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Abstract. Historically, the study of artificial intelligence has emphasized
symbolic rather than numerical computation. In recent years, however, the
practical needs of expert systems have led to an interest in the use of
numbers to encode partial confidence. There has been some effort to square
the use of these numbers with Bayesian probability ideas, but in most
applications not all the inputs required by Bayesian probability analyses
are available. This difficulty has led to widespread interest in belief func-
tions, which use probability in a looser way. It must be recognized, however,
that even belief functions require more structure than is provided by pure
production systems. The need for such structure is inherent in the nature
of probability argument and cannot be evaded. Probability argument re-
quires design as well as numerical inputs. The real challenge probability
poses to artificial intelligence is to build systems that can design probability
arguments. The real challenge artificial intelligence poses to statistics is to
explain how statisticians design probability arguments.
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I have been asked to speak on the use of belief
functions in artificial intelligence and expert systems.
For the sake of perspective, I propose to address the
broader topic indicated by my title. The theory of
belief functions is part of the theory of probability
judgment, and a general understanding of the role of
probability judgment in artificial intelligence can help
us understand the particular role of belief functions.

I will not attempt to evaluate all the ways in which
probability has been used in artificial intelligence, nor
even all the ways in which belief functions have been
used. Instead, I will aim for some general insights into
the interaction between probability ideas and artificial
‘intelligence ideas. Many of my cornments will be his-
torical. I hope readers will forgive me for those cases
where I belabor the obvious or repeat the well known;
my excuse is that I hope to reach a dual audience—
students of probability who may not know very much
about artificial intelligence, and students of artificial
intelligence who may not know very much about
probability.

The first two sections of the paper are introductory
in nature. Section 1 considers the reasons for the
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artificial intelligence community’s initial disinterest
in probability and its recent change of heart and
outlines the paper’s conclusions about how current
expert systems fall short of putting probability judg-
ment into artificial intelligence. Section 2 deals with
probability judgment without reference to artificial
intelligence; here I discuss the split between Bayesian
and non-Bayesian methods and place the theory of
belief functions in this historical context.

Section 3 reviews some strands of the development
within artificial intelligence of ideas about using prob-
ability judgment in expert systems. Here we see how
the general issues that separate the Bayesian and
belief-function theories appear in the context of expert
systems, and we gain some insight into why flexibility
is harder to achieve with probability judgment than
with other kinds of reasoning. Section 4 discusses the
problem of giving an artificial intelligence a genuine
capacity for probability judgment.

1. THE EMERGENCE OF PROBABILITY
IN ARTIFICIAL INTELLIGENCE

Until recently, the artificial intelligence commu-
nity showed relatively little interest in probability.
There is little probability, for example, in the three-
volume Handbook of Artificial Intelligence (Barr and
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Feigenbaum, 1981, 1982; Cohen and Feigenbaum,
1982). During the past 4 or 5 years, however, probabil-
ity and the management of uncertainty in intelligent
systems has become a widely discussed topic. Why
the initial disinterest, and why the change?

The reasons for.the initial disinterest are clear.
Probabilities are numbers, and number crunching is
just what artificial intelligence was supposed not to
be. When the artificial intelligence community was
founded, computers were used mainly for number
crunching. They were impressively good at this, but
they were not intelligent. Intelligence seems to require
more general kinds of symbol manipulation.

Moreover, when we begin to think about computer
programs that will match the achievements of human
intelligence, we find that we are thinking about pro-
grams with non-numerical inputs and outputs. What
place is there for talk about numbers in the case of
these programs? They are merely sets of rules for
going from the inputs to the outputs, and while it
might be possible to identify some intermediate steps
that are analogous to operations on numerical proba-
bilities, it seems pointless to do so. It seems better to
tell what is really going on.

The prejudice against numbers in general and
probabilities in particular has not entirely disap-
peared from artificial intelligence, and the argument
sketched in the preceding paragraph is still made.
This argument is part of the motivation for the con-
tinuing development within artificial intelligence of
non-numerical methods for handling uncertainty.
These include nonmonotonic logic (McCarthy, 1980;
McDermott and Doyle, 1980; Reiter, 1980) and Paul
Cohen’s theory of endorsements (Cohen, 1985).

But the factors that caused this prejudice have
substantially changed. The vague idea that artificial
intelligence can be defined largely through the con-
trast with number crunching has been replaced by the
equally vague but equally powerful idea that intelli-
gence is produced by complexity and by access to large
amounts of knowledge. Two specific openings have
appeared for probability.

1. The ban on non-numerical inputs has been
dropped in some cases. In addition to programs that
try to match aspects of human intelligence, artificial
intelligence is now also concerned with expert sys-
tems and other intelligent systems that interact with
human users and can use numerical inputs supplied
by these users.

2. The artificial intelligence community has ab-
sorbed David Marr’s views on levels of explanation.
In his work on vision, Marr convincingly made the
point that full understanding of an intelligent system
involves explanation at various levels. In addition to
explanation at the level of implementation (what is
really going on) we also need explanation at more

abstract levels. “It’s no use, for example, trying to
understand the fast Fourier transform in terms of
resistors as it runs on an IBM 370” (Marr, 1982, page
337). Understanding of this point takes the rhetorical
force out of the argument that there is no place for
probability ideas when inputs and outputs are non-
numerical.

Most of the current interest in probability in arti-
ficial intelligence is the result of (1). In many cases it
is impossible to build expert systems without the use
of probability. But in the long run, (2) may be more
important. Because of (2), we can now recognize the
value to an artificial intelligence of an ability to design
probability arguments and generate the numerical
judgments they require.

The ban on numerical inputs in artificial intelli-
gence was dropped because the artificial intelligence
community became interested in expert systems. Why
did this happen? The answer is that the community
discovered ways of building expert systems that incor-
porated ideas that seemed to reflect important aspects
of human intelligence. As I explain in Section 3, most
of the expert systems developed within artificial in-
telligence have been production systems, relatively
unstructured programs that have some of the flex-
ibility in acquiring and using knowledge that is
characteristic of intelligence.

