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Comment

Gregory Campbell

This is a thought-provoking article which raises
more issues than it answers. The central idea of the
paper is to use linear approximations from Taylor’s
series expansions of size and shape variables in the
complex plane. Let the independent Z;/s denote the
random locations of landmarks in the complex plane,
for i =1 to p. Let u; denote the mean of Z; and suppose
the variances of the two independent real and imagi-
nary parts of Z; are equal for i = 1 to p. For Z =
(Zy, -+, Zp) and u = (m1, -+, ), let G(Z) be a
bona fide size variable, so for o > 0, G(aZ) = aG(Z),
and let H(Z) = Z/G(Z) be shape, with H;(Z) the
jth coordinate. Let G* denote the linear Taylor’s
series approximation of G and H} that for H;. Now
E(G*(Z)) = G(u) and E(H}(Z)) = w/G(x). Then
Cov(G*, HY) is used to approximate

Cov(G, H)) = E(Z)) — E(G(Z))E(H;(Z)).

But while E(G) is approximated by E(G*) = G(u) and
E(H)) by E(H}) = p;/G(w), E(Z)) = ; is approximated
by E(G*H}). Note that if E(Z;) is not approximated,
but E(G) and E(H;) are, then the covariance is zero,
regardless of the size variable! Such approximations
encourage zero covariances.

The author shows for the “size” variable S(Z) =
Y | Z: — Z;|* that linearized size is uncorrelated with
the linearized version of a different shape variable.
One can show for the proper size variable S'/2
that the linearized version of it is uncorrelated with
shape Z/SY2. If one only slightly improves the
approximation by replacing the linearized variable
S* =3 |w— > +dSby 8" =3 |w — ul|*+
2p(p — 1)¢% + dS, the linearized variable with the
correct expectation, one obtains a zero covariance for
p = 3 only if the triangle is equilateral. I surmise that
the more accurate approximation using the quadratic
term of the Taylor’s series expansion leads to a gen-
erally nonzero covariance as well. Of course, in the
case in which ¢2/S(n) is quite small, these covariances
are duite close to zero.

The issue of zero correlation of linearized size and
linearized shape is certainly an idea that merits fur-
ther exploration. For simplicity, consider the case of
p positive random variables rather than the p random
complex vectors. Assume the X; are random variables
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fori=1top. Let X = (X, - -+, X,)’ and denote E(X)
by p = (w1, - - -, up)” and covariance of X by ¥, = ().
Let G(X) be a size variable and H(X) = X/G(X) =
(Hi(X), ---, Hy(X))’ shape. Let G* and H} be linear-
ized versions of G and H;. Then the covariance of G*
and H} depends only on g and Y:

Cov(G*, HY)
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When is this zero? If the X;’s are independent and
G(X) = ¥ X;, then it is zero provided o; = ku,.
However, this does not imply independence of size
and shape, for it is well known for independent X;’s
that sum size is independent of shape only if the X;’s
are gamma random variables with common scale pa-
rameter (Mosimann, 1962), in which case ¢; = ku;. If
the X;’s are independent and G(X) = (I X?)?, then
G* and H* have zero covariance if ¢; is constant for
i =1 to p. But for independent X;’s this size variable
is independent of shape only if the X? are gammas
with the same scale parameter; i.e., the X;’s are gen-
eralized gammas with the same scale parameter. It is
clear that linearized size uncorrelated with linearized
shape is much less stringent than size independent of
shape. In general, for size to be independent of shape
for independent variables, James (1979) has shown
that the distribution is generalized gamma or its lim-
iting cases (such as lognormal) and for each distribu-
tion there is a particular size variable. What are the
two- and three-dimensional analogs of this result?
An interesting unanswered question concerns
uniqueness of the size variable such that linearized
size is uncorrelated with linearized shape (of course,
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. linearized size is not guaranteed to be a positive ran-

dom variable). It is clear that the theorem of Mosi-
mann (1970) concerning the uniqueness of the size
variable independent of shape as cited by the author
does not apply. (That this theorem means that “In
other words, although ‘size’ and ‘shape’ are verbally
orthogonal, computationally and conceptually they
are inextricably entangled” is at best debatable.) What
is clear is that in general uncorrelated linearized size
and linearized shape do not imply linearized size in-
dependent of linearized shape and certainly cannot be
construed to mean that therefore size is independent
of shape, a trap into which the author apparently falls.
It is also unfortunate that what is exact and what is
approximate in the article is not clearly delineated.
Perhaps this is due to the fact that the notion of a
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(stochastic) differential is not carefully defined. For
example, it appears that Lemma 1 and the result of
the next paragraph are exact expressions when in fact
they are only approximate. The complete exact
expression for | Z; — Z|? is:

| 2y — Zo)% = (Zy — Z)(Zy — Zy)
= Re{(Z, — Z,) (it — jiz)}
+ Re{(Z, — Z,)(dz, — dz,)}
= (k1 — mo) (1 — i2)
+ 2Re{(u1 — u2)(dz, — dz,)}
+(dz, — dzy)(dz; — dzy).

