use. Perhaps as Fisher’s powerful geometric intuition
may have foreseen, the scope of useful application of
maximum likelihood exceeds that of any reasonably
achievable proof, even though this comes at the po-
tential cost of inadvertently blundering into a region
of inapplicability. We now understand the limitations
of maximum likelihood better than Fisher did, but far
from well enough to guarantee safety in its application
in complex situations where it is most needed. Maxi-
mum likelihood remains a truly beautiful theory, even
though tragedy may lurk around a corner.

APPENDIX 1: FISHER’S DECEMBER 1928 DRAFT
TABLE OF CONTENTS [HOTELLING PAPERS,

BOX 3]

I. Distributions
Varieties and variables
Types of distribution

(a) Discontinuous, step like integrals
(b) Continuous, differentiable integrals
(c) General type, integral not differentiable but

frequency not confined to zero measure

Specification by moments
Characteristic function,

∫
eitxf (x) dx or∫

eitx dF (x)

Its logarithm, cumulative property
Cumulative moment functions or seminvariants
[sic]
Illustrative cases, uniqueness of normal distribu-
tion, multinomial and multiple Poisson

II. Distributions derived from normal
χ2 distribution is that of Sn

1 (x2
p) when xp is dis-

tributed with unit variance about zero
Transformation of ξq = ∑n

p=1 cpqxp ,∑n
p=1 c2

pq = 1,
∑n

p=1 cpqcpq ′ = 0

Application of χ2 to frequencies
Distribution of t = nx̄

χ2 [sic]; application to regres-

sion coefficients; of z = 1
2 log

n2χ
2
1

n1χ
2
2

.

III. Distribution of correlation coefficient, partial cor-
relation, multiple correlation. Hyperspace treat-
ment

IV. Moment estimates of seminvariants
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Simple and multiple distribution of such estimates
{paper in Lond. Math. Soc. They will not publish
for a year if then}
Combinatorial method

V. Theory of estimation
(Much as already done but more about Sufficient
Statistics)
Method of maximum likelihood
Bayes’ theorem. Inverse probability and likeli-
hood. Illustrate by inefficiency of moments with
Pearsonian curves.

VI. Experimental design (not so agricultural as in Sta-
tistical Methods for Research Workers), more use
of amount of information

VII. Statistical mechanics; argument put in a clear
light without taking x! as a continuous function
when x is small! NOT YET DONE!
Analogous biological problems. Rather worth do-
ing though.
Fowler has now done a great deal, but still the
method of steepest descent seems very indirect,
and obviously this limits statistical argument.

APPENDIX 2: FISHER’S ENCLOSURE A FROM
THE NOV. 28, 1930 LETTER TO HOTELLING. THE
LETTERS WERE TYPED BUT THE FORMULAS

WERE WRITTEN IN BY HAND, AND THE
APPARENT TYPOGRAPHICAL ERROR IN THE
FOURTH FORMULA FROM THE BOTTOM ( ∂θ

∂X1

FOR ∂φ
∂X1

) IS AS WRITTEN IN THE ORIGINAL
[HOTELLING PAPERS, BOX 45]

Expectation line x = f (θ)

Equistatistical surface (or region) T = φ(x1, . . . , xs)

∑
x

∂φ

∂x
= 0 if φ is homogeneous of zero degree.

For consistency θ = φ(f1, . . . , fs)

For large samples, provided there is no bias of order
as high as n−1/2,

V (T ) = Mean

(∑ ∂φ

∂x
δx

)2

= ∑
f

(
1 − b

x

)(
∂φ

∂x

)2

− ∑∑ ff ′

n

∂φ

∂x

∂φ

∂x′

for multinomial, where differentials refer to the expec-
tation point.

Differentiating the condition of consistency, dθ =
(
∑ ∂φ

∂x
∂f
∂θ

) dθ , or
∑ ∂φ

∂x
∂f
∂θ

= 1

Any values ∂φ
∂x

are admissible subject to this condi-
tion for consistency, we may therefore minimize the
expression for the variance subject to this condition and
obtain equations of the form

f1(θ)
∂θ

∂x1
− f1

n

∑
f

∂φ

∂x
= λ

∂f1

∂θ

Now if φ is homogeneous in x of zero degree,∑
f

∂φ
∂x

= 0, hence, for all classes

∂φ

∂x
= λ

f

∂f

∂θ
or

∂φ

∂x
= 1

f

∂f

∂θ

/∑ 1

f

(
∂f

∂θ

)2

The criterion of consistency thus fixes the value of T at
all points on the expectation line, while the criterion of
efficiency in conjunction with it fixes the direction in
which the equistatistical surface cuts that line. All sta-
tistics which are both consistent and efficient thus have
surfaces which touch on that line. The surface for Max-
imum Likelihood has the plane surface of this type.