I argue in this paper that the expert systems we can
now build to use probability judgments do not have
this kind of flexibility and hence fit awkwardly under
the heading of artificial intelligence. The problem is
that probability judgment requires an overall design
and hence cannot be achieved by relatively unstruc-
tured methods of programming applied to individual
numerical probabilities. I will argue in Section 4 that
both the overall design of probability judgment and
the determination of individual numerical probabili-
ties can be achieved by an artificial intelligence only
if it is equipped with a genuine associative memory.

As a result of the explosion of interest in expert
systems, the field of artificial intelligence is now strug-
gling to maintain its sense of identity. The idea of an
expert system began in artificial intelligence, but any
system with expert capabilities can justifiably claim
the name, whether it is written in LISP or FORTRAN,
and many systems developed outside of artificial in-
telligence have more impressive expert capabilities
than those developed inside it. It is clear, therefore,
that artificial intelligence must withdraw from its
embrace of the whole field of expert systems in order
to maintain intellectual coherence. But it is unclear
just what parts of the field of expert systems will
remain in the embrace. My suggestion here is that
artificial intelligence will retain its newfound interest
in probability but will look beyond the current expert
systems to deeper uses of probability ideas.
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2. BAYESIAN AND BELIEF-FUNCTION
ARGUMENTS

In this section I review some general ideas about
probability judgment, without reference to the partic-
ular problems of artificial intelligence. I begin by
sketching a way.of looking at the frequentist vs.
Bayesian controversy, a controversy that has domi-
nated discussions of probability judgment for more
than a century. After developing a constructive
understanding of the Bayesian theory, I introduce
another constructive theory, the theory of belief
functions. I argue that both theories should be
thought of as languages for expressing probability
judgments and constructing probability arguments.

2.1 Two Strategies for Probability Judgment

What we now call the mathematical theory of prob-
ability was originally called the theory of games of
chance. Probability was an entirely different topic;
something was probable when there was a good argu-
ment or good authority for it. When James Bernoulli
and others began to use the word probability in con-
nection with the theory of games of chance, they were
expressing the ambition that this theory might provide
a general framework for evaluating evidence and
weighing arguments. But just how might this work?
How can the theory of games of chance help us eval-
uate evidence?

In the nineteenth century, it became clear that there
are two distinct strategies for relating evidence to the
picture of chance. Today, these two strategies might
be called the frequentist and Bayesian strategies, but
in order to avoid some of the connotations of these
names, let me call them, for the moment, the direct
probability and conditional probability strategies.

The direct probability strategy relies on direct ap-
plication of the idea that in life, as in games of chance,
what happens most often is most likely to happen in
a particular case under consideration. The ideal kind
of evidence for this strategy is knowledge of the fre-

quency of outcomes in similar cases. I assign a 98%

probability to the prediction that a student who first
appears 3 weeks after the beginning of my elementary
statistics course will not be able to pass the course,
because it has almost always turned out that way in
the past.

The conditional probability strategy uses the pic-
ture of chance in a deeper way. It observes that games
of chance unfold step by step, with the probabilities
for different possible final outcomes changing at each
step, and it suggests that the accumulation of evidence
should change probabilities in a similar step by step
way. Thus, my probability for whether the late-
appearing student will pass my course should change
when I learn more about his history and circum-

stances, just as my probability for whether two suc-
cessive rolls of a die will add up to nine will change
when I learn the result of the first roll. The conditional
probability strategy usually leads to a more compli-
cated argument than the direct probability strategy,
since it involves construction of a probability measure
over a more complicated frame and then the reduction
of this measure and frame by conditioning.

In general, there is not, I believe, any a priori reason
to prefer one of these two strategies to the other. We
cannot say that it is normative to use one and irra-
tional to use the other. They are both strategies for
producing arguments, and it is the cogency of the
arguments that must be evaluated. It may be most
cogent to lump my new late-appearing student with
all my past late-appearing students, on the grounds
that particulars have not made much difference in the
past. Or I may have had enough experience with late-
appearing students like this one on some particulars
that I can make a better direct probability argument
by looking at the past frequency of success just for
these late-appearing students. Or I may have the
experience and insight needed to construct a proba-
bility measure that I can condition on the particulars.
The issue cannot be settled in the abstract, without
reference to the experience I bring to bear on the
problem.

Moreover, neither of the two strategies is inherently
more objective or subjective than the other. It is true
that the direct probability strategy, since it tends to
consider broader classes, is more likely to result in
probability judgments based on actual frequency
counts. But the objectivity of these frequencies must
always be coupled with a subjective judgment of their
relevance. And even with broad classes we most often
have hunches and impressions rather than actual
counts.

Historically, however, the direct probability strategy
has come to be associated with claims to objectivity,
whereas the conditional probability approach has
come to be associated with claims to rationality. This
fact seems to be a result of efforts to square the
interpretation of probability with the empiricist and
positivist philosophical trends of the late nineteenth
and early twentieth centuries.

2.2 The Frequentist vs. Bayesian Deadlock

Laplace, writing at the beginning of the nineteenth
century, was able to define numerical probability as
the measure of the “reason we have to believe.” But
by the middle of the nineteenth century, many stu-
dents of probability were looking for a more empirical
definition. They found this definition in the idea of
frequency, and they proceeded to reject those appli-
cations of probability theory that could not be based
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on observed frequencies. In particular, they rejected
Laplace’s method of calculating the probability of
causes, which is a special case of the conditional
probability strategy.

The frequentist philosophy severely restricted the
domain of application of numerical probability, and
those who wanted to use numerical probability more
generally were forced to search for a philosophical
foundation for the conditional probability strategy
that would fit the positivist mind-set. Such a philo-
sophical foundation was finally established in the
twentieth century by Ramsey, de Finetti, and espe-
cially Savage. These authors conceived the idea that
subjective probability should be given a behavioral
and hence positivist interpretation—a person’s prob-
akilities should be derivable from his choices. They
formulated postulates for what they called rational
behavior, postulates that assure that a person’s
choices do determine numerical probabilities. And
they argued that it is normative to follow these pos-
tulates and hence normative to have subjective
probabilities.