Part of this confusion is that the mean of | Z; — Z,|2
is not | u; — wa|2 Of course these approximations for
0%/ w1 — me|? very small are quite good and do not
affect the covariance calculation.

The underlying theme of this article is that the
geometry of landmarks can finally be exploited and
that one no longer needs to rely on purely algebraic
analyses for shape. Consider this claim for the triangle
of landmarks. The shape variable is expressed as the
ordered pair (U, V) for the third vertex, where @ =
U + iV, for the registered triangle. Let D,, D, and D,
be the random lengths from vertices 1 to 2, 2 to 3 and
3 to 1, respectively. Then '

U? + V? = D3/D%;
(1-U)*+ V?= D3/D3;

so U = »{1 + D}/D? — D%/D?} and V = +{U? —
(D3/D%}. Thus the map from (U, V) to (D3/D3,
D3/D%) is 2 to 1. But if |Z; — w| < |w — u;| for
I # J, then the sign of V is unchanging and the
map is 1 to 1. In short, by the nature of the assump-
tions, the geometry is effectively removed from the
problem, to be replaced by functions only of dis-
tances. It is true that there is geometry in terms like

Z; — Z,-)(Z_k - Z_m) but this information is not ex- -

ploited nor is it necessary under the assumptions. This
, reduction suggests that one could just as easily work
with the distances. For example, one could suppose
that (D,, Do, D3)/(3, D;) has a Dirichlet distribution,
a model which could accommodate random distances
that vary more than a little. Or for the normal model
of this paper, the distances of the random lengths,
suitably normalized, are noncentral chi distributions
and one could inquire as to the distribution of the
shape vector (D3, D3, D3)/S. Note that the circu-
lar error model is absolutely crucial to this latter
approach. .

Consider the two biological examples offered in the
article. The first pertains to a microscopic sea fossil.
A glance at Figure 7b immediately indicates that the

assumptions of the model of the first part of the paper
cannot be met, as the (U, V) do not appear to be
circular normal nor is it the case that the standard
deviations are small relative to the distances. There-
fore, while there appears to be an interesting relation-
ship between size and shape, it does not appear to be
pertinent to the prior development of the paper.

Consider the second example concerning the dental
x-rays of children at ages 8 and 14. For the two sexes
at age 8, it would seem that the validity of the as-
sumptions of the model and the investigation of un-
correlatedness of size and shape would precede anal-
yses of size differences by sex and shape differences
by sex. In any case, the model certainly seems reason-
able for the males based on Figure 6, even the crucial
circular rather than elliptical errors, and the ratio of
o to | w; — p;j| estimated from Table 1 appears suffi-
ciently small. It is no surprise then that size and shape
do not appear to be correlated and hence the separate
investigations for size and shape are appropriate.

The notion of monitoring the same individual at
different time points is quite a separate issue. Suppose
that the time interval is small so that the standard
deviation is small relative to the distances for say two
points in space. A little thought will suggest that over
time (even small time) that the errors should not be
random in every direction but that there is a drift
direction whose random length is proportional to the
small time change as well as a nondirected random
component. The author claims that changes in size
and changes in shape can be modelled with his devel-
opment, in which case under the assumptions of the
model, changes in size should be approximately un-
correlated with changes in shape. However, the test
for the relationship of size to shape for children ages
8 and 14 indicates that changes in size are correlated
which changes in shape, negating the model. Perhaps
the time interval of 6 years is too large. Unfortunately,
the additional biorthogonal grid approach appears to
depend on the validity of the model to span success-
fully the stochastic spaces for size and shape. The
standard deviation relative to the change in distance
is quite a bit larger than those at a fixed age, from
Table 1. This suggests that a more sophisticated model
may be required to model stochastic behavior in re-
peated measures of landmarks in this portion of the
second example.

In any event this paper is sure to stimulate further
interest and research in this important area of size
and shape in multidimensions.
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