APPENDIX 3: HOTELLING ON
PARAMETER SPACES

Hotelling briefly attended the American Mathemat-
ical Society’s Annual Meeting in Bethlehem, Penn-
sylvania, December 26–29, 1929, but he left before
this paper was scheduled to be read on December 27.
The paper was read in his absence by Professor Oys-
tein Ore of Yale University, and Ore subsequently re-
turned the manuscript to Hotelling; only the abstract
was ever published (Hotelling, 1930a). Meanwhile,
Hotelling traveled on to the AMS Regular Meeting De-
cember 30–31 in Des Moines, Iowa, where on Decem-
ber 31 he read his paper “The consistency and ultimate
distribution of optimum statistics” (Hotelling, 1930).
The summary that follows is the entire manuscript as
read by Ore, from the Hotelling Papers at Columbia
University (Box 44).

SPACES OF STATISTICAL PARAMETERS

By Harold Hotelling, Stanford University.

[Abstract]
For a space of n dimensions representing the para-

meters p1, . . . , pn of a frequency distribution, a statisti-
cally significant metric is defined by means of the vari-
ances and co-variances of efficient estimates of these
parameters. Such a space, for the ordinary types of dis-
tributions, is always curved. For the two parameters of
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the normal law the manifold may be represented in part
as a surface of revolution of negative curvature, with a
sharp circular edge. On this surface variation of the dis-
persion is represented by moving along a generator. For
a Pearson Type III curve [i.e. gamma distributions] of
any given shape the same surface occurs. For the unre-
stricted Type III curve there are three parameters; their
space is investigated. Certain metrical properties which
hold in general for spaces of statistical parameters are
given.

SUMMARY OF “SPACES OF
STATISTICAL PARAMETERS”

A “population” is specified by a function

f (x,p1, . . . , pk)

such that f dx is the probability of an observation
falling in the range dx. In statistical theory we have
given observations x1, . . . , xN and wish to estimate the
values of the parameters p1, . . . , pk . There is an infin-
ity of possible methods of making these estimates; but
one possessing certain peculiarly valuable properties is
that of maximum likelihood. The likelihood is defined
as

N∏
i=1

f (xi,p1, . . . , pk).

Denote its logarithm by L. Let p̂1, . . . , p̂k be the values
maximizing L. They have been called optimum statis-
tics, or optimum estimates of the parameters, by R. A.
Fisher. The errors of estimate p̂α − pα derived from
samples of N have a distribution which for large val-
ues of N approaches the normal form

Ke− 1
2 T dp̂1, . . . , dp̂k,

where

T = ∑∑
gαβ(p̂α − pα)(p̂β − pβ).

Here gαβ is the mathematical expectation of

∂2L

∂pα ∂pβ

,

and is a covariant tensor of second order under transfor-
mations p′

α = φα(p1, . . . , pk)—though of course the
second derivative is not itself a tensor.

This tensor property suggests that

gαβ dpα dpβ

be taken as distance element in a space of coordinates
p1, . . . , pk . Indeed a considerable amount of differen-
tial geometry carries over immediately to give novel

statistical conclusions. It should be said at once that
these spaces are not flat, but are curved in a manner
depending on the initial population distributions.

Problems of “random migration” by short leaps in
the k-space occur in various biological problems, when
evolution is supposed to take place by small mutations.
Such problems occur also in experimental work, as in
the dilution method of counting soil bacteria developed
by Cutter at Rothamsted. These problems, for short
steps, are equivalent to problems regarding heat con-
duction and geodesics in the curved space.

If we are considering an initial distribution curve of
any fixed shape, we have two parameters to estimate,
giving the location and scale of the curve, for exam-
ple the mean and standard deviation of a normal er-
ror curve. Our k-space is in such cases a surface of
constant negative curvature. Representing the normal
curve by means of a pseudosphere, variation of the
standard deviation is represented by motion along a
generator, variations of the mean by rotation about the
axis. A greater variance means closer propinquity to
the axis.

Since a geodesic on a pseudosphere between two
points on the same meridian comes closer to the axis
than the meridian, we have an interesting biological
conclusion. If we have two related species having about
the same variance but a difference in means, the most
likely common ancestors had a greater variance than
either existing species.

For a Pearson Type III curve the measures of posi-
tion and scale vary, not along geodesic but along loxo-
dromes.

Spaces of statistical parameters lend themselves to
the treatment of a wide range of problems in which dis-
crepancies between hypothesis and observation which
involve two or more observations are to be tested. Thus
if the hypothesis to be tested is that a species, in which
the frequency distribution of some dimension has the
normal form, has arisen by a succession of small mu-
tations from another, and if we consider the difference
of the variances along with that of the means, we are
led to apply the distribution of χ2 for n = 2, just as in
judging marksmanship we may combine vertical with
horizontal deviations of a shot from the center of the
target. But the fact that the surface, on which the mean
and variance are coordinates, is a pseudosphere instead
of a plane, shows that a correction must be applied
to the probability of a greater deviation as calculated
from χ2. Indeed, the area or circumference of a geo-
desic circle is greater than for one of the same radius
on a plane. The excess of area measures the correction
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which must be applied to obtain the true probability of
a greater discrepancy.

If about a point on the pseudosphere representing
any population we describe a geodesic circle, the points
on the circumference represent statistics, such as mean
and variance, which might with equal likelihood have
been obtained in a sample from this population. And
inversely, if corresponding to a given sample, we fix
upon a point as center of a geodesic circle, the points
on the circumference represent populations which, on
the evidence of this sample, are all equally likely.
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