During the past two decades, the philosophical foun-
dation provided by Savage’s postulates has led to a
remarkable resurgence, both mathematical and prac-
tical, of the conditional probability strategy. The re-
sulting body of theory has been called “Bayesian,”
because the conditional probability strategy often uses
Bayes’ theorem.

Although the new Bayesian philosophy has played
a historically valuable role in rescuing the conditional
probability strategy from its frequentist opponents, it
has its own obvious shortcomings. Most important,
perhaps, is its inability to explain how the quality of
a probability analysis depends on the availability and
quality of relevant evidence. Whereas the frequentist
philosophy tries to limit applications of probability to
models for which we have clearly relevant and objec-
tive frequency counts, there is nothing in the Bayesian
philosophy to make our choice of a model depend in
any way on the availability of relevant evidence. The
postulates apply equally to any model.

We have, then, a deadlock between two inadequate
philosophies of probability. On the one side, the fre-
quentist philosophy, which recognizes the relevance
of evidence but tries to justify claims to objectivity by
limiting numerical probability judgment to cases
where the evidence is of an ideal form; on the other
side, the Bayesian philosophy, which recognizes the
subjectivity of all probability judgment but ignores the
quality of evidence and claims it is normative to force
all probability judgment into one particular mold.

We have been caught in this deadlock for three
decades. We have tired of it, and we are inclined to
ask the two sides to compromise (see, e.g., Box, 1980).
But we have not been able to find a philosophical

foundation for probability judgment that can resolve
the deadlock.

I believe that the way out of the deadlock is to back
up and recognize that a positivist philosophical ac-
count of probability is no longer needed. Our intellec-
tual culture has moved away from positivism and
toward various sorts of pragmatism, and once we
recognize this we will be free to discard both the
frequentists’ claims to objectivity and the Bayesians’
claims to normativeness.

2.3 Constructive Probability

In several recent papers (especially Shafer, 1981;
Shafer and Tversky, 1985) I have proposed the name
“constructive probability” for the pragmatic, postpos-
itivist foundation that I think we need for probability
judgment. The idea is that numerical probability judg-
ment involves fitting an actual problem to a scale of
canonical examples. The canonical examples usually
involve the picture of chance in some way, but differ-
ent choices of canonical examples are possible, and
these different choices provide different theories of
subjective probability, or, if you will, different lan-
guages in which to express probability judgments. No
matter what language is used, the judgments expressed
are subjective; the subjectivity enters when we judge
that the evidence in our actual problem matches in
strength and significance the evidence in the canonical
example.

Within a given language of probability judgment,
there can be different strategies for fitting the actual
problem to the scale of canonical examples. The direct
and conditional probability strategies described above
live, I think, in the same probability language, the
language in which evidence about actual questions is
fit to canonical examples where answers are deter-
mined by known chances. We may call this language
the Bayesian language. (For a more detailed account
of different strategies that are available within the
Bayesian language, see Shafer and Tversky (1985).

"The distinction between the direct and conditional

probability strategies corresponds to the distinction
that is made there between total-evidence and condi-
tioning designs.)

The constructive viewpoint tells us that when we
work within the Bayesian language we must make a
judgment about how far to take the conditional prob-
ability strategy in each particular problem. We make
this judgment on the basis of the availability of evi-
dence to support the conditional and unconditional
probability judgments that are required.

It may be useful to elaborate on this point. Suppose
we want to make probability judgments about a frame
of discernment S. (A frame of discernment is a list of
possible answers to a question; we want to make
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probability judgments about which answer is correct.)
We reflect on our evidence, and we produce a list
E,, ..., E, of facts that seem to summarize this
evidence adequately. The conditional probability
strategy amounts to standing back from our knowl-
edge of these n facts, pretending that we did not yet
know them, and constructing a probability measure
over a frame that considers not only the question
considered by S but also the question whether E;, . . .,
E, are or are not true; typically we construct this
measure by making probability judgments P(s) and
P(E, & ... &E,|s) for each s in S. The problem with
this strategy is that we now need to look for further
evidence on which to base all these probability judg-
ments. We have used our best evidence up, as it were,
but now we have an even larger judgmental task than
before. According to the behaviorist Bayesian theory,
there is no problem—it is normative to have the
requisite probabilities, whether we can identify rele-
vant evidence or not. But according to the constructive
viewpoint, there is a problem, a problem that limits
how far we want to go. We may want to apply the
conditional probability strategy to some of the E;, but
we may want to reserve the others to help us make
the probability judgments (see Shafer and Tversky,
1985).

2.4 The Language of Belief Functions

Whereas the Bayesian. probability language uses
canonical examples in which known chances are at-
tached directly to the possible answers to the question
asked, the language of belief functions uses canonical
examples in which known chances may be attached
only to the possible answers to a related question.

Suppose S and T denote the sets of possible answers
to two distinct but related questions. When we say
that these questions are related, we mean that a given
answer to one of the questions may fail to be compat-
ible with some of the possible answers to the other.

Let us write “sCt” when s is an element of S, ¢t is an

element of T, and s and ¢ are compatible. Given a
probability measure P over S (assume for simplicity
" that P is defined for all subsets of S), we may define
a function Bel on subsets of T by setting

1) Bel(B) = Pf{s| if sCt, then t is in B}

for each subset B of T. The right-hand side of (1) is
the total probability that P gives to those answers to
the question considered by S that require the answer
to the question considered by T to be in B; the idea
behind (1) is that this probability should be counted
as reason to believe that the latter answer is in B. We
might, of course, have more direct evidence about the
question considered by T, but if we do not, or if we
want to leave other evidence aside for the moment,

then we may call Bel(B) a measure of the reason we
have to believe B based just on P.

The function Bel given by (1) is the belief function
obtained by extending P from S to 7. A probability
measure P is a special kind of belief function; this is
just the case where (i) S = T and (ii) sCt if and only
if s = t. Thus the language of belief functions is a
generalization of the Bayesian language.

All the usual devices of probability are available to
the language of belief functions, but in general we use
them in the background, at the level of S, before we
move to degrees of belief on T, the frame of interest.

Like other non-Bayesian approaches to probability
judgment, the language of belief functions counte-
nances the use of probability models that are less
complete than Bayesian models. In order to obtain a
belief function over T, we begin with a probability
measure over S alone, and we use observed facts to
create a compatibility relation C between S and T. A
Bayesian conditional probability argument that used
the frames S and T would extend the probability
measure over S to a complete probability measure over
S X T, and it would then use the compatibility relation
to condition this measure.

I have studied the language of belief functions in
detail in earlier work—see especially Shafer (1976,
1986a). Here I will use some examples of (1) to illus-
trate the language and to contrast it with the Bayesian
language.

Example 1. 1s Fred, who is about to speak to me,
going to speak truthfully, or is he, as he sometimes
does, going to speak carelessly, saying whatever comes
into his mind? Let S denote the possible answers to
this question; S = {truthful, careless}. Suppose I know
from experience that Fred’s announcements are truth-
ful reports on what he knows 80% of the time and are
careless statements the other 20% of the time. Then
I have a probability measure P over S: P{truthful} =
.8, Pjcareless} = .2.

Are the streets outside slippery? Let T denote the
possible answers to this question; T' = {yes, no}. And
suppose Fred’s announcement turns out to be, “The
streets outside are slippery.” Taking account of this, I
have a compatibility relation between S and T'; truth-
ful is compatible with yes but not with no, while
careless is compatible with both yes and no. Applying
(1), I find

(2) Bel({yes}) = .8 and Bel({no}) = 0;

Fred’s announcement gives me an 80% reason to
believe the streets are slippery, and no reason to
believe they are not.

How might a Bayesian argument using this evidence
go? A Bayesian direct probability argument would use
all my evidence, Fred’s announcement included, to
make a direct probability judgment about whether the
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streets are slippery. The judgment that Fred is 80%
reliable need not appear explicitly in such an argu-
ment. On the other hand, I can construct a Bayesian
conditional probability argument using this judgment
as one ingredient. I need two other judgments as well:
(i) A prior probability, say p, for the proposition that
the streets are slippery; this will be a judgment based
on evidence other than Fred’s announcement. (ii) A
conditional probability, say ¢, that Fred’s announce-
ment will be accurate even though it is careless. I can
construct a probability measure from these judgments,
and I can condition this measure on the content of
Fred’s announcement. '

The probability measure constructed in this condi-
tional argument is formally a measure over S X T,
where T is still the set of answers to the question
whether the streets are slippery,

T = {yes, no},

but where S now tells us not only whether Fred is
truthful or careless but also whether he is accidentally
telling the truth in case he is careless,

S = {truthful, careless but accurate,
careless and inaccurate}.

My probabilities for T are p for yes and 1 — p for no.
My probabilities for S are .8 for truthful, .2¢ for
careless but accurate, and .2(1 — q) for careless and
inaccurate. Assuming probabilistic independence be-
tween the state of the streets and Fred’s behavior, I
multiply these numbers to obtain the product proba-
bility measure on S X T, given in the second column
of Table 1. Conditioning this measure on the content
of Fred’s announcement means eliminating the three
possibilities marked with an x in the table; since Fred
said the streets are slippery, he cannot be truthful or
accurate if the answer to T is no, and he cannot be
inaccurate if the answer to T is yes. Having eliminated
these three possibilities, I renormalize the probabili-
ties for the other three so that they add to one; this
means multiplying each probability by K, where K =
1/(.8p + .2gp + .2(1 — q)(1 — p)). This results in the
posterior probabilities given in the third column in

Table 1. Adding the first two nonzero probabilities in
this column, I obtain my total posterior probability
that Fred’s announcement that the streets are slippery
is true:

.8p + .2qp
8p+ 2¢p+ .21 —q@)(1 —p)°

(3

Is the Bayesian argument (3) better than the belief-
function argument (2)? This depends on whether I
have the evidence required. If I do have evidence to
support the judgments p and ¢—if, that is to say, my
situation really is quite like a situation where the
streets and Fred are governed by these known chances,
then (3) is a cogent argument, and it is better than (2)
because it takes more evidence into account. But if
the evidence on which I base p and q is of much lower
quality than the evidence on which I base the number
80%, then (2) will be the better argument.

The traditional debate between the frequentist and
Bayesian views has centered on the quality of the
evidence for prior probabilities. It is worth remarking,
therefore, that g, rather than p, may well be the weak
point in the argument (3). I probably will have some
other evidence about whether it is slippery outside,
but I may have no idea about how likely it is that
Fred’s careless remarks will accidentally be true.

A critic of the belief-function argument (2) might
be tempted to claim that the Bayesian argument (3)
shows (2) to be wrong even if I do lack the evidence
needed to supply p and ¢q. Formula (3) gives the correct
probability for whether the street is slippery, the critic
might contend, even if I cannot say what this proba-
bility is, and it is almost certain to differ from (2).
This criticism is fundamentally misguided. In order to
say that (3) gives the “correct” probability, I must be
able to convincingly compare my sitvation to the
picture of chance. And my inability to model Fred
when he is being careless is not just a matter of not
knowing the chances—it is a matter of not being able
to fit him into a chance picture at all.

Example 2. Suppose I do have some other evi-
dence about whether the streets are slippery: my
trusty indoor-outdoor thermometer says that the

TABLE 1
Probability of (s, t)
(s, t)
Initial Posterior

(Truthful, yes) 8p .8pK
x (Truthful, no) .8(1 —p) 0

(Careless but accurate, yes) 2gp .2gpK
x (Careless but accurate, no) 2q(1 — p) 0
x (Careless and inaccurate, yes) 2(1—-¢q)p 0

(Careless and inaccurate, no) 21 -9 —-p) 2(1 - ¢)(1 -pK




UNCERTAINTY IN EXPERT SYSTEMS 9

TABLE 2

Probability of s Elements of T

s compatible with s

Initial Posterior

(Truthful, working)  .792 0

(Truthful, not) .008 .04 Yes
(Careless, working) .198 .95 No
(Careless, not) .002 .01 Yes, no

temperature is 31° Fahrenheit, and I know that be-
cause of the traffic ice could not form on the streets
at this temperature.

My thermometer could be wrong. It has been very
accurate in the past, but such devices do not last
forever. Suppose I judge that there is a 99% chance
that the thermometer is working properly, and I also
judge that Fred’s behavior is independent of whether
it is working properly or not. (For one thing, he has
not been close enough to my desk this morning to see
it.) Then I have determined probabilities for the four
possible answers to the question, “Is Fred being truth-
ful or careless, and is the thermometer working
properly or not?” For example, I have determined the
probability .8 X .99 = .792 for the answer “Fred is
being truthful, and the thermometer is working
properly.” All four possible answers, together with
their probabilities, are shown in the first two columns
of Table 2. I will now construct a belief function over
T by using these four answers as my frame S.

Taking into account what Fred and the thermome-
ter have said, I obtain the compatibility relation be-
tween S and T given in the last column of the
Table 2. (Recall that T considers whether the streets
are slippery; T = {yes, no}.) The element (truthful,
working) of S is ruled out by this compatibility relation
(since Fred and the thermometer are contradicting
each other, they cannot both be on the level); hence,
I condition the initial probabilities by eliminating the
probability for (truthful, working) and renormalizing
the three others. The resulting posterior probabilities
on S are given in the third column of the Table 2.

Finally, applying (1) with these posterior probabil- '

ities on S, I obtain the degrees of belief
4) Bel({yes}) = .04 and Bel({no}) = .95.

This result reflects that fact that I put much more
trust in the thermometer than in Fred.

The preceding calculation is an example of
Dempster’s rule of combination for belief func-
tions. Dempster’s rule combines two or more belief
functions defined on the same frame but based on
independent arguments or items of evidence; the result
is a belief function based on the pooled evidence. In
this case the belief function given by (2), which is
based on Fred’s testimony alone, is being combined

with the belief function given by
5) Bel({yes}) = 0 and Bel({no}) = .99,

which is based on the evidence of the thermometer
alone. In general, as in this example, Dempster’s rule
corresponds to the formation and subsequent condi-
tioning of a product measure in the background. See
Shafer (1986a) for a precise account of the independ-
ence conditions needed for Dempster’s rule.

Example 3. Dempster’s rule applies only when two
items of evidence are independent, but belief func-

“tions can also be derived from models for dependent

evidence.

Suppose, for example, that I do not judge Fred’s
testimony to be independent of the evidence provided
by the thermometer. I exclude the possibility that
Fred has tampered with the thermometer and also the
possibility that there are common factors affecting
both Fred’s truthfulness and the thermometer’s ac-
curacy. But suppose now that Fred does have regular
access to the thermometer, and I think that he would
likely know if it were not working. And I know from
experience that it is in situations where something is
awry that Fred tends to let his fancy run free.

In this case, I would not assign the elements of S
the probabilities given in the second column of
Table 2. Instead, I might assign the probabilities given
in the second column of Table 3. These probabilities
follow from my judgment that Fred is truthful 80% of
the time and that the thermometer has a 99% chance
of working, together with the further judgment that
Fred has a 90% chance of being careless if the ther-
mometer is not working.

When I apply (1) with the posterior probabilities
given in Table 3, I obtain the degrees of belief

Bel({yes}) = .005 and Bel({no}) = .95.

These differ from (4), even though the belief functions
based on the separate items of evidence will still be
given by (2) and (5).

In this example, the combination of two belief func-
tions (2) and (5) departed from Dempster’s rule in
that the probability measure constructed over the joint
probability space in the background was not a product
measure. This is just one of the ways the language of
belief functions can take dependence into account.

TABLE 3

Probability of s Elements of T

§ compatible with s

Initial Posterior

(Truthful, working) 799 0

(Truthful, not) .001 .005 Yes
(Careless, working) 191 950 No
(Careless, not) .009 .045 Yes, no
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Another way is to modify the compatibility relation
between the joint probability space and the frame T
(Shafer, 1986a). Another is to rework the way the
evidence is broken up, so that different items of evi-
dence better correspond to independent uncertainties
(Shafer, 1984).

2.5 Conclusion

I would like to emphasize that nothing in the phi-
losophy of constructive probability or the language of
belief functions requires us to deny the fact that
Bayesian arguments are often valuable and convinc-
ing. The examples I have just discussed were designed
to convince the reader that belief-function arguments
are sometimes more convincing than Bayesian argu-
ments, but I am not claiming that this is always or
even usually the case. What the language of belief
functions does require us to reject is the philosophy
according to which use of the Bayesian language is
normative.

From a technical point of view, the language of
belief functions is a generalization of the Bayesian
language. But as our examples illustrate, the spirit of
the language of belief functions can be distinguished
from the spirit of the Bayesian language by saying
that a belief-function argument involves a probability
model for the evidence bearing on a question, whereas
a Bayesian argument involves a probability model for
the answer to the question.

Of course, the Bayesian language can also model
evidence. The probability judgments made in a belief-
function argument can usually be extended to a
Bayesian argument that models both the answer to
the question and the evidence for it by assessing prior
probabilities for the answer and conditional probabil-
ities for the evidence given the answer. The only
problem is that we may lack the evidence needed to
make all the judgments required by this Bayesian
argument convincing. The advantage gained by the
belief-function generalization of the Bayesian lan-
guage is the ability to use certain kinds of incomplete
probability models.

3. THE ATTEMPT TO USE PROBABILITY
IN PRODUCTION SYSTEMS,

The field of expert systems developed within arti-
ficial intelligence from efforts to apply systems of
production rules to practical problems. The current
interest in probability judgment in artificial intelli-
gence began with efforts to incorporate probability
judgments into production rules. In this section I
review these efforts and relate them to what we
learned in the preceding section about the Bayesian
and belief-function languages.

A production rule is simply an if-then statement,
interpreted as an instruction for modifying the con-
tents of a data base. When the rule is applied, the
action specified by its right-hand side is taken if the
condition on its left-hand side is found in the data
base. A production system is a collection of production
rules, which are repeatedly applied to .the data base
either in the same predetermined order or else in an
order determined by some relatively simple principle.
Production systems were used in programming lan-
guages in the early 1960s, and they were advanced as
cognitive models by Newell and Simon in the late
1960s and early 1970s (Newell and Simon, 1965;
Newell, 1973). These systems are attractive models
for intelligence because their knowledge is represented
in a modular way and is readily available for use. Each
rule represents a discrete chunk of knowledge that can
be added to or removed from the system without
disrupting its ability to use the other chunks, and the
system regularly checks all the chunks for their rele-
vance to the problem at hand (Davis and King, 1984).

When artificial intelligence workers undertook,
in the 1970s, to cast various bodies of practical
knowledge in the form of production rules, they
found that in many fields knowledge cannot be
encoded in the form of unqualified if-then statements.
Instead, probability statements seem to be required:
“If E1, E,, . . . E,, then probably (or usually or almost
certainly) H.” So these workers found themselves
trying to use production systems to manipulate prob-
ability judgments.

Many tacks were taken in the effort to use proba-
bility in production systems, but I would like to em-
phasize two lines of development. One of these begins
with PROSPECTOR and leads to Pearl and Kim’s
elegant work on the propagation of Bayesian proba-
bility judgments in causal trees, while the other begins
with the certainty factors of MYCIN and leads to the
use of belief functions in diagnostic trees. I will review
these two lines of development in turn.

As it turns out, the results of both lines of devel-
opment can be unified in a general scheme for propa-
gating belief functions in trees (Shenoy and Shafer,
1986). I will briefly describe this general scheme.

3.1 Bayesian Networks

The artificial intelligence workers at SRI who de-
veloped the PROSPECTOR system for geological ex-
ploration in the middle 1970s thought of production
rules as a means for propagating probabilities through
a network going from evidence to hypotheses. Figure
1, taken from Duda, Hart and Nilsson (1976), gives
an example of such a network; here, E; denotes an
item of evidence, and H; denotes a hypothesis. The
idea is that the user of the system should specify that
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S8 &/

Fic. 1. PROSPECTOR’s inference network.

some of the E; at the bottom of the network are true
and some are false, or should make probability judg-
ments about them, and the production rules, corre-
sponding to conditional probabilities for the links in
the network, should propagate these probability judg-
ments through the network to produce judgments of
the probabilities of the hypotheses.

Unfortunately, the introduction of probabilities
into production rules does not square well with the
modularity we want these rules to have. The
PROSPECTOR workers wanted to be able to elicit
from a geologist statements of the form, “If E; and E;
and. .., then E,, with probability p,” and they wanted
to allow the geologist to make each of these statements
independently. But this led to problems in putting the
statements together into a calculation of the proba-
bilities of the hypotheses. For example: (1) The con-
ditional probabilities elicited may not be sufficient to
determine a joint probability measure over all the
E’s and H’s. The geologist might give rules corre-
sponding to P(Es | Es) and P(E; | Eo) in Figure 1 but
neglect or feel unable to give a rule corresponding to
P(Es| Es & Ey). (2) The conditional probabilities that
are given may be inconsistent. (3) The network may
have cycles, which will cause trouble when propaga-
tion is attempted.

These problems were handled in PROSPECTOR
in relatively ad hoc ways. Problem (1) was handled
partly by independence assumptions and partly by
maximum-minimum rules reminiscent of the theory
of fuzzy sets. Problem (2) was handled by formulating
rules of propagation which did not always accord with
the rules of probability but which were insensitive to
some kinds of inconsistencies. Problem (3) was han-
dled by arbitrarily rejecting new production rules when
they would introduce cycles into the network already
constructed.

PROSPECTOR was only modestly successful, but
it was very influential in the questions it raised. The
PROSPECTOR workers subscribed to Bayesian prin-

ciples, and they were conscious of their failure to
follow those principles completely. Is it possible to do
better? Can probability judgments be treated modu-
larly within the Bayesian language? To what extent
is the propagation of probabilities possible within this
language?

The best work that has been done in response to
these questions is that of Judea Pearl and his students
at UCLA (Pearl, 1982, 1986; Kim, 1983; Kim and
Pearl, 1983). Pearl has shown that we can make sense
of the independence assumptions needed to construct
a probability measure over a network from simple
conditional probabilities and we can propagate up-
dated probabilities through the network in a simple
and elegant way provided that the network has a
causal interpretation and a relatively simple form; it
must be a simple directed tree or else a more general
type of directed tree that we may call a Kim tree.

Recall that a tree is a graph in which there are no
cycles. A simple directed tree is a tree in which the
links are assigned directions that all run outward (or
downward, if we want) from a single initial node, as
in Figure 2a. A Kim tree is a tree in which the links
are assigned arbitrary directions. Such a tree can
always be laid out so that the directions are downward,
as in Figure 2b. In Pearl’s work, the nodes of a tree
correspond to random variables, and the directions of
the links are interpreted as directions of causation.
Thus each variable is influenced by the variables above
it in the graph and influences the variables below it.
An observation of the value of one variable is diag-
nostic evidence about the value of a higher variable
and causal evidence about the value of a lower
variable.

Once a Kim tree is constructed for a problem, the
construction of a probability measure over it and the
updating of the measure are straightforward. Given
the independence conditions of Pearl and Kim, which
are reasonable in the causal context, a measure over
the tree can be constructed from prior probabilities

for the topmost nodes and conditional probabilities

for all the links. Moreover, this construction is
straightforward; there are no complicated consistency
conditions that the conditional probabilities must
meet. Once construction is completed, the measure
can be stored and updated locally. At each node we
store information about the conditional probabilities
corresponding to incoming and outgoing links, the
current probability measures for the variable at the
node and the variables at neighboring higher nodes,
and likelihood-type information from neighboring
lower nodes. When the value of a variable is then
observed, this information can be propagated through
the network to update the entire probability measure
in one pass. All computations are made locally, with
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(a)

(b)

F1G. 2. Pearl’s causal tree.

each node communicating only updated local infor-
mation to its neighbors.

An obvious shortcoming of this elegant scheme is
its restriction to Kim trees. In few problems will the
causal relations that we think important take so sim-
ple a form. Kim (1983) and Pearl (1986) have shown
how such trees might be used to approximate more
realistic models; they propose first using a more gen-
eral graph to elicit a probability measure from an
expert, and then approximating this measure with a
Kim tree. This solution does not seem very satisfac-
tory, however. It is not clear that the approximation
will be satisfactory, and more importantly, the con-
structive nature of the initial probability measure is
put into question. In a Kim tree the initial probability
measure can be constructed from probability and con-
ditional probability judgments without concerns about
consistency, but in a more general graph consistency
conditions will be so complicated that it will be im-
possible for us to hope they will be met unless we
pretend that we are indeed eliciting a measure instead
of constructing one.

Another obvious shortcoming is the restriction to
thoroughly causal models. In a sense, of course, all
evidence is causal. With sufficient complication, we
can always construct a model that relates the facts we
observe to deeper causes and also relates these causes
to the questions that interest us. But we may lack the
evidence needed to make good probability judgments
relative to such a model. ’

3.2 Certainty Factors and Belief Functions

The work on the MYCIN system for medical diag-
nosis began earlier and has been more extensive than
the work on PROSPECTOR. It has also had more
effect on subsequent expert systems; various versions
of EMYCIN, the expert system shell that was ab-
stracted from MYCIN, are now being widely used.
The story of the MYCIN effort has been told in a
recent book (Buchanan and Shortliffe, 1984), which
includes extensive discussion of the certainty factors

that were used by MYCIN and the similarities of these
certainty factors to the values of belief functions.

MYCIN departed from the pure production system
picture by using a backward-chaining strategy to select
production rules to apply. This means that it selected
rules by comparing their right-hand sides to goals
instead of comparing their left-hand sides to state-
ments already accepted. If the right-hand side of a
rule matched a goal, its left-hand side was then estab-
lished as a goal, so that there was a step by step
process backward from conclusions to the knowledge
needed to establish them.

MYCIN also differed from PROSPECTOR in that
the MYCIN workers rejected at the outset the idea
that the numerical probability judgments associated
with the rules could or should be understood in Baye-
sian terms. They emphasized this point by calling
these numbers “certainty factors” rather than proba-
bilities. And they formulated their own rules for com-
bining these certainty factors.

In spirit, and to a considerable extent in form, these
rules agree with Dempster’s rule for combining inde-
pendent belief functions. I would explain this coinci-
dence by saying that in developing their calculus for
certainty factors, Shortliffe and Buchanan were trying
to model the probabilistic nature of evidence while

 avoiding the complete probability models needed for

Bayesian arguments.

In recent work (Gordon and Shortliffe, 1984, 1985),
some of the MYCIN workers have taken a close look
at the similarity between the calculus of certainty
factors and the language of belief functions and have
asked how belief functions can contribute further to
the MYCIN project. They have drawn two main con-
clusions. First, it is sensible to modify some of the
rules for certainty factors to put these rules into more
exact agreement with the rules for belief functions.
Second, the diagnosis problem that was central to
MYCIN can be understood more clearly in terms of
belief functions if it is explicitly expressed as a prob-
lem involving hierarchical hypotheses.
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The term “hierarchical hypotheses” refers to the
fact that the items of evidence in a diagnostic problem
tend to support directly only certain subsets of the
frame of discernment, subsets which can be arranged
in a tree. Figure 3, taken from Gordon and Shortliffe
(1984), illustrates the point. The four nodes at the
bottom of this tree represent four distinct causes of
cholestatic jaundice; they form the frame of discern-
ment for the diagnostic problem. Some items of evi-
dence may directly support (or directly refute) one of
these causes for a particular patient’s jaundice. Other
evidence may be less specific. There may, for example,
be evidence that the jaundice is due to an intrinsic
liver problem, either hepatitis or cirrhosis. On the
other hand, it is hard to imagine a single item of
medical evidence supporting the subset {cirrhosis,
gallstone} without supporting one of these more di-
rectly; this is reflected by the fact that this subset does
not correspond to an intermediate node of the tree.

This picture suggests that a belief-function argu-
ment based on such medical evidence may involve
combining many belief functions by Dempster’s rule,
where each belief function is a simple support function
focused on a subset in the tree or its complement. (A
simple support function is a belief function obtained
from (1) when S has only two elements and one of
these is compatible with all the elements of T.)

Two concerns can be raised about this use of
Dempster’s rule. First, there is the issue of computa-
tional complexity. Since the computational complex-
ity of Dempster’s rule increases exponentially with
the size of the frame, it might not be feasible to
implement the rule for a large diagnostic tree. Second,
there is the issue of dependence. Will the items of
evidence bearing on different nodes of the tree all be
independent?

As it turns out, computational complexity is not
a problem. By taking advantage of the tree struc-
ture, we can devise remarkably efficient algorithms
for implementing Dempster’s rule (Shafer and Logan,
1985).

Violations of the independence assumptions needed
for Dempster’s rule pose a more worrisome problem.
It seems unlikely that the uncertainties involved in a
very large number of items of medical evidence will
all be independent. This does not mean that a belief-
function analysis will be impossible or unsatisfactory,
but it does mean that a satisfactory belief-function
analysis may require modeling dependencies in the
evidence.

3.3 Propagating Belief Functions in Trees

It turns out that Pearl’s method of propagating
Bayesian probabilities in causal trees and Shafer and
Logan’s method of combining simple support func-
tions in diagnostic trees are both special cases of a
general scheme for propagating belief functions in
qualitative Markov trees. The following comments on
this general scheme are relatively technical but may
be of interest to some readers. For more detail, see
Shenoy and Shafer (1986).

The idea of a qualitative Markov tree is based on
the idea of qualitative conditional independence. We
say that two partitions P; and P, of a frame S
are conditionally independent given a third partition
Pif PN P, N P, # @ whenever P, € P, P; € P,,
PN P, #3, and P N P, # @. This means that once
we know which element of P contains the truth,
knowledge of which element of P; contains the truth
tells us nothing more about which element of P,
contains the truth. Qualitative conditional independ-
ence is important for belief functions, because it is
legitimate, when P; and P, are conditionally inde-
pendent given P, and we want to combine a belief
function on P; with a belief function on P,, to first
simplify both to belief functions on P. This can be
helpful if P is a relatively coarse partition, for then
the combination is easier to think about and compu-
tationally more feasible.

A qualitative Markov tree is a tree of partitions with

.the property that the disconnected branches that

cholestatic
jaundice

TN

intrahepatic extrahepatic

cholestasis cholestasis
hepatitis cirrhosis gallstone pancreatic cancer

F1G6. 3. A diagnostic tree.
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(a)

result from the removal of a partition P are always
conditionally independent given P. We obtain a qual-
itative Markov tree if we replace each random variable

" in a Bayesian causal tree with the partition of the
sample space it induces. We can also construct a
qualitative Markov tree from a diagnostic tree; for
each mother node in the diagnostic tree, we form a
partition whose elements are the daughters of the
mother and the complement of the mother. Figure 4b
shows the qualitative Markov tree obtained in this
way from the diagnostic tree of Figure 4a.

Suppose we wish to combine belief functions defined
on various partitions in a qualitative Markov tree. It
is legitimate to do so in a stepwise way, simplifying
the belief function on one partition to a belief function
on its neighbor, combining all the belief functions
projected to the neighbor in this way, and then pro-
jecting to the next neighbor. The schemes of Pearl
and Shafer and Logan bhoth turn out to be special cases
of this simple general idea.

In addition to generalizing Pearl and Shafer and
Logan, this scheme for propagating belief functions in
trees promises to be useful as a general framework for
designing probability arguments. Independent items
of evidence often bear on different but related parti-
tions (or questions, or variables), and a qualitative
Markov tree provides a way of keeping track of the
relations. :

3.4 Conclusion

The preceding look at attempts to use probability
judgment in expert systems justifies at least one
general conclusion: probability judgment in expert
systems is very much like probability judgment
everywhere else. The general issues about probability
judgment that we identified in Section 2 all reappear
in the expert systems work. In expert systems, as
elsewhere, probability judgment is constructive and
requires an overall design. It is sometimes possible to
provide such a design within the Bayesian language,

{a,B,C,D}

(b)
F1G. 4. The tree of partitions. (b) derived from a diagnostic tree (a).

but Bayesian designs often demand judgments for
which we do not have adequate evidence. And belief-
function analyses often require models for dependent
evidence.

Production systems were attractive to the artificial
intelligence community because these systems seemed
to have the flexibility in acquiring and using knowl-
edge that seems characteristic of intelligence. But it
seems fair to say that the attempt to incorporate
probability judgment into production systems has
failed. The most successful production systems are
still those, like R1 and DART, that do not attempt to
use numerical measures of uncertainty. Many expert
systems have recently been built using the EMYCIN
shells, but more often than not the builders of these
systems ignore the “certainty factor” capacities of the
shells.

It appears that probability judgment simply does
not have the extremely modular character that made
production systems so attractive. Almost always, prob-
ability judgment involves not only individual numer-
ical judgments but also judgments about how these
can be put together. This is because probability judg-
ment consists, in the final analysis, of a comparison
of an actual problem to a scale of canonical examples.

I believe that progress will be made over the next
few years in using probability in expert systems. But
these systems will be intensely interactive. They will
depend on the human user to design the probability
argument for the particular evidence at hand: they
will be able at most to help the user construct his or
her causal, diagnostic, or qualitative Markov tree. And
they will also depend on the human user to supply
individual numerical probability judgments.

4. THE CONSTRUCTION OF ARGUMENTS

A genuine capacity for probability judgment in an
artificial intelligence would involve both the ability to
generate numerical probability judgments and the
ability to design probability arguments. How might
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these abilities be programmed? We do not have an
answer, but we should start thinking about the
question.

As the result of the work by psychologists during
the past decade, especially the work of Kahneman and
Tversky (see Kahneman, Slovic, and Tversky, 1982),
we do have some ideas about how people generate
numerical probability judgments. They conduct inter-
nal sampling experiments, they make similarity judg-
ments, they construct causal models and perform
mental simulations with these models, they consider
typical values and discount or adjust these, and so on.
An obvious and appropriate strategy for artificial in-
telligence is to try to implement these heuristics.

The heuristics sometimes lead to systematic mis-
takes or biases, and it is by demonstrating these biases
that the psychologists have convinced us that people
use them. There is a tendency, therefore, to think that
people are doing something suboptimal or unnorma-
tive when they use them. Indeed, proponents of the
Bayesian philosophy frequently assert that the psy-
chological work only demonstrates what people do and
is irrelevant to what people should do. When we face
up to the artificial intelligence problem, however, we
see that the heuristics are really all we have. People
have to use such heuristics if they are to make quick
probability judgments about questions they have not
previously considered, and our programs will also have
to use them if they are going to be equally flexible.
The challenge is to figure out how to use the heuristics
well enough that using them will not usually cause
mistakes.

It is more difficult to say anything about how we
might build the ability to design probability argu-
ments. The lesson from Section 3 is clear, though: the
chunks that we try to fit together when we search for
a convincing argument must be larger than the chunks
represented by production rules. It is also clear that
the ability to construct cogent probability arguments
must include an ability to evaluate whether a proba-
bility argument is cogent.

I believe that our ability to build systems with
human-like capabilities in designing probability ar-
guments and generating numerical -probability judg-
ments will ultimately depend on our ability to build
associative memories. With a genuine associative
memory, we could retrieve stored experiences that
approximately match any arbitrary new situation, not
just those that match a relatively few situations we
might specify in advance. The retrieval of such stored
experiences on a fine scale would permit us to calculate
frequencies that could serve as numerical probability
judgments, and the comparison to other problems on
a coarser scale could give hints for the design of a
probability argument. Associative memory is currently
an active and exciting field of research in artificial

intelligence (Hinton and Anderson, 1981; Hopfield,
1982; Kohonen, 1984). It is a field where statisticians
should be making a greater contribution than they
are.

The entire field of artificial intelligence poses a
challenge to students of probability. I believe that
probability judgment will turn out to be possible and
important in artificial intelligence, but the extent of
its ultimate usefulness cannot be taken for granted; it
must be demonstrated.